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Abstract

We present state retention techniques to support embed-
ded sensing applications on 32-bit microcontrollers whose
energy provisioning is assisted through ambient harvesting
or wireless energy transfer. As energy availability is likely
erratic in these settings, applications may be unpredictably
interrupted. To behave dependably, applications should re-
sume from where they left as soon as energy is newly avail-
able. We investigate the fundamental building block neces-
sary to this end, and conceive three mechanisms to check-
point and restore a device’s state on stable storage quickly
and in an energy-efficient manner. The problem is unique in
many regards; for example, because of the distinctive per-
formance vs. energy trade-offs of modern 32-bit microcon-
trollers and the peculiar characteristics of current flash chips.
Our results, obtained from real experiments using two differ-
ent platforms, crucially indicate that there is no “one-size-
fits-all” solution. The performance depends on factors such
as the amount of data to handle, how in memory the data is
laid out, as well as an application’s read/write patterns.

1 Introduction

Progresses in micro electro-mechanical systems are re-
defining the scope and extent of the energy constraints in net-
worked embedded sensing. Technologies to harvest energy
from the ambient can integrate with embedded devices to re-
fill their energy buffers. A variety of these technologies ap-
peared that apply to, for example, light and vibrations, while
matching the physical constraints of the devices [14, 16,20].
Wireless energy transfer complements these techniques by
enabling opportunistic recharges. Several techniques re-
cently appeared that enable practical wireless energy transfer
at scales suitable for embedded sensing [11,23,24].

These technologies, however, can rarely ensure a pre-
dictable supply of energy. Computing under such transient
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energy conditions becomes a challenge. Devices experi-
ence frequent shutdowns, to later reboot as soon as energy
is newly available. In the mean time, applications lose
their state. This translates into a lack of dependable behav-
ior and a waste of resources, including energy, as applica-
tions need to re-initialize, re-acquire state, and perform re-
synchronization with other nearby devices. As a result, even
if an application ultimately manages to make some progress,
the overall system performance inevitably suffers.

Meanwhile, embedded sensing systems are increasingly
built around modern 32-bit microcontrollers (MCUs), such
as those of the ARM Cortex-M series [3]. These provide
increased computing power and larger amounts of memory
compared to earlier 16-bit MCUs, at a modest increase in
energy consumption. These features enable employing more
sophisticated algorithms and programming techniques, facil-
itating more demanding embedded sensing applications in
several that require dependable behaviors, including wireless
control [1,7] and Internet-connected sensing [2].

In this context, we aim at allowing an application’s pro-
cessing to cross the boundaries of periods of energy unavail-
ability. We wish to do so without resorting to hardware mod-
ifications that may greatly impact costs, especially at scale.
Solutions to similar issues exist, for example, in the domain
of computational RFIDs [28, 29], whose applications and
hardware characteristics are, however, sharply different from
the platforms above. As further elaborated in Section 2, the
net result is that existing solutions are hardly applicable.

In this paper, we study the fundamental building block
to reach the goal, and investigate efficient system support to
checkpoint an application’s state on stable storage, where it
can be later retrieved to re-start the application from where it
left. Two requirements are key for these functionality:

1. they must be energy-efficient not to affect the duration
of the next computing cycle; indeed, the energy spent in
checkpointing and restoring is subtracted to the energy
budget for computing and communicating.

2. they need to execute guickly to minimally perturb the
system; as the time taken to complete the routines
grows, applications may be increasingly affected as
they are often not designed to be preempted.

As described in Section 3, the checkpoint and restore rou-
tines we design are made available to programmers through
a single pair of checkpoint () and restore () func-



tions. Key to their efficiency is the way the state information
is organized on stable storage. Embedded devices are indeed
typically equipped with flash chips as stable storage, which
are energy-hungry and offer peculiar modes to perform read
and write operations. Section 4 describes three dedicated
storage modes that exploit different facets of how data is laid
out on modern 32-bit MCUs and of the energy consumption
characteristics of current flash chips.

We study the trade-offs among the three schemes and two
baselines taken from the literature through real experiments
using two different platforms. Our results, reported in Sec-
tion 5, provide evidence of several trade-offs that depend,
for example, on the amount of data to handle and an appli-
cation’s read/write patterns. Section 6 discusses these trade-
offs based on our results, and provides insights on what kind
of application may benefit most from what storage mode.

Section 7 ends the paper with an outlook on future work
and brief concluding remarks.

2 Background

Our work targets modern embedded platforms, whose
characteristics depart from traditional mote-class devices.
Differently, existing software techniques for state retention
on transiently-powered devices mostly target computational
RFIDs, whose programming techniques and resource con-
straints do not match those of the aforementioned platforms.

2.1 Target Platforms

We consider 32-bit MCUs of the ARM Cortex-M series
as representatives of modern embedded sensing platforms.
This specific breed of MCU is gaining momentum [2], due
to excellent performance vs. energy consumption trade-offs.

ARM Cortex-M. We use two STM32 Cortex-M prototyp-
ing boards, one ST Nucleo L152RE board equipped with
a Cortex-M3 MCU, and one ST Nucleo FO91RC board
equipped with a Cortex-M0 MCU. The two boards repre-
sent, in a sense, opposite extremes within the Cortex-M fam-
ily. The Cortex-M3 board offers higher processing power,
80 KBytes of RAM space, and maximum energy consump-
tion of 0.365 mA/MHz. Differently, the Cortex-MO board
has more limited processing capabilities, 32 KBytes of RAM
space, and maximum energy consumption of 0.31 mA/MHz.

The Cortex-M design provides sixteen core registers. The
first thirteen registers (R0-R12) are 32-bit General-Purpose
Registers (GPRs) for data processing. The Stack Pointer
register (SP, R13) tracks the address of the last stack al-
location in RAM. The Link Register (LR, R14) holds the
address of the return instruction when a function call com-
pletes, whereas the Program Counter (PC, R15) holds the
address of the currently executing instruction.

The characteristics of Cortex-M MCUs as well as the
availability of dedicated development environments [2, 4]
and efficient compilers [17] are impacting existing embed-
ded programming techniques. A paradigmatic example is the
use of heap memory. Traditionally discouraged because of
overhead and lack of predictable behavior, it is increasingly
gaining adoption [9, 18]. Besides providing better program-
ming flexibility, heap memory allows developers to employ
sophisticated programming languages and techniques, such
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Figure 1. Existing checkpointing techniques.

as object orientation with polymorphic data types and excep-
tion handling [22]. Moreover, it facilitates porting existing
libraries, such as STL containers, to embedded systems [18].

Flash memory. Representative of existing platforms is also
the kind of stable storage aboard both boards we use. The
MCU is connected to a NAND-type flash memory chip
through a dedicated instruction bus, optimized for smaller
chip size and low energy cost per bit.

This kind of flash memories are divided into sectors,
which are then sub-divided into pages. The two units de-
termine the read/write modes. The flash chip on the Cortex
M3 board requires to write half of the page size at a time,
whereas the flash chip on the Cortex MO board permits writes
of a 32-bit word in a single turn. This complicates saving ar-
bitrary amounts of data on the flash. Moreover, the written
data cannot be modified in-place as in RAM; data needs to
be erased before re-writing. The unit size of an erase op-
eration is, however, different than the unit size for writes,
which further complicates matters. For example, the Cortex
MO board requires the erase of an entire 2 KByte sector at a
time, possibly to modify a single bit in a sector.

These aspects combine with the peculiar energy con-
sumption of flash chips: write and erase operations are slow
and extremely energy-hungry, whereas read operations takes
significantly shorter time and consumes less energy. To put
things in perspective, the flash chip of the Cortex-M3 board
draws 11.1 uA/MHz, that is, orders of magnitude more than
any other peripheral on the board.

2.2 Prior Art

Checkpointing and restoring the system’s state is not a
new concept. In database systems, for example, these mech-
anisms are used for ensuring the consistency of concurrent
transactions on replicated databases [10]. In distributed
debugging, checkpointing aids identifying root causes by
providing the input to re-play concurrently executing pro-
cesses [21]. Checkpoints are also used for ensuring fault-
tolerance in redundant real-time embedded systems, such as
those interconnected via wired buses [8].

Checkpoint and restore techniques are often reported
for testing and experimentation using mote-class devices.
For example, Osterlind et al. [27] present a checkpointing
scheme similar to the one in Figure 1(a), where the entire



RAM space is transferred to stable storage. The objective is
to facilitate transferring network state between testbeds and
simulations, thus achieving increased repeatability. Their
technique targets TMote Sky nodes. However, dumping the
entire RAM space onto stable storage is likely inefficient, as
the procedure also includes empty areas of memory that do
not need to be saved. Moreover, the work of Osterlind et
al. [27] does not necessarily support resuming the execution
from the point in the code where the last checkpoint is taken,
which is however required in our setting.

Chen et al. [13] augment the TinyOS operating system
with mechanisms to checkpoint and restore selected compo-
nents upon recognizing state inconsistencies. The mecha-
nisms to trigger the checkpoints are generally application-
specific, and meant to describe the conditions that indicate
data faults. In our setting, the motivation for checkpoint
and restore is different; it originates from a lack of the en-
ergy necessary to continue the computation, rather than data
faults. As a result, we do not aim at checkpointing selected
components, but the entire application state so that a device
can survive periods when it completely shuts down.

Existing works closest to ours target computational
RFIDs equipped with 16-bit MCUs and small amounts of
memory, such as the WISP mote [12]. For these plat-
forms, MementOS [28] allows programmers to inserts “trig-
ger points” to save programmer-selected parts of the BSS or
DATA sections and the stack onto stable storage, as shown in
Figure 1(b). As it only handles contiguous areas of memory,
the processing is quite simple. It is, however, inapplicable to
our case. For example, we are to include also heap memory
as part of checkpoint and restore. This creates issues such
as how to cope with fragmentation in the heap, which are
specific to the setting we consider in this work.

To ameliorate the energy overhead of flash memory,
Quickrecall [19] resorts to hardware modifications by replac-
ing traditional SRAM with non-volatile ferroelectric RAM
chips. However, ferroelectric RAM is currently significantly
less dense and more expensive compared to normal SRAM,
which makes it less desirable for high-performance embed-
ded devices, such as those built with Cortex-M MCUs. Fur-
thermore, memory-mapped FRAM will create data inconsis-
tencies among non-volatile data variables. Lucia et al. [25]
ensure volatile and non-volatile data consistency by asking
the programmer to manually place the calls to the checkpoint
routines within the code. In this work, we intend to use non-
volatile memory as a support, not a replacement of RAM.
We only use non-volatile memory for storing and retrieving
checkpoints, rather than supporting general computations.

3 Fundamental Operation

We describe the choice of the minimum state information
required for correctly enabling a subsequent restore, as well
as the fundamental operation of the checkpoint and restore
routines. The former are independent of how the state infor-
mation is mapped to stable storage. We deal with this aspect
in Section 4, by presenting three different storage modes.

Our target platforms employ a plain memory map. The
program data is divided into five segments: DATA, BSS,
heap, stack, and TEXT. The DATA segment includes initial-
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Figure 2. Fundamental operation during checkpoint.

ized global and static variables, and is typically located at the
starting address of the RAM. The BSS segment is located ad-
jacent to the DATA segment and includes uninitialized global
variables. At the end of the BSS segment starts the heap seg-
ment, dedicated to dynamic data. The stack segments starts
from the bottom address of the main memory and grows to-
wards the heap. The TEXT segment resides in a flash-type
memory and holds the program instructions.

In principle, the minimum state information for later
restoring the device’s state includes: i) the values of all
GPRs, ii) the content of the RAM, including stack, heap,
and the BSS and DATA segments, and iii) the values of stack
pointer (SP), program counter (PC), and link register (LR).
To checkpoint the device’s state, we initially push the values
of all GPRs onto the stack through an assembly function—
this is the only device-specific step in the whole procedure.
Next, we proceed backward from the last address of the sta-
ble storage, as in Figure 2. In doing so, we:

1. save a “magic section” [28] on the last address of the
stable storage, which includes a randomly generated
number and the size of the RAM data we need to
store—this information is used to ensure a checkpoint
is complete when restoring, as explained next;

2. save the current values of stack pointer and link register:
as described later, these two are sufficient to resume the
computation using the checkpoint information;

3. copy to stable storage the RAM data, including stack,
heap, the BSS and DATA segments, as well as the val-
ues of the GPRs we copied to RAM earlier;

4. save the same “magic section” again and pop the GPR
values from the stack back into their respective regis-
ters, so the program can resume its normal execution.

These operations are made available through a single C
function checkpoint () that takes the value of the stack
pointer (SP) as an argument!. The reason why the function
requires this value is because the call to the function itself af-
fects the stack pointer. However, a checkpoint must resume
the computation right after the call to checkpoint (), that
is, in a situation where the stack pointer holds the same value

For programming convenience, this information is provided through
a C macro.



as before the call. Because of this, it is also not neces-
sary to save the value of the program counter (PC). The link
register (LR), which holds the return address of the call to
checkpoint (), carries precisely the point in the program
where we wish to resume the computation after restoring.

To restore the device’s state, we provide a symmetric C
function restore (), which is to be called immediately
after the device starts running the main () function. The
key functionality is to ensure that only complete checkpoints
are restored. It may indeed happen that checkpoint () is
called when the energy left on the device is insufficient to
complete the operation, and the device turns off before the
function finishes. In these circumstances, the data on the sta-
ble storage cannot be used to resume the computation: a par-
tial restore may ultimately bring the device to an inconsistent
state that prevents any other progress.

To address this issue, the restore () function proceeds
in the opposite way compared to checkpoint (). It first
reads the magic section. Based on this, it calculates the
size of the whole checkpoint and retrieves the other copy
of the magic section at the end of the checkpoint. If the
two copies of the random number in the magic section are
equal, it means the checkpoint data is complete, that is, the
checkpoint () function correctly reached the end of its
processing. Only in this case, restore () proceeds by
reading the data from the checkpoint to re-populate the RAM
space and to update the stack pointer (SP) as well as link reg-
ister (LR). Setting the latter to the instruction immediately
following the call to checkpoint () makes the program
resume as if the computation was never interrupted.

4 Storage Modes

The crucial aspect determining the performance of the
checkpoint and restore routines is the organization of the
state information on stable storage. We design three storage
modes, described later and illustrated in Figure 3. In Sec-
tion 5 we report on extensive experimental results revealing
several performance trade-offs.

4.1 Split

To include the heap segment in the checkpoint, the
most natural optimization over copying the whole RAM
space [27] is to split the operation between the stack, heap,
and the BSS and DATA segments. This allows one not to
write to stable storage the unused memory space between
the end of the heap and the top of the stack, avoiding unnec-
essary energy-hungry write operations.

Based on this reasoning, as shown in Figure 3(a), the
SPLIT mode processes the stack information and the rest of
the memory segments separately. First, it copies the whole
stack segment to stable storage. This is possible because, as
explained in Section 3, the checkpoint routine receives the
current value of the stack pointer as input. Next, we copy the
DATA, BSS, and heap segments as a whole to stable stor-
age. To this end, the checkpoint routine needs to know the
highest allocated address in the heap segment. We gain this
information by wrapping malloc () and free () with the
functionality to keep track of this address as memory is allo-
cated and deallocated during the application’s lifetime. The
checkpoint routine then simply copies everything below this
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Figure 4. Example configuration in HEAP TRACKER
when allocated memory crosses multiple blocks.

address up to the RAM start address.

Trade-offs. The processing required by SPLIT is extremely
simple. Moreover, the additional state information to be kept
is minimal: it solely amounts to keeping track of the highest
memory address allocated in the heap. On the other hand,
the custom malloc () and free () system functions in-
troduce some slight processing overhead. In addition, space
is still wasted on stable storage if the heap segment is frag-
mented. Again, unnecessary writes may be detrimental to
the system’s lifetime and, particularly, to the ability of the
checkpoint routine to correctly complete.

4.2 Heap Tracker

To overcome the potential energy waste due to writes of
fragmented areas of the heap, we must achieve higher granu-
larity in keeping track of allocated and deallocated memory.



This is, however, challenging in the general case. It is indeed
quite complex to predict allocation and deallocation opera-
tions in the heap, or to forecast the size of the allocated or
deallocated chunks of memory.

To address these issues, we conceive a simple, yet effec-
tive scheme called HEAP TRACKER, intuitively illustrated in
Figure 3(b). We split the heap segment in blocks of size S,
and create a supporting data structure m with M /S, entries,
M being the maximum size of the heap. Each entry m[i] car-
ries two pieces of information: a 1 byte integer counter ¢ and
a memory address a.

The counter ¢ records the number of memory chunks al-
located in the i-th heap block. The checkpoint routine checks
this information before copying the block to stable storage,
and performs the operation only if ¢ is greater than zero. A
counter is necessary, rather than simply a flag, because in
the general case S; may be larger than the size of the al-
located chunks of memory, so a single block may accom-
modate multiple allocations. The counter for every block is
incremented or decremented upon allocating or deallocating
memory within the block’s boundaries, again through proper
wrappers tomalloc () and free ().

The address a serves the cases where allocations and deal-
locations cross multiple blocks. For example, the right part
of Figure 4 shows a case where a chunk of memory is al-
located across three blocks. In this situation, the counters
of all affected blocks are to be incremented upon allocating
memory, and vice-versa when deallocating. The operation
is simple in the former case, but special care needs to be
taken when deallocating. Indeed, unless one modifies the in-
ternal implementation of malloc () and free (), which
we would rather avoid for better portability, it is difficult to
know the size of the deallocated memory when free () -ing.
To address this, the memory address a is set to a value cor-
responding to the one returned by the original malloc ()
when allocating the crossing chunk. In a sense, it indicates
where the crossing chunk starts out of the current block. This
way, the wrapper for free () can recognize the situation
based on the function’s input argument, and proceeds decre-
menting the counter for all blocks where a matches.

Note that, as the data structure m is in the DATA segment,
it implicitly becomes part of the checkpoint. The restore rou-
tine uses this information to reconstruct the heap, including
the fragmented areas, before resuming the computation.

Trade-offs. The choice of the value for Sj greatly impacts
the performance of HEAP TRACKER. Larger values for S
decrease the size of the supporting data structure, thus alle-
viating the memory overhead due to additional state infor-
mation. However, the achieved granularity may still cause
some un-allocated space to be written to stable storage if
memory is allocated in chunks smaller than S;. Conversely,
smaller values for S;, ameliorate this issue, but increase the
size of the additional state information required by HEAP
TRACKER. This makes the checkpoints larger, and thus in-
creases the energy required when writing to stable storage.
Orthogonal to this trade-off is the fact that if the block
size Sy, does not align with the smallest writeable unit on sta-
ble storage, the same heap block may require multiple writes
on stable storage unit, as discussed in Section 2.1, causing

unnecessary energy overhead. Among these conflicting re-
quirements, we choose to optimize the energy spent in writ-
ing the memory blocks to stable storage, and set S, equal
to the size of the smallest writeable unit of stable storage.
Based on the maximum heap size allowed by the compiler
we use, this creates an overhead of 3200 (1280) Bytes for
the Cortex M3 (MO0) board, which is at most 4% of the avail-
able RAM.

4.3 Copy-If-Change

A different take at the problem is to try and understand
whether a write to stable storage is needed at all. It may
indeed be the case that the previous checkpoint already in-
cludes the same information, thus re-writing to stable stor-
age is unnecessary. This reasoning finds justification in some
of the characteristics of modern flash chips, as discussed in
Section 2.1, where read operations are often more quick and
energy-efficient than writes. Thus, trading the energy neces-
sary to read from the previous checkpoint to possibly avoid
a write may be beneficial overall.

To leverage this aspect, COPY-IF-CHANGE splits the en-
tire RAM space in blocks of size S, again equal to the size
of the smallest writable unit on stable storage. As illustrated
in Figure 3(c), for each such block, COPY-IF-CHANGE first
reads the corresponding memory block from the previous
checkpoint if available, and compares that with the current
content of the RAM. If the two differ, the block is updated
on stable storage; otherwise, we proceed to the next block. In
the first iteration, COPY-IF-CHANGE considers the previous
checkpoint as empty, thus all blocks are updated.
Trade-offs. COPY-IF-CHANGE evidently incurs high over-
head for the first checkpoint, as all the blocks appear as mod-
ified and need to be copied to stable storage. Conversely,
the fewer modifications to the RAM, the more efficient the
mode becomes, as more energy-hungry write operations are
avoided. As experimentally verified in Section 5 and unlike
the previous two modes, the energy performance of COPY-
IF-CHANGE is also simple to predict, as it shows a basic
relation with the number of modified memory blocks.

5 Evaluation

We discuss the experimental results we obtain by com-
paring the performance of the storage modes in Section 4
against each other, as well as with i) a mode equivalent to
that of Osterlind et al. [27] called FULL, whereby the en-
tire RAM space is copied to stable storage regardless of how
memory is occupied, and ii) a mode akin to MementOS [28]
called STACK, whereby only the BSS, DATA, and stack seg-
ments are copied to stable storage.

The results we present next indicate that no single solu-
tion outperforms all others in all settings. Thus, the choice
of what storage mode to employ depends on the applica-
tion’s characteristics. We provide an overarching discussion
of these aspects, including examples of target applications
for each storage mode, in Section 6.

Metrics and setup. We consider two metrics based on the
requirements we elicit in the Introduction: i) the energy con-
sumption for the checkpoint and restore routines, and ii) the
time to perform the routines since the time of the call to the
corresponding C function. Note that the impact of restore



Figure 5 The IQ re51st0r in series with the IDD connec-
tor aboard the ST Nucleo boards and the measurement
setup used in the evaluation.
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Figure 6. Memory configurations representing the same
span and occupation, but different fragmentation.

operations on the overall system performance is generally
much smaller than checkpoint ones. This is essentially be-
cause: i) as already mentioned, reading from flash memories
is both faster and consumes less energy than writes, ii) re-
store operations generally happen with the node charged, as
opposed to checkpoints.

The metrics are a function of both the energy spent to op-
erate on the flash chip and by the MCU for processing. To
compute them, we place a 1Q resistor in series with a ded-
icated connector provided by the ST Nucleo boards, shown
in Figure 5. A Tektronix TBS 1072B oscilloscope tracks the
current flowing through the resistor. This allows us to accu-
rately record both the energy absorbed and the time taken
during checkpoint or restore. We set S, = 128 Bytes for
HEAP TRACKER, which corresponds to the smallest write-
able unit on the flash chip of the Cortex M3 board. All values
we present next are averages and error bars obtained over at
least ten repetitions.

Memory configuration. Conceiving a thorough set of inputs
for measuring the performance of the checkpoint and restore
routines is only deceptively simple. Their functioning is in-
deed determined by the content of the memory when running
the checkpoint, which is arbitrary. Quantitatively character-
izing the relevant aspects for the DATA and BSS segments
might not be difficult, as the data therein is necessarily con-
tiguous and their size is known at compile time. This is not
so for the stack, and especially for the heap.

We thus consider the model represented in Figure 6 to
synthetically characterize the inputs to our experiments, and
accordingly define three metrics that apply to either the stack
or the heap segment:

1. the span indicates the memory interval from the first
allocated chunk to the last one, that is, what portion of
RAM space is covered by either segment.

2. the occupation measures the net amount of data found
in memory within a given span. This corresponds to
the span only for the stack, as the memory allocation
is contiguous; the same does not hold for the heap as
chunks of unallocated memory may be present.

3. for the heap, the fragmentation measures how allocated
and unallocated memory chunks are distributed within
the span; we quantitatively characterize this as

x X (#free chunks of size x)

tati =1—
fragmentation(x) (total free bytes)

(D
where x is the size of the largest allocated memory
chunk at the time of taking the measure.

Equation (1) evaluates to 0.0 in configurations where it is
possible to allocate the maximum possible number of objects
of size x, that is, the memory is not fragmented. Differently,
it evaluates to 1.0 when it is impossible to allocate any chunk
of size x, that is, memory is extremely fragmented.

Note that, for the heap, these metrics are orthogonal. For
example, the same span may correspond to different occupa-
tions. Given a value of span and occupation, different config-
urations may yield different levels of fragmentation depend-
ing on the distribution of the allocated memory chunks, as
illustrated in Figure 6.

5.1 Contiguous Data

We investigate the performance of the different storage

modes when RAM data is allocated in a contiguous manner.
This is the case of applications whose memory demands are
mostly known beforehand; in these cases, programmers tend
to pre-allocate the necessary data structures. Differently, the
case of non-contiguous data and general fragmentation are
investigated in the following.
Setting. We vary together the span and occupation of differ-
ent RAM segments to understand how these affect the per-
formance. We test values within the limits allowed by either
physical memory or the compiler we use, and operate differ-
ently depending on the storage mode.

For the STACK mode, we artificially increase the span of
the stack by growing the size of local variables in a dummy
function. As STACK does not consider the heap, its ma-
nipulation is indeed immaterial. For both SPLIT and HEAP
TRACKER, we artificially increase the span and occupation
of the heap by growing dynamically-allocated dummy struc-
tures, and keep the stack segment to the minimum. This is to
investigate the performance as the varies; if it is empty, both
SPLIT and HEAP TRACKER behave equivalent to STACK.
For CopPY-IF-CHANGE, we initially consider the first itera-
tion, whereby all blocks are found to be different from the
previous (empty) checkpoint, and later study the case of a
varying number of blocks requiring an update. The FULL
mode covers the entire RAM space anyways.

Results. Figure 7 summarizes the results obtained with the
Cortex M3 board in energy and time, using STACK, SPLIT,
and HEAP TRACKER. Overall, the values are quite limited.
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Figure 7. Cortex M3: performance of the checkpoint rou-
tine with increasing span of contiguous RAM data. Heap
fragmentation is 0. STACK and SPLIT show similar perfor-
mance in this setting, whereas HEAP TRACKER suffers from
the overhead of additional support data without being able
to take advantage of it.

A checkpoint that covers the entire RAM space is completed
in slightly more than 3 secs, arguably resulting in a moder-
ate disruption of the application processing. In all modes,
writes to the flash chip dominate both energy and time; thus
the two figures are highly correlated, as seen by comparing
Figure 7(a) and 7(b).

All modes in Figure 7 show a linear increase in both met-
rics as the memory span grows. STACK and SPLIT follow
each other closely, as their working principles are the same,
that is, they copy memory segments as a whole. Differ-
ently, the performance of HEAP TRACKER is slightly, but
constantly worse than STACK and SPLIT. This quantifies
the trade-offs discussed in Section 4.2, as it represents the
price for: i) storing the support data structure that indicates
what memory blocks are occupied in addition to the appli-
cation data, and ii) performing additional processing on such
data structure during checkpoint. In absolute terms, the over-
head is limited in a worst-case situation for HEAP TRACKER:
the contiguous memory allocation prevents it from leverag-
ing the ability to avoid copying some blocks if they do not
cover chunks of allocated memory.

The energy performance of COPY-IF-CHANGE for the
initial iteration and of FULL—not shown in the charts as
they are independent of the memory span—is 94.5+1.34 mJ
and 85.2+4.0 mJ, respectively. We are indeed considering a
worst case also for COPY-IF-CHANGE, as all memory blocks
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Figure 8. Cortex M3: energy consumption in COPY-
IF-CHANGE against the number of blocks that need to
be updated on flash. The performance is a function of a
fixed overhead for reading and comparing all blocks, plus
the variable cost of re-writing those that are found modified.
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Figure 9. Cortex M3: performance of the restore routine
with increasing span of contiguous RAM data. The heap
fragmentation is 0. Because of the small absolute values,
the overhead of restoring the support data and reconstruct-
ing the heap becomes more visible for HEAP TRACKER as
compared to STACK and SPLIT.

are detected to be different from the previous (empty) check-
point. In this case, COPY-IF-CHANGE also copies the en-
tire RAM space. Unlike FULL, however, COPY-IF-CHANGE
also needs to read all blocks from the previous checkpoint
before deciding whether to update.

The performance of COPY-IF-CHANGE in the general



case is rather illustrated in Figure 8, where we artificially
create a situation with a varying number of modified blocks
in RAM, which thus require an update on flash when check-
pointing. The performance corresponding to every value on
the X-axis is a combination of fixed overhead caused by
reading and comparing all the blocks, plus erasing and re-
writing those that are found modified.

Figure 9 plots the performance of the restore routine in
energy and time for the Cortex M3 board. Because of the
small values at hand, the overhead of HEAP TRACKER due
to additional data structures and further processing becomes
more visible. During the restore routine, the latter process-
ing might be non-trivial, as we need to carefully reconstruct
the layout of the heap using the information in the support
data structure. For the same reason, the measures come
close to the granularity of our equipment, hence higher vari-
ability is observed. COPY-IF-CHANGE restore performance,
not shown in Figure 9, is constant and worse than any other
mode. This is because COPY-IF-CHANGE does not leverage
any information about what blocks need to be restored, thus
it always re-writes the whole RAM.

We draw similar conclusions also for the Cortex MO
board. The experiments leading to Figure 7 and 9, however,
do not exercise the ability of HEAP TRACKER to avoid writ-
ing some memory blocks in case of heap fragmentation. We
investigate this setting next.

5.2 Non-contiguous Data

To investigate the other extreme compared to the case
above, we concentrate on how SPLIT and HEAP TRACKER
handle the case of non-contiguous data in the heap.

Setting. We employ a configuration with a fixed memory
occupation and a varying span. This models the case where
data is continuously allocated and deallocated in ways that
prevent the program to use previous areas of the memory.
To this end, we artificially create a situation with two 128-
byte chunks of dynamically allocated memory separated by
a variable number of unallocated chunks of the same size.
All other memory segments, including the stack, are kept to
the minimum. We only consider SPLIT and HEAP TRACKER
because this setting bears no influence on FULL and STACK.
CoPY-IF-CHANGE, on the other hand, would show almost
constant performance, as it would update at most two blocks.

Results. Figure 10 shows the energy and time performance
for the Cortex M3 board as the span increases with a growing
number of unallocated chunks.

As for energy consumption during checkpoint, shown in
Figure 10(a), the performance of HEAP TRACKER is about
constant: by tracking what blocks cover chunks of allocated
memory, the net amount of bytes written to stable storage re-
mains the same regardless of the unallocated chunks. SPLIT,
however, is unable to recognize the situation. It copies an in-
creasingly higher amount of data to the flash chip as the span
increases, because the highest memory address allocated on
the heap continues to grow.

Nevertheless, the constant performance of HEAP
TRACKER is worse than SPLIT as long as the size of the un-
allocated memory chunks collectively equals the size of the
support data structure used by HEAP TRACKER to map out
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Figure 10. Cortex M3: performance in the case of non-
contiguous data in the heap. HEAP TRACKER starts pay-
ing off in energy and time as soon as the number of memory
blocks it can avoid writing to flash equals the size of the sup-
port data structure used to track the heap.

the heap. This occurs around 35 unallocated chunks; as soon
as this grows larger, HEAP TRACKER shows overall better
performance than SPLIT. In other words, HEAP TRACKER
starts to pay off whenever the number of blocks it can avoid
writing to flash counter-balances the overhead due to the sup-
port data structure. Similar considerations also apply to time,
whose plot we omit for brevity.

Even though the trends remain similar, the break-even
point occurs earlier for the restore routine: around 20 un-
allocated chunks, as shown in Figure 10(b). This is an effect
of the cheaper cost, in terms of energy consumption, of read
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Figure 11. Cortex M0: performance in the case of non-
contiguous data in the heap. Even though processing using
a Cortex MO is cheaper energy-wise, but also slower com-
pared to a Cortex M3, the performance is mainly determined
by the flash chip.

operations from flash compared to writes. In this respect, the
Cortex M3 imposes a further cost: as shown in Figure 10(c),
the break-even point for time no longer corresponds to the
one for energy during restore. The added overhead is im-
putable to the processing required to reconstruct the heap
based on information in the support data structure, which in
the case of the Cortex M3 becomes appreciable.

Different, and sometimes opposite consideration apply to
the results obtained from the Cortex MO board, because of
the different combination of MCU and flash chip, as visible
in Figure 11. The flash chip on the Cortex M0 board requires

erasing an entire 2 KByte segment before a new write can oc-
cur on the same segment. Figure 11(a) indeed indicates two
steep increases in energy consumption between 14-15 and
30-31 chunks, corresponding to when a whole flash segment
needs to be erased before performing a write.

Moreover, the flash chip largely determines the restore
performance. Processing on a Cortex MO is cheaper energy-
wise than on a Cortex M3, but also slower. Despite this,
comparing Figure 11(b) with Figure 11(c) indicates that the
break-even point between SPLIT and HEAP TRACKER oc-
curs earlier when considering time as opposed to energy, un-
like what we observe in Figure 10(b) and 10(c) for the Cor-
tex M3. Thus, reconstructing the heap using a Cortex MO
does not impose a significant time overhead due to process-
ing, even though the MCU is slower than a Cortex M3. The
overall performance is determined by the flash chip.

The results above all consider cases of 0% fragmentation.
We study next the case of varying degrees of fragmentation.

5.3 Fragmented Data

We aim at realistically creating different levels of frag-
mentation in the heap to study how SPLIT, HEAP TRACKER,
and CopPY-IF-CHANGE handle the situation.

Setting. We borrow the definition of data structures from
the CTP [5] protocol, from the custom design logging, and
from a link estimator table [6] to emulate a scenario where
differently-sized data items are continuously allocated and
deallocated in the heap. Figure 12 exemplifies the first few
iterations in these experiments. Memory occupation remains
constant, as the sum of allocated memory chunks is always
the same. Both the memory span and fragmentation change
at every iteration. The former grows monotonically, whereas
the latter yields seemingly casual values.

Such a setting replicates—on a smaller scale—the evolu-
tion of heap memory when using general purpose libraries
of commonly used data structures. The only difference com-
pared to reality is that we force the span to continue grow
to sweep this parameter as well, whereas normally the heap
manager would eventually start re-using previously deallo-
cated memory chunks. All other memory segments, includ-
ing the stack, are kept to the minimum possible.

Results. Figure 13 plots the results of energy consumption
for the checkpoint routine, against a varying memory span.
Similar overall trends are observed also for time.

The results for COPY-IF-CHANGE on the Cortex M3
board are shown separately in Figure 13(a) for better clarity.
The performance is highly oscillating as it depends on how
the changes in RAM align with the blocks on the flash chip.
Initially, the trend is increasing because the allocated chunks
are still close to each other in the first few iterations, and so
they “move” within the same block that constantly needs to
be dumped on flash. As the allocated blocks spread out, sit-
uations where an entire block is not impacted by changes in-
creasingly occur, eventually determining oscillations within
a specific interval. Similar trends are also seen for the Cor-
tex MO board, yet the 2 KByte granularity of page erases
changes the scale of the oscillations.

Figure 13(b) plots the energy consumption for SPLIT and
HEAP TRACKER on the Cortex M3 board. The absolute
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Figure 12. Evolution of the memory configurations as both span and fragmentation continue to change.

numbers indicate that both outperform COPY-IF-CHANGE
within the 8 KByte maximum span we test, which we main-
tain to be a reasonable limit considering the intended use of
the heap on this class of MCUs [9, 18]. Comparing SPLIT
with HEAP TRACKER, as discussed in Section 5.1, the latter
provides benefits as soon as the number of blocks it can skip
writing on flash counterbalances the added overhead due to
storing information to track the heap. Due to fragmentation
in these experiments, HEAP TRACKER skips some blocks as
soon as the size of unallocated memory chunks grows larger
than Sj,. Because of this, the break-even point with SPLIT oc-
curs around a span of 5 KBytes. Different than Section 5.1,
however, the performance of HEAP TRACKER is not always
constant: the initial increase in energy consumption is due to
the same reason as in Figure 13(a).

The results for the Cortex MO board, shown in Fig-
ure 13(c), show similar trends as the corresponding results
for the Cortex M3 board in Figure 13(b). Again, the different
combination of MCU and flash chip makes the break-even
point between SPLIT and HEAP TRACKER occur earlier,
whereas the steep increase in memory consumption around
4 KBytes of memory span is again due to the page erase
mode on the specific flash chip.

Figure 14 shows the results of these same experiments
from the perspective of the fragmentation level rather than
the memory span. We only consider SPLIT and HEAP
TRACKER here, as COPY-IF-CHANGE is not directly af-
fected by this dimension. The key observation based on
comparing Figure 14(a) with 14(b) is that for low levels of
fragmentation, HEAP TRACKER often outperforms SPLIT,
whereas the opposite always holds for high levels of frag-
mentation. The explanation is that, also based on Figure 12,
with constant occupation low levels of fragmentation are
more likely to manifest as the span increases. Whenever this
happens, however, we already observed that SPLIT incurs
in high costs as it is unable to optimize the writes to flash
based on unallocated memory chunks. The same applies to
the Cortex MO board, despite the different hardware.

6 Discussion

The results we collect crucially indicate that no single
storage mode is efficient in all situations. We discuss next
these insights and attempt at identifying the application’s

characteristics that determine the recommended mode. Our
conclusions are summarized in Table 1.

The role of memory span. Section 5.1 indicates that, inde-
pendent of the span, using COPY-IF-CHANGE the overhead
for reading a block from the previous checkpoint to under-
stand whether an update is needed is quite limited. This is
due to the characteristics of flash chips, where read opera-
tions are more energy-efficient than writes. Differently, the
performance of all other storage modes drastically grows as
the span increases, regardless of the need to update the pre-
vious checkpoint. As an example, comparing Figure 7 with 8
indicates that updating 25.6 KBytes of memory, that is, about
one third of the entire RAM space on our Cortex M3 board,
using COPY-IF-CHANGE roughly costs the same energy as
using SPLIT with an overall span of 32 KBytes.

This observation makes COPY-IF-CHANGE attractive for
applications characterized by a large memory span and a
limited number of updates between consecutive checkpoints.
This is the case, for example, of applications possibly re-
quired to run in a disconnected fashion. Under these cir-
cumstances, a node accumulates data until some form of op-
portunistic connection is established and data is offloaded.
The data is often appended at the end of buffers while per-
forming few changes on other data structures [26]: a pat-
tern particularly suited to the way COPY-IF-CHANGE op-
erates. Based on the same considerations, running SPLIT
or HEAP TRACKER where COPY-IF-CHANGE is preferred
would likely be inefficient. The former save all data regard-
less of changes and their performance worsen as the span
grows, as already shown in Figure 7.

Opposite considerations apply to applications character-
ized by small memory span and frequent updates to data
structures. This is the case, for example, of applications
mostly concerned with routing packets on behalf of other
nodes [15], where a small set of data structures is contin-
uously updated as the wireless topology changes and pro-
tocols need to adapt. Most of our results indicate that, if
the span is limited and regardless of occupation and frag-
mentation, SPLIT outperforms all other modes. This is, in
essence, a result of its simple operation. Compared to COPY-
IF-CHANGE, SPLIT does not pay the cost of initially reading
all blocks from the previous checkpoint; compared to HEAP



11.55 11—
0 2000 4000 6000 8000

Memory span (bytes)

(a) Cortex M3: COPY-IF-CHANGE.

w

94 - Split Wp«"‘
4 | ——Heap Tracker J,.«’

Energy (mJ)

LA B B L B BN NN BLE |
0 1000 2000 3000 4000 5000 6000 7000 8000
Memory span (bytes)

(b) Cortex M3: SPLIT and HEAP TRACKER.

12 9

1 Split
——Heap Tracker

® 5
1 1
Y
%

Energy (mJ)

N
1

£

£

b

L Il L

3,
f,i
%,
:.

=

g

T o A
0 1000 2000 3000 4000 5000 6000 7000 8000

Memory span (bytes)
(c) Cortex MO: SPLIT and HEAP TRACKER.

Figure 13. Energy consumption performance with vary-
ing span in case of fragmented memory, as shown in Fig-
ure 12. For COPY-IF-CHANGE, the performance oscillates
depending on how the changes in RAM align with the blocks
on the flash chip. SPLIT and HEAP TRACKER provide dif-
ferent trade-offs depending on the memory span.

TRACKER, it does not suffer from the overhead of support
data structures. As an example, Figure 13 indicates that
checkpointing around 3 KBytes of heap data using SPLIT
costs 40% less energy than using HEAP TRACKER, and one
third of that with COPY-IF-CHANGE.

The role of fragmentation. Section 5.2 and 5.3 point to a
fundamental trade-off between SPLIT and HEAP TRACKER
that concerns cases where the memory span grows with-
out the occupation necessarily following. In these circum-
stances, HEAP TRACKER outperforms SPLIT provided the
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Figure 14. Cortex M3: energy performance against dif-
ferent fragmentation levels. HEAP TRACKER outperforms
SPLIT for low levels of fragmentation, whereas the opposite
holds for high levels of fragmentation.

overhead of the support data structure equals the savings due
to avoiding the write of some blocks on flash. The latter oc-
curs when unallocated memory chunks are large enough to
cover multiples of Sy, which we set to the smallest writable
unit on the flash chip for better energy saving.

These memory configurations correspond to low levels of
fragmentation. As an example, Figure 14 often demonstrates
better performance for HEAP TRACKER up to 0.1 fragmen-
tation. As a result, whenever the memory span is not too
limited, and yet it is still not comparable to the entire RAM
space, the choice of SPLIT or HEAP TRACKER ultimately
depends on the expected levels of fragmentation. If the size
of data structures in an application’s implementation is close

Table 1. Summary of insights from the experimental re-
sults and mapping to example target applications.

. Recommended Example
Span Fragmentation
mode target
Disconnected
Large - CoPY-IF-CHANGE .
operation
Networkin
Small - SPLIT &
support
Process
Low HEAP TRACKER
. control
Intermediate
. Remote
High SPLIT .
sensing




to Sy, low levels of fragmentation are likely and thus HEAP
TRACKER is recommended. This may be the case of control
applications, where the representation of the process state is
typically rendered with complex data structures [30]. Differ-
ently, if high levels of fragmentation are expected, SPLIT is
to be favored. This would be the case of Internet-connected
sensing [2], where small data items are acquired for the time
necessary to perform some simple processing before sending
the data out towards a long-distance destination.

7 Outlook and Conclusion

Our work here is foundational: we aim at developing the
basic building blocks for state retention. In doing so, the
contribution we present certainly has limitations. For ex-
ample, we use synthetic settings rather than deploying real
applications for evaluating the performance. Our methodol-
ogy creates a controlled environment that offers repeatability
and allows us to uniformly sweep the parameter space, at the
cost of reduced realism. In contrast, concrete applications
would introduce several sources of randomness, such as the
unpredictable evolution of application state and the unequal
harvesting performance across devices.

Necessary to enable an assessment in real applications
is also to decide on the location of checkpoint () calls
in the code. In principle, they should be placed at a point
where the application makes a progress worth to be saved
and the remaining energy is sufficient to complete the check-
point. How to generalize such a notion is both challenging
and orthogonal to increasing the efficiency of the individual
checkpoint and restore operations, which is the goal we set
forth in this work. We are currently investigating this prob-
lem with the goal of automatically deciding on the place-
ment of checkpoint () calls, for example, based on con-
trol flow graph information, as opposed to manual placement
of checkpoints by programmer [25].

In conclusion, we presented techniques to checkpoint and
restore a device’s state on stable storage, catering for scenar-
ios where devices opportunistically harvest energy from the
ambient or are provided with wireless energy transfer mech-
anisms. Our work aims at reducing the time for these oper-
ations and at minimizing their energy cost. We target mod-
ern 32-bit MCUs and currently available flash chips, mak-
ing the checkpoint and restore routines available to program-
mers through a pair of simple C functions. The three storage
modes we designed in support expose different trade-offs
that depend on the memory span, its occupation, the pos-
sible fragmentation, and the read/write patterns in memory.
The experimental results we gathered allowed us to quantity
these trade-offs and discern the application’s characteristics
that would make one storage mode preferable over another.
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