
Towards Context-oriented Self-adaptation in
Resource-constrained Cyberphysical Systems

Mikhail Afanasov
Politecnico di Milano, Italy

afanasov@elet.polimi.it

Luca Mottola
Politecnico di Milano, Italy and

SICS Swedish ICT
luca.mottola@polimi.it

Carlo Ghezzi
Politecnico di Milano, Italy

carlo.ghezzi@polimi.it

Abstract—We present a context-oriented approach to de-
sign and implement self-adaptive component-based software in
resource-constrained Cyberphysical Systems (CPSs). Because of
unpredictable environment dynamics, developers must design
and implement CPS software to dynamically adapt to widely
different situations. Our approach provides design concepts and
language support to meet this requirement against severe resource
constraints. To this end, we bring a notion of context-oriented
design and programming down to platforms that—because of
extreme resource constraints—currently leverage fairly undis-
ciplined design techniques and rather rudimentary component-
based frameworks. Early results demonstrate that our approach
improves the quality of the resulting implementations facilitating
testing, maintenance, and evolution at the price of a negligible
system overhead.

I. INTRODUCTION

Cyberphysical systems (CPSs) place a computing and
communication core in the environment to gather data from,
and possibly take actions on the real world. Because of the
intimate interactions between the system and the physical
world it is immersed in, CPS software is eminently required
to self-adapt against the many and unpredictable environment
dynamics. This is difficult to achieve in general [3], and even
more so whenever developers are to battle against the resource
limitations of many existing CPS platforms.

Example. Consider a wireless sensor network application
for wildlife monitoring [13]. Sensor nodes are embedded in
collars attached to animals, e.g., badgers, to study their social
interactions. The nodes are equipped with sensors to track an
animal’s movement, e.g., using GPS and accelerometers, and to
detect its health conditions, e.g., based on body temperature. A
low-power short-range radio allows the nodes to discover each
other through periodic radio beaconing. A node logs the radio
contacts to track an animal’s encounters with other animals.
The radio is also used to off-load the contact traces when in
reach of a fixed base-station.

The nodes run on batteries, making energy a precious
resource that developers may need to trade against the system’s
functionality, depending on the situation. For example, sensor
sampling consumes non-negligible energy, especially for de-
vices such as the GPS. Depending on the desired granularity
and on the difference between consecutive GPS readings—
the latter taken as indication of the pace of movement—
developers may tune the GPS sampling frequency accordingly.
The contact traces can be sent directly to the base-station
whenever in reach, but they need to be stored locally on a

node otherwise. When the battery is running low, developers
may turn the GPS sensor off to make the node survive until
the next encounter with a base-station, not to lose the collected
contact traces.

Contribution and road-map. Taking into explicit account
every possible enviroment situation in the design of CPS
software is a challenge. Crucially, multiple combined aspects
concurrently determine how the software should adapt its
operation, e.g., battery levels and physical locations in our
example application. Although the existing literature already
investigates similar problems [3], a principled approach at
tackling these issues in the design and implementation of
CPS software for extremely resource-constrained platforms is
largely missing. The platforms’ characteristics, such as battery-
powered operation and limited memory budgets, make this a
challenge.

Existing component-based frameworks for sensor net-
works [12], for example, employ component-based program-
ming during development, but sacrifice this notion at run-time
to mitigate resource limitations. In the nesC language [6],
components are in-lined during compilation to enable whole-
program analysis, meant to aggressively reduce the size of
the program binary to fit the limited memory. This prevents
runtime creation of component instances and dynamic com-
ponent binding, which may help implement self-adaptation
functionality by employing different components according to
the situation at stake. Programmers often circumvent these lim-
itations by “emulating” these functionality with hand-written
specialized code [12]. As a result, implementations become
entangled, and are thus difficult to maintain and evolve [14].

We address this issue by presenting context-oriented design
concepts and a corresponding programming model expressly
conceived for resource-constrained CPS platforms. To this
end, we define in Section II a specific notion of context and
context group, useful to conceptually organize the different
situations the system may find itself in, and their combinations.
This provides support during the design phases. We reflect
these notions in a custom programming model, described in
Section III, which brings concepts of context-oriented pro-
gramming [8] in existing component-based frameworks for
resource-constrained CPSs [6].

Section IV illustrates early results indicating that our ap-
proach may result in better structured implementations, where
components are increasingly decoupled. We further demon-
strate that accounting for changing requirements is likely easier

Health conditions group

abnormal temperature
&&(Resting||NotMoving)

Battery group

Activity group

Base-station group

on enter:
disable GPS

Low
on enter:
enable GPS

Normal

voltage < threshold

voltage > threshold

on active:
log locally

Unreachableon enter:
activate NotMoving
dump log
on active:
send readings to the BS

Reachable

timeout

BS beacon received

on active:
track GPS often

Running
on active:
track GPS rarely

Resting
on active:
no GPS tracking

NotMoving

small GPS difference

large GPS difference negligible GPS difference

acceleration detected

on active:
create alert beacon

Diseased
on active:
create normal beacon

Healthy

normal temperature

Fig. 1: Wildlife monitoring application design.

in our approach. These results come at a negligible increase in
resource consumption, which does not impact the feasibility of
our approach on the target platforms. For example, we observe
a mere 3% increase in program memory, whereas the energy
overhead is negligible.

We conclude the paper by discussing in Section V recurring
design and programming patterns that we already observe
emerging in our experience, and by briefly surveying related
efforts in Section VI. Section VII ends the paper with brief
concluding remarks and an agenda for future work.

II. DESIGN

We define two key concepts: i) contexts, and ii) context
groups, along with the notions necessary to weave these
concepts into a complete design. Contexts represent the dif-
ferent environmental situations the system may encounter, and
correspond in the code to behavioral variations associated
to a given situation. As the environment surrounding the
system mutates, the software adapts accordingly by activating
a suitable context. Context groups represent collections of
contexts sharing common characteristics; e.g., whenever the
same functionality must adapt to changes in the surrounding
environment.

As an example, Figure 1 depicts the context-oriented
design of the wildlife monitoring application described earlier.
Context groups are defined to describe behavioral variations
corresponding to battery levels, base-station reachability, as
well as an animal’s health conditions and activity. The con-
texts within a group define the single behavioral variations.
For example, the software behaves differently depending on
whether the base-station (BS) is reachable, as shown within
the “Base-station” group.

The contexts in a group are tied with explicit transitions,
labeled with the conditions triggering the context change. For
example, within the “Base-station” group, the system transi-
tions from context “Reachable” to “Unreachable” whenever no
beacons are received from the base-station within a specific
timeout. This entails a node is out of the base-station radio
range and the software must adapt accordingly; for example,
by locally storing the contact logs instead of sending them
over the radio.

Within the single contexts, it is useful to distinguish
between one-time operations executed at the time of entering
or exiting a context, and continuous activities that occur as long
as a context is active. For example, on entering context “Reach-
able”, the software dumps on the base-station the contact logs
locally accumulated while the base-station was unreachable.

Similarly, when in the latter situation, the software must log the
contacts locally as long as the “Unreachable” context persists,
as shown in Figure 1.

The required adaptation may span multiple context groups.
To this end, developers can bind context activations across
groups. An example is in the “Reachable” context within
the “Base-station” group: on entering, context “NotMoving”
should also consequently activate. As base-stations are typ-
ically deployed at known locations and their radio range is
very limited, continuing to sample the GPS sensor is likely a
waste of energy, as a node’s locations can be approximated
with the base-station one. Hence we can avoid waiting for the
next GPS sample before deciding to stop sampling until an
acceleration is detected.

Developers may also bind context transitions to the activa-
tion of other contexts, which is useful to check at run-time for
design errors. An example is when activating the “Diseased”
context in the “Health conditions” group. Besides an abnormal
body temperature that may reveal a disease, the adaptation
process must check that either “Resting” or “NotMoving” in
the “Animal activity” group is currently active. Indeed, if an
animal is diseased, it is probably not very active. Should that
not be the case, developers might have not correctly captured
how contexts evolve, potentially indicating a design error.

The concepts we define provide design-time support to
reason on the different situations the software must adapt to,
and to identify common functionality, orthogonal aspects, and
mutual constraints. This helps separate concerns during the
implementation phase, as we illustrate next.

III. PROGRAMMING SUPPORT

We render the design concepts above in a set of context-
oriented programming (COP) [8] constructs feasible within ex-
isting component-based frameworks for resource-constrained
CPS platforms [12]. We exemplify our approach based on
nesC [6]. However, our approach is not tied to it, and may
be readily translated to other similar systems [12].

Target language. nesC is a component-based event-driven
programming framework for sensor networks, derived from
C. Applications are built by interconnecting components that
interact by providing or using interfaces. An interface lists one
or more functions, tagged as commands or events. Commands
are used to execute actions, while events are used to collect
the results asynchronously. Interfaces in nesC are bidirectional:
data flows both ways between components connected through
the same interface. Component configurations specify the
wirings among components. Configurations are component
themselves, so they can provide interfaces and be wired to
other components.

nesC exemplifies the limitations dictated by the target
platforms, and hence the reasons why existing COP approaches
cannot be directly ported. Besides the inability to create run-
time instances of components and to reconfigure compo-
nent wirings we already mentioned, for example, the use of
dynamically-allocated memory is also discouraged: the Micro-
controller Units (MCUs) provide no memory protection, so
bugs in memory handling may have disastrous effects.

1 context group BaseStationG {
22 layered command void report(contact_t contact);
3 }
4 implementation {
55 contexts Reachable,
66 Unreachable is default,
77 ErrorC is error;
8 // Standard nesC component wirings...
9 }

Fig. 2: Context group in CONESC.

1 context Reachable {
22 transitions Unreachable;
33 triggers NotMoving;
4 uses interface Radio;
5 }
6 implementation {
77 layered command void report(contact_t contact){
8 call Radio.send(contact);
9 }

1010 event void activated(){// Dump logs on base-station }
1111 event void deactivated(){ // Radio clean-up }
12 }

Fig. 3: CONESC context.

CONESC. We design a context-oriented extension to nesC,
called CONESC, that incorporates the design concepts de-
scribed in Section II.

At the core of CONESC is a notion of layered func-
tion [8]. These are functions whose behavior depends on the
currently active context, and are hence the primary means
to implement the behavioral variations necessary for self-
adaptation. Crucially, the behavior of layered functions may
change transparently to the caller, which is then relieved
from explicitly managing the adaptation required by a given
situation. We embed layered functions in nesC interfaces as
specialized commands.

A context group in CONESC extends nesC configurations
by specifying the contexts included in the group and the
layered functions that such contexts provide. Figure 2 shows
a snippet of CONESC code to implement the “Base Station”
group in Figure 1. In this example, the report() command
on line 2 —used to report a contact with another animal to
the end-user—changes the behavior depending on whether the
base-station is Reachable or Unreachable. The latter
are the contexts included in this group, specified on line 5
after the keyword contexts with optional modifiers: is
default (line 6) specifies the active context at start-up, and
is error (line 7) indicates an error context. The latter is
automatically activated should there be violations to constraints
defined over context transitions; for example, the fact that
“Resting” or “NotMoving” must be active when transitioning
from “Healthy” to “Diseased”, as shown in Figure 1.

The notion of context extends a nesC component by
providing the context-dependent implementations of layered
functions. Figure 3 shows the CONESC implementation of
the “Reachable” context. The keyword transitions on
line 2 specifies the allowed outgoing transitions, whereas
the keyword triggers on line 3 binds context activations
across groups. In this case, entering the “Unreachable” context
consequently activates “NotMoving”, as indicated in Figure 1.
The specific implementation of the layered function is shown
on line 7 with the layered keyword. The implementation of
other commands or events is as in standard nesC. Particularly,
the predefined events activated() and deactivated(),

1 module BaseStationContextManager {
2 uses context group BaseStationG;
3 }
4 implementation {
5 event msg_t Beacon.receive(msg_t msg) {
66 activate BaseStationG.Reachable;
7 call BSReset.stop();
8 call BSReset.startOneShot(TIMEOUT);
9 }

10 event void BSReset.fired() {
1111 activate BaseStationG.Unreachable;
12 }}

Fig. 4: Base-station context controller.

1 module User {
22 uses context group BaseStationG;
3 }
4 implementation {
5 event void Timer.fired() {
66 call BaseStationG.report(msg);
7 }
88 event void BaseStationG.contextChanged(context_t con) {
99 if(con == BaseStationG.Reachable) // DO SOMETHING...

10 }}

Fig. 5: Caller module.

shown on lines 10 and 11 , are automatically signalled when
entering or exiting the context, allowing the implementation
of one-time operations and the setup/shutdown of continuous
activities in a context.

The contexts indicated after the transitions keyword
inside single contexts are possibly followed by the iff
keyword to state constraints on the transitions, as in
transitions Diseased iff Resting || NotMoving;

used in the definition of the “Healthy” context to encode the
constraints in Figure 1. If such a transition is attempted at run-
time, but the constraints are violated, the error context defined
in the corresponding context group is activated.

Programmers can, anywhere in the code, trigger explicit
transitions between contexts in a group. This is as simple as us-
ing the activate keyword followed by a full context name,
as shown in Figure 4. The full context name is determined
by concatenating the name of the enclosing context group and
of the single context. For example, the Reachable context is
activated on line 6 of Figure 4 as soon as a beacon from
the base station is received. Should the timeout expire with no
more beacons received, context Unreachable is activated on
line 11 . Either context change results in a different context-
dependent implementation of report to be activated. These
implementations are found within the single contexts.

Modules using layered functions perform function calls
transparently w.r.t. the available contexts and, most impor-
tantly, independently of what context is active at a given
moment. Fig. 5 shows one such example for function report.
Following the indication that context group BaseStationG is
used, as specified on line 2 , the call to the layered function
report does not refer to the single contexts. The net advan-
tage is that the use of context-dependent functionality is fully
decoupled w.r.t. context detection and activation. The two may
be implemented even in different modules. Such feature helps
separate orthogonal concerns and hence facilitates testing,
maintenance, and evolution of the software, as we discuss next.

Finally, should programmers of caller modules need to find

Type Description
Content (tightest) One module relies on the internal working of another. Chang-

ing one module requires changes in the other as well.
Common Two or more modules share some global state, e.g., a variable.
External Two or more modules share a common data format.
Control One module controls the flow of another, e.g., passing infor-

mation that determine how to execute.
Stamp Two or more modules share a common data format, but each

of them uses a different part with no overlapping.
Data Two or more modules share data through a typed interface, e.g.,

a function call.
Message (loosest) Two or more modules share data through an untyped inter- face,

e.g., via message passing.

Fig. 6: Coupling types.

out about the run-time evolution of contexts, a predefined
event contextChanged is fired corresponding to every
context change, as on line 8 of Figure 5. Within the event
handler, programmers can access constant values that our
translator automatically generates to find out what context was
activated and to react accordingly, as shown on line 9 .

Translation. We develop a dedicated translator to convert
CONESC code to plain nesC. To do so, our translator performs
two passes through the input code. First, it reads the main nesC
Makefile to determine the main configuration component
and to recursively scan the component tree. Based on the
information gained during the first pass, including the list of
every context and context groups defined in the code, it parses
every input file to convert the CONESC code to plain nesC
and to generate a set of support functionality managing context
transitions at run-time. The resulting sources are then compiled
using the standard nesC toolchain.

Our translator is implemented using JavaCC [9]. Two
aspects are worth noticing. First, the generated code is com-
pletely hardware-independent. Therefore, hardware compati-
bility is the same as the original nesC toolchain, allowing us
to support a wide range of platforms and not to modify our
translator due to hardware idiosyncrasies. Second, the whole
translation process is only seemingly straightforward. Render-
ing the logic embedded within the CONESC abstractions does
require a fairly sophisticated processing. To give an intuition,
we measured the size of the CONESC implementations of
a set of representative applications against the size of the
nesC implementations output by our translator. On average, we
observe three times as much lines of code in the automatically-
generated nesC code.

IV. PRELIMINARY EVALUATION

Using the translator, we compare an implementation of
the wildlife monitoring application against a functionally-
equivalent nesC implementation that would arguably result
from current practice [12], [14], [13]. Nonetheless, the fol-
lowing considerations more generally apply to a larger set
of applications we are experimenting with, including a smart-
home controller and an adaptive sensor network protocol stack,
whose detailed discussion we omit for brevity. Our comparison
addresses three key dimensions, as described next.

1. Coupling and cohesion. According to Stevens et al. [19],
seven types of coupling between software components exist, as
summarized in Figure 6. It is generally known that the tightest
is coupling, the more difficult is debugging, maintaining, and
extending the implementations.

Implementation C
on

te
nt

C
om

m
on

E
xt

er
na

l

C
on

tr
ol

St
am

p

D
at

a

M
es

sa
ge

nesC-based yes yes yes yes – yes –
ConesC-based – – yes – – yes –

Fig. 7: Coupling comparison.

Our analysis reveals that the CONESC implementation is
significantly more decoupled than its nesC counterpart, as
qualitatively indicated in Figure 7. Based on current prac-
tice, the adaptation functionality would be implemented as a
monolithic nesC component, using global state variables to dis-
patch function calls to different components depending on the
situation. With our approach, most types of coupling among
components are removed, as context transitions implicitly cater
for the appropriate dispatching of function calls. Consequently,
programmers are relieved from explicitly managing global
state transitions, which facilitates maintenance and testing.

The individual CONESC components also appear more
cohesive and simpler: on average, using our approach, a
component is almost half the lines of code than using plain
nesC and defines half the number of global variables compared
to nesC. We further observe a 75% reduction in the number of
commands/events declared in CONESC components compared
to a plain nesC implementation.

2. Evolving the software. Besides dealing with the run-
time adaptation required to cope with environmental dynamics,
CPS software also needs to evolve in response to changing
requirements [14]. Generally, the better an implementation is
modularized, the easier are the modifications, since the changes
are limited to isolated portions of the system.

Say, for example, developers of the wildlife monitoring
applications need to track the spreading of a disease. To this
end, they modify the application design by adding a new
context “Carrier” in the “Health conditions” group to mark
an animal who was in contact with a diseased one, but shows
no increase in body temperature yet.

Using our approach, this is as simple as changing 5 lines of
code in the CONESC implementation, besides the functionality
needed in a new “Carrier” context. Based on current practice,
the same modification would crucially require adding at least
two global states. This adds the burden of explicitly managing
their transitions and is further detrimental to ease of testing
and maintainability.

3. System overhead. The advantages above come at the price
of a negligible system overhead. We assess this aspect on
the widespread TMote Sky sensor node [15], featuring a 16-
bit MSP430 MCU with 10 Kb RAM and 48Kb for program
memory. In particular, we measure the MCU overhead for
context transitions and calls to layered functions, as well as
memory overhead when using CONESC as compared to nesC.
To measure the MCU overhead we use the MSPSim MSP430
emulator [5], while we estimate the memory overhead using
the tools in the nesC and GNU-C toolchains.

Aboard the TMote Sky, calls to layered functions in our
example application add only 3 CPU cycles over standard
function calls, whereas context transitions involve at most 20
CPU cycles. To put these figures in prospective, turning an
LED on takes 8 CPU cycles on a TMote Sky. The increased

Behavior Control Group

on active:
perform actionN

Behavior
Variation N

on active:
perform action1

Behavior
Variation 1

Context
Controller

<<controls>>

Service User

Fig. 8: Behavioral control pattern.

latency and consumed energy due to the additional CPU cycles
are hence immaterial. As for memory consumption, we mea-
sure a mere 3% increase in both RAM and program memory.
These figures demonstrate that the price to pay for obtaining
significant advantages in the quality of the implementations is
modest, and hence our approach promises to be feasible even
on extremely resource-constrained platforms.

V. EMERGING PATTERNS

Despite the limited experience we hitherto gathered using
CONESC, we already observe quite distinctive design and
programming patterns, representing solutions to commonly
occurring problems. As discussed next, our approach allows
developers to deal with diverse requirements using only a
handful of concepts.

Behavior control. Programmers often employ a single context
group to specify different behaviors for the same high-level
functionality. One such example is the “Base-station” group
in Figure 1, which includes two different behaviors for the
functionality to report contact logs to the users. The func-
tionality itself is exported by one or more layered functions
defined on the group. The chosen behavior is then determined
by activating a single context within the group.

We found similar designs in other applications as well.
In the adaptive protocol stack, for example, the packet relay
functionality also matches a similar design. Depending on a
node’s mobility, the chosen behavior is picked out of a pool
of available protocols, whose functionality are encapsulated in
single contexts. These are in turn included in a single context
group, which exports a layered function used by the application
to transparently accesses whatever protocol is in operation at
a given time.

Figure 8 shows an abstract view of such commonly re-
curring pattern. In addition to the context group exporting the
adaptive functionality and the single contexts therein, program-
mers also define an additional “context controller” component,
which activates the single contexts within the group depending
on the situation. Figure 4 shows a CONESC example for the
wildlife monitoring application. Similar designs apply to the
smart-home controller and the adaptive protocol stack as well.

Content provider. Different from the behavior control pattern,
which provides non-trivial context-dependent processing, we
observe cases where context-dependent data is offered to
other functionality with little to no processing involved. In
the wildlife monitoring application, for example, the “Health
conditions” group in Figure 1 provides differently formatted
beacons to the radio driver for broadcast transmissions. Lay-
ered functions are, in this case, defined for the group merely
to retrieve the context-dependent data.

In this case as well, we notice the same pattern in other ap-
plications. In the smart-home controller, for example, a context
group is defined to manage the user preferences depending on

Content Provider Group

on active:
return dataN

Context Data N
on active:
return data1

Context Data 1
Context

Data Consumer
Context

Controller

<<controls>>

Fig. 9: Content provider pattern.

Trigger Group

on enter/exit:
enable/disable X

Trigger N
on enter/exit:
enable/disable X

Trigger 1
Context

Controller

<<controls>>

Fig. 10: Trigger pattern.

day vs. night. These data are simply retrieved differently from
a data storage by two different contexts modeling day or night
situations. Whatever user preference is to be considered at a
given point is then handed over to the control loop in charge
of setting the functioning of the climate systems.

As shwn in Figure 9, this pattern’s structure differs from
that of behavior control in that the role of the “controller”
component is often fairly trivial (and hence omitted in the pic-
ture). In the smart-home controller, for example, the controller
component is simply based on the time of the day. On the
other hand, the component consuming the context-dependent
data plays a key role. Indeed, while functionality structured
according to behavior control can be considered stand-alone,
the context provider needs to be tailored to the data consumer.

Trigger. We also recognize designs where single contexts are
used only to trigger specific operations when entering/exiting,
but no significant context-dependent functionality or data is
offered as the context remains active. One example in the
wildlife monitoring application is the “Battery” group in Fig-
ure 1. The included contexts are used to enable/disable the GPS
sensor depending on battery levels, but no other functionality
is provided to other components. In this case, layered functions
are often not defined, in that the predefined activated and
deactivated events within the single contexts suffice.

In the smart-home controller, for example, we notice a
similar pattern in the context group regulating light dimming.
Depending on perceived light levels in a room, either context
“Too bright” or “Too dark” is activated, and lights are tuned
accordingly when entering either context. This processing is
entirely implemented within the corresponding activated
event handlers.

In more general terms, a “context controller” component is
present in this case as well to drive the context transitions in
the group, as shown in Figure 10. However, unlike the other
patterns, there is no other significant component that either
uses context-dependent functionality or consumes context-
dependent data. The functionality is mostly self-contained.

VI. RELATED WORK

Efforts close to ours particularly address the design and
implementation of self-adaptive embedded system software,
context-oriented programming, and system-level adaptiveness
in CPSs. We briefly survey paradigmatic examples.

Works in self-adaptive embedded system software spans
phases from requirement engineering to verification [3]. Co-
design approaches also exist where the hardware/software
boundaries blur for greater flexibility [4]. Unlike in our work,
these solutions focus on a few environmental dimensions, each

requiring ad-hoc self-adaptive functionality. In our target ap-
plications, complexity arises especially from the combinations
that multiple environmental dimensions concurrently generate.
Nevertheless, most of these solutions would be hardly appli-
cable in resource-constrained CPSs, due to run-time overhead.

Villegas [20] designed dedicated software support for
situation-aware software systems. Despite sharing some high-
level challenges with our work, Villegas relies on the end-user
as a controller of context management, whereas we focus on
autonomous systems. Moreover, we directly deal with physical
sensors to acquire context information, whereas these are
abstracted in software-based sensor devices in Villega’s work.

Fleurey et al. [5] present a model-driven approach for
creating adaptive firmwares. They model the application as
a single state machine and define behavioral variations based
on predicates defined over the application state. When such
predicates are found true, the system accordingly adapt the
state machine transitions. Code is automatically generated
from these specifications. Compared to this effort, we do
not target completely automatic code generation, but provide
dedicated programming constructs. This offers greater freedom
in encoding the conditions to trigger context changes and
enables finer-grained optimizations, which may be mandatory
given the resource limitations. Moreover, we seek to integrate
our approach in existing component-based CPS frameworks,
leveraging the existing code base.

COP [8] made its way into several high-level languages [1],
[7], [10], [16], [18]. These are generally unfeasible on our
target platforms. We borrow a few of these concepts—for
example, our layered functions in context groups are akin
to the concept of layer-in-class [16]—and adapt them to
the limitations of component-based frameworks for resource-
constrained CPSs. In this area, the embedded devices are rather
typically seen as application-agnostic providers of raw sensor
data [18]. Differently, we bring COP down to the component-
based CPS software, enabling self-adaptive functionality right
on the devices that interact with the environment.

Aside from COP, Meta- and Aspect-oriented Programming
(AOP) offer programming support to implement adaptive
functionality [17]. The former requires self-modification of
the binary, which is often unfeasible in resource-constrained
CPSs. Similar requirements hold for AOP [11], which is often
applied to large and complex software projects. Arguably,
applying AOP to the relative simple processing running aboard
the CPS devices, even if possible, would be quite overkill.
Moreover, general agreement is that COP offers the best
support for modularization [17]. This feature is fundamental
to embed programming support for self-adaptation within
existing component-based frameworks.

Specific cases of run-time adaptation are seen at system
level in the CPS literature. For example, Zimmerling et al. [21]
focus on run-time reconfiguration of MAC protocol parameters
depending on environmental conditions. Routing protocols ex-
pressly designed with self-adaptive functionality also exist [2].
Such efforts essentially address a complementary problem.
While we aim to provide design-time and programming sup-
port to implement self-adaptive software in this domain, these
works focus on the actual problem-specific adaptation logic.

VII. CONCLUSION AND FUTURE WORK

We presented a solution to provide design-time and pro-
gramming support for self-adaptive software in resource-
constrained component-based CPS software. In this domain,
the lack of a principled design approach and the rudimentary
programming environments result in entangled implementa-
tions. We thus conceived dedicated design concepts and COP
extensions to existing component-based frameworks. Prelimi-
nary results indicate that our approach may yield implementa-
tions that are easier to test, maintain, and evolve. The run-time
overhead to pay is, nonetheless, negligible.

We are currently extending the assesment of our work to
more complex system implementations and to larger sets of
performance metrics, while investigating ways to automatically
generate CONESC skeletons based on graphical representations
of contexts and context groups similar to Figure 1. As part
of our research agenda, we plan to use the same notation as
input to perform static verification, e.g., using domain-specific
model-checking techniques.

Acknowledgments. This work was partly supported by project
the ERC Advanced Grant EU-227977 SMScom and by the
Swedish Foundation for Strategic Research (SSF).

REFERENCES

[1] J. E. Bardram. The Java context awareness framework (JCAF) – A
service infrastructure and programming framework for context-aware
applications. In Proc. of PERVASIVE, 2005.

[2] T. Bourdenas et al. Self-adaptive routing in multi-hop sensor networks.
In Proc. of CNSM, 2011.

[3] B. Cheng et al. Software Engineering for Self-Adaptive Systems: A
Research Roadmap. Springer, 2009.

[4] J. Diguet et al. Closed-loop-based self-adaptive hardware/software-
embedded systems: Design methodology and smart cam case study.
ACM Trans. on Embedded Computing Systems (TECS), 2011.

[5] F. Fleurey et al. A model-driven approach to develop adaptive
firmwares. In Proc. of the 6th SEAMS, 2011.

[6] D. Gay et al. nesC language: A holistic approach to networked
embedded systems. In Proc. of PLDI, 2003.

[7] C. Ghezzi et al. Programming language support to context-aware
adaptation: A case-study with Erlang. In Proc. of ICSE SEAMS, 2010.

[8] R. Hirschfeld et al. Context-oriented programming. Journal of Object
Technology, 2008.

[9] JavaCC - The Java Compiler Compiler. javacc.java.net.
[10] T. Kamina et al. EventCJ: A context-oriented programming language

with declarative event-based context transition. In Proc. of AOSD, 2011.
[11] G. Kiczales et al. Aspect-oriented programming. In ECOOP, 1997.
[12] L. Mottola and G. P. Picco. Programming wireless sensor networks:

Fundamental concepts and state of the art. ACM Comp. Surveys, 2011.
[13] B. Pasztor et al. Selective reprogramming of mobile sensor networks

through social community detection. In Proc. of EWSN, 2010.
[14] G. P. Picco. Software engineering and wireless sensor networks: Happy

marriage or consensual divorce? In Proc. of FSE/SDP FOSER, 2010.
[15] J. Polastre et al. Telos: Enabling ultra low-power wireless research. In

Proc. of IPSN, 2005.
[16] G. Salvaneschi et al. Context-oriented programming: A software

engineering perspective. J. Syst. Softw., 2012.
[17] G. Salvaneschi et al. An analysis of language-level support for self-

adaptive software. ACM Trans. Auton. Adapt. Syst., 2013.
[18] S. Sehic et al. COPAL-ML: a macro language for rapid development

of context-aware applications in wireless sensor networks. In Proc. of
SESENA, 2011.

[19] W. Stevens et al. Classics in software engineering: Structured Design.
Yourdon Press, 1979.

[20] N. Villegas. Context Management and Self-Adaptivity for Situation-
Aware Smart Software Systems. PhD thesis, University of Victoria,
Canada, 2013.

[21] M. Zimmerling et al. pTunes: Runtime parameter adaptation for low-
power MAC protocols. In Proc. of IPSN, 2012.

