
Low-Power Wireless Bus

Federico Ferrari∗ Marco Zimmerling∗ Luca Mottola† Lothar Thiele∗
∗Computer Engineering and Networks Laboratory, ETH Zurich, Switzerland

†Politecnico di Milano, Italy and Swedish Institute of Computer Science (SICS)

{ferrari, zimmerling, thiele}@tik.ee.ethz.ch luca.mottola@polimi.it

Abstract
We present the Low-Power Wireless Bus (LWB), a com-

munication protocol that supports several traffic patterns and
mobile nodes immersed in static infrastructures. LWB turns
a multi-hop low-power wireless network into an infrastruc-
ture similar to a shared bus, where all nodes are potential
receivers of all data. It achieves this by mapping all traffic
demands on fast network floods, and by globally scheduling
every flood. As a result, LWB inherently supports one-to-
many, many-to-one, and many-to-many traffic. LWB also
keeps no topology-dependent state, making it more resilient
to link changes due to interference, node failures, and mo-
bility than prior approaches. We compare the same LWB
prototype on four testbeds with seven state-of-the-art proto-
cols and show that: (i) LWB performs comparably or signifi-
cantly better in many-to-one scenarios, and adapts efficiently
to varying traffic loads; (ii) LWB outperforms our baselines
in many-to-many scenarios, at times by orders of magnitude;
(iii) external interference and node failures affect LWB’s per-
formance only marginally; (iv) LWB supports mobile nodes
acting as sources, sinks, or both without performance loss.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Net-

work Architecture and Design—Wireless communication

General Terms
Design, Experimentation, Performance

Keywords
Shared bus, network flooding, time-triggered protocols,

centralized scheduling, mobility, wireless sensor networks

1 Introduction
Low-power wireless networks are gaining momentum

beyond early data collection applications. For instance, re-
cent deployments demonstrate the feasibility of closed-loop

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

SenSys’12, November 6–9, 2012, Toronto, ON, Canada.
Copyright c© 2012 ACM 978-1-4503-1169-4 ...$10.00

control [7] and increasingly employ mixed installations of
static and mobile devices [9, 15]. These applications are
characterized by a blend of traffic patterns, such as many-
to-many communication for collecting sensor data at multi-
ple sinks and one-to-many communication for disseminating
control commands [7]. They also often feature end-to-end
interactions across static and mobile nodes [9, 15].

In contrast to the diverse needs of emerging applications,
current communication protocols support specific traffic pat-
terns (e.g., one-to-many [30], many-to-one [18] or many-to-
many [37]) in distinct scenarios (e.g., static networks [18] or
with sink mobility [36]). This forces designers to form ad-
hoc protocol ensembles to satisfy the application demands,
which may entail adapting existing implementations [7] or
developing custom protocols in absence of suitable off-the-
shelf solutions [9]. As a result, multiple protocols that were
designed in isolation need to operate concurrently. This is of-
ten detrimental to system performance [10], and causes pro-
tocol interactions that are difficult to cope with [45].

To address this problem, we present the Low-Power Wire-
less Bus (LWB), a simple yet efficient communication proto-
col that provides unified support for several traffic patterns
and mobile nodes immersed in static infrastructures. Our de-
sign revolves around three cornerstones:
1. We exclusively use fast network floods for communica-

tion. This turns a multi-hop low-power wireless network
into a network infrastructure similar to a shared bus.

2. We adopt a time-triggered operation to arbitrate access to
the shared bus. Nodes are time-synchronized and access
the bus according to a global communication schedule
computed online based on the current traffic demands.

3. We compute the communication schedule centrally at a
dedicated host node. The host periodically distributes the
schedule to all nodes to coordinate the bus operation.
To support our design, we use Glossy [17] as the underly-

ing flooding mechanism. Glossy provides high flooding re-
liability with minimal latencies, offering a foundation for 1.
and 3., and accurate global time synchronization at no addi-
tional cost [17], which we leverage as a stepping stone for 2.
Glossy also maintains no topology-dependent network state,
which spares state reconfigurations when topologies change.

As a result, LWB simplifies the networking architecture
of low-power wireless systems by replacing the standard net-
work stack with a single-layer solution that:

• Supports multiple traffic patterns. The exclusive use of
Glossy network floods makes all nodes in the network po-
tential receivers of all data. LWB leverages this opportu-
nity to support both many-to-one and many-to-many traf-
fic, besides the one-to-many pattern provided by Glossy
itself. This occurs without changes to the protocol logic,
and straightforwardly enables scenarios where, for exam-
ple, multiple sinks are opportunistically deployed [44].

• Is resilient to topology changes. Different from most ex-
isting solutions, the network state kept at a LWB node
is independent of the network topology and thus resilient
to any such change. No state reconfigurations are indeed
required to keep up with changing topologies, which re-
duces LWB’s control overhead to a minimum. This pro-
vides efficient support to deal with link fluctuations, most
notably due to node failures [4] and interference [32].

• Supports node mobility. As an extreme form of topology
change, LWB encompasses also mobile nodes, acting as
sources, sinks, or both, without any changes to the proto-
col logic. This applies to scenarios where, for example,
mobile nodes interact with a fixed infrastructure [9].
The LWB protocol, described throughout Secs. 2 to 4,

renders our design concrete and complements it with mech-
anisms to: (i) ensure a fair allocation of bandwidth across all
traffic demands; (ii) support nodes dynamically joining and
leaving the system (e.g., due to node failures or disconnec-
tions); and (iii) resume communication after a host failure,
thus overcoming single point of failure problems.

Using the same prototype, we evaluate in Secs. 5 to 10
LWB’s performance on four testbeds that range from 26 to
260 nodes, including a testbed with nodes attached to robots
for repeatable mobility experiments. For comparison, we
consider seven combinations of state-of-the-art routing and
link-layer protocols: BCP [36] over CSMA; CTP [18] over
A-MAC [14], LPL [38], and CSMA; Muster [37] over LPL
and CSMA; and Dozer [6]. Based on 256 independent runs
over a total duration of 838 hours, we find that:
• In many-to-one scenarios, LWB performs comparably to

Dozer and outperforms CTP in data yield and radio duty
cycle; for example, LWB sustains traffic demands of 5
packets per second from 259 sources with almost 100%
data yield, a situation where CTP+LPL collapses.

• In the same scenarios, LWB adapts promptly and effi-
ciently to varying traffic demands; for example, when the
aggregate traffic load suddenly increases from 54 to 460
packets per minute, LWB keeps data yield close to 100%,
whereas CTP+LPL and Dozer are significantly affected.

• In many-to-many scenarios, LWB outperforms Muster
regardless of the number of sources or sinks, providing
higher data yield than Muster+CSMA at a fraction of the
radio duty cycle of Muster+LPL at all wake-up intervals.

• Under external interference and multiple concurrent node
failures, LWB’s performance is only marginally affected,
whereas CTP and Dozer require routing state reconfigu-
rations that cause significant performance loss.

• In the presence of mobile nodes, LWB outperforms BCP
and CTP at no additional energy costs, delivering more
than 99% of the packets at very low radio duty cycles
regardless of whether sources, sinks, or both are roaming.

N3N3

N2

N3

NnNn Nn

(C)

(B)

N1N1 N1

T

(A)
t

N2N2

N1

Communication rounds

N2 N3 Nn

Figure 1. Time-triggered operation in LWB. Protocol
operation is confined within communication rounds that re-
peat with a possibly varying round period T (A); each round
consists of a possibly varying number of non-overlapping
slots (B); each slot corresponds to a distinct Glossy flood (C).

Td Td TsTs Td

contentiondata

host computes t

data

Tl

new schedule

schedule
newschedule

Figure 2. Communication slots within a round.

Our results demonstrate that LWB is more versatile than
existing communication protocols, and performs comparably
or significantly better than the state of the art in all scenarios
we tested. As such, LWB is directly applicable to a broad
spectrum of low-power wireless applications, from data col-
lection [8, 31] to control [7] and mobile scenarios [9, 15].

Under specific operating conditions such as linear topolo-
gies that span several tens of hops [23] and applications with
mostly aperiodic traffic [3] LWB’s efficiency decreases and
dedicated solutions may perform better. We discuss the lim-
itations of LWB in Sec. 11 by illustrating its scaling prop-
erties and the dependence of a few protocol parameters on
the network diameter. We also present alternative schedul-
ing policies to satisfy different application requirements. We
review related work in Sec. 12 and conclude in Sec. 13.
2 Overview

The LWB protocol completely replaces the standard net-
work stack, sitting between radio driver and application.
LWB in a nutshell. LWB maps all communication on fast
Glossy floods. A single flood serves to send a packet from
one node to all other nodes. To avoid collisions among dif-
ferent floods, LWB adopts a time-triggered operation: nodes
communicate according to a global communication schedule
that determines when a node is allowed to initiate a flood.

LWB exploits Glossy’s accurate global time synchroniza-
tion. The protocol operation is confined within communica-
tion rounds. As shown in Fig. 1 (A), rounds repeat with a
possibly varying round period T , computed at the host based
on the current traffic demands. Nodes keep their radios off
between two rounds to save energy. Every round consists of
a possibly varying number of non-overlapping communica-
tion slots, as shown in Fig. 1 (B). In each slot, at most one
node puts a message on the bus (initiates a flood), whereas
all other nodes read the message from the bus (receive and
relay the flood), as shown in Fig. 1 (C). All nodes participate
in every flood, thus LWB inherently achieves load balancing.

Fig. 2 shows the different communication slots within a
round. A round starts with a slot allocated to the host for
distributing the communication schedule. The schedule in-

application data schedule
local traffic demands received traffic demands

Application Scheduler

Bus interface

Figure 3. Conceptual architecture of a LWB node. The
scheduler is present at all nodes but active only at the host.

cludes the round period T and the mapping of individual
nodes to the following data slots, if any. A contention slot
without a preassigned node follows; all nodes can contend
in this slot, for example, to inform the host of their traffic
demands. Based on the received traffic demands, the host
computes the schedule for the next round—with a possibly
updated round period and mapping of nodes to data slots—
and transmits the new schedule at the end of the round.
Application interface. The application interacts with LWB
in two ways, as shown in Fig. 3. First, LWB offers oper-
ations to place application messages in the outgoing queue
for eventual transmission, and to receive incoming messages.
Because of flooding-based communication, all nodes poten-
tially receive all messages. At a sender node, the application
specifies the intended recipients as a parameter to the send
operation; at a receiver, LWB delivers a received message to
the application only if the node is an intended recipient.

Second, LWB provides functions the application uses to
notify LWB of changes in the traffic demands of a node. Tar-
geting applications that feature mostly periodic traffic, LWB
accepts traffic demands in the form of periodic streams of
packets, defined by an inter-packet interval (IPI) and a start-
ing time. The application can dynamically change the traffic
demands, creating new streams or stopping existing ones.

When a new traffic demand arises, the application issues
a stream add request, specifying IPI and starting time. The
latter may lie in the past if, for example, the application needs
to transmit a local backlog of packets. When a traffic de-
mand ceases to exist, the application issues a stream remove
request to cancel the stream. The application may issue mul-
tiple stream add requests from the same node (e.g., if dif-
ferent sensors produce readings at different rates) and may
individually remove streams.

Next, Sec. 3 describes the LWB protocol operation, while
Sec. 4 focuses on the scheduler, which is a stand-alone com-
ponent present at all LWB nodes but active only at the host.

3 Protocol Operation
To illustrate the protocol operation, we use sample exe-

cutions of our LWB prototype whose configuration parame-
ters and implementation details are described in Sec. 5. We
split the illustration according to the different phases an exe-
cution evolves into. These phases are purely for illustration
purposes and do not correspond to distinct modes of protocol
operation. Rather, the mechanisms we illustrate next blend
together and co-exist in a single protocol logic.

We start by illustrating in Sec. 3.1 the LWB operation in
steady-state conditions; that is, when the host is informed of
all traffic demands and these do not change over time. Next,
we describe in Sec. 3.2 the bootstrapping phase that leads
to such steady state. Finally, we describe in Sec. 3.3 how
LWB adapts to further reduce overhead should steady-state

conditions endure for a given time. We discuss protocol opti-
mizations in Sec. 3.4, mechanisms to handle communication
and node failures in Sec. 3.5, and host failures in Sec. 3.6.

The scenario we consider for the non-failure case is a
multi-hop network of six source nodes and one sink. All
source nodes have a stream with IPI = 6s and starting time
t = 0s. For simplicity, the sink acts also as the host.
3.1 Steady-State Conditions
Intuition. In steady state, nodes are time-synchronized and
the host is aware of all traffic demands. The aggregated traf-
fic demand in the scenario we consider amounts to 6 packets
per second. Say the round period T is 1 second and nodes are
already informed of that. One way to schedule such traffic
demands is to allocate 6 data slots, one per source node, in
one round every six. Other schedules are feasible, possibly
with different round periods; here we simply illustrate a spe-
cific instance of our general scheduling strategy (see Sec. 4).
Steady traffic demands. The middle part of Fig. 4 shows
how the above materializes in a real LWB execution. Once
steady-state conditions are reached at t = 12s, the host dis-
tributes a schedule including 6 data slots, one per source.
Nodes periodically turn their radios on during communica-
tion rounds according to the round period T = 1s. Based on
the schedule, each source accesses the bus during its allo-
cated data slot and initiates a Glossy flood. All other nodes
turn their radios on during every communication slot to re-
lay the data packets. In addition, the sink also delivers the
packets to the application. These operations repeat every 6
seconds, as shown in the middle part of Fig. 4.

The five rounds in between include no data slots. As de-
scribed next, these seemingly redundant rounds are used to
possibly receive further stream requests at the host. Should
the host not receive new stream requests, rounds without data
slots eventually disappear, as illustrated in Sec. 3.3.
3.2 Bootstrapping
Intuition. To reach steady-state conditions, we need to:
(i) time-synchronize all nodes with the host and inform them
of the current round period T , and (ii) communicate the cur-
rent traffic demands to the host. Nodes boot with their radios
turned on and use the very first schedule transmission to syn-
chronize initially. Afterward, nodes may use the contention
slot to communicate their traffic demands. Nodes can si-
multaneously access the bus during this slot, so communica-
tion may be unreliable when different Glossy floods overlap.
We use a simple acknowledgement scheme to confirm that
the host successfully received the traffic demands. As these
are progressively received at the host, the scheduling of data
slots intertwines with newly received stream requests.
Initial synchronization. At t = 0s in Fig. 4, only the host
is part of the bus operation; all other nodes have their radios
turned on. At t = 2s, the host transmits the schedule for the
first time. This includes no data slots: only the schedule itself
and the contention slot. Upon receiving the first schedule,
Glossy time-synchronizes the nodes with the host, and nodes
learn about the round period T . This allows them to start duty
cycling their radios and to effectively join the bus operation.
Communicating traffic demands. During the early rounds
in Fig. 4, multiple source nodes use the contention slot con-

S

S

S

S

6

S

S

1

6

6

S

S

5

1

1

S

S

4

5

1

5

5

6

S

S

3

4

4

4

S

S

3

3

3

S

S

S

S

2

S

S

2

2

2

S

S

1

2

3

4

5

6

S

S

S

S

S

S

S

S

S

S

S

S

1

2

3

4

5

6

S

S

S

S

S

S

S

S

S

S

S

S

1

2

3

4

5

6

S

S

S

S

S

S

S

S

S

S

S

S

1

2

3

4

5

6

S

S

S

S

S

S

S

S

S

S

S

S

1

2

3

4

5

6

S

S

S

S

S

S

S

S

S

S

S

S

1

2

3

4

5

6

S

S

S

S

S

S

S

S

S

S

S

S

1

2

3

4

5

6

S

S

S

S

S

S

S

S

S

S

S

S

1

2

3

4

5

6

S

S

S

S

S

S

S

S

S

S

S

S

1

2

3

4

5

6

S

S

S

S

S

S

S

S

S

S

S

S

1

2

3

4

5

6

S

S

S

S

S

S

S

S

S

S

1

1

1

1

1

2

2

S

S

1

1

1

1

1

2

S

S

1

1

1

1

1

2

2

S

S

1

1

1

1

1

2

S Schedule

Contention (no stream requests received)

n Contention (stream request from n)

n Stream acknowledgment (s−ack) to n

n Data from n

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 100 130 160 190
0

2

4

6

8

Time [s]

S
lo

ts
 w

it
h

in
 a

 r
o

u
n

d

Bootstrapping Steady−State Conditions Long−Run Conditions

Figure 4. A real trace of LWB’s operation since startup when 6 source nodes generate one packet every 6 seconds each.
Nodes start with their radios turned on. Upon receiving the schedule for the first time at t = 2s, nodes time-synchronize with the
host and start duty cycling their radios. At t = 11s, the host received all stream requests in the preceding contention slots and
starts allocating 6 data slots, one per source, in one round every six. At t = 70s, since no more stream request were recently
received, the scheduler extends the round period T from 1 second to 30 seconds to reduce energy costs, and allocates 5 data
slots to every source in the following rounds; for the same reason, it allocates a contention slot only every other round.

currently to transmit their stream requests. In most cases, the
host receives one stream request due to capture effects [29].
This happens, for example, at t = 3s in Fig. 4, when the host
receives a stream add request from node 6.

Based on this request, the host allocates two additional
slots in the next round at t = 4s: one to itself to transmit a
stream acknowledgment (s-ack), and one to node 6 to trans-
mit the data packet it generated at t = 0s. If no s-ack were re-
ceived, node 6 would exponentially back off for some rounds
before retransmitting the request. This reduces the number
of contending requests in subsequent rounds, eventually in-
creasing the chances of successful transmission.
Building up to steady state. At startup, the scheduler sets
the round period T to the shortest possible to offer more con-
tention slots, speeding up the initial joining of nodes. Oper-
ations similar to the ones above repeat for node 1 at t = 4s
(add request) and t = 5s (s-ack and data). At t = 6s, the host
allocates one data slot each to nodes 6 and 1 for transmitting
their second data packets. It also allocates two data slots to
node 5 in response to a stream add request received in the
previous round: node 5 has two packets already generated
(at t = 0s,6s) and not yet transmitted. A similar processing
occurs in the following rounds for nodes 4, 3, and 2.

Meanwhile, nodes are kept synchronized by the periodic
transmission of schedule packets. At t = 11s, the host re-
ceived all stream add requests and is thus aware of all traffic
demands: the steady-state phase commences. Nevertheless,
the host still includes one contention slot in each schedule
for possible further requests. If new stream requests arrive
later, the processing is exactly as the one described here.
3.3 Long-Run Conditions
Intuition. If steady-state conditions endure for a given time,
the application has likely converged to a stable traffic pattern
and load. This is the case in many scenarios we target [3,
7, 34, 43], where periodic streams of data are initiated at
startup and live on for the entire execution. This means that
new stream requests are unlikely to arrive. In such situations,
LWB minimizes control overhead by changing the schedule.
Specifically, we set the round period such that: (i) LWB still
provides enough bandwidth, and (ii) schedule transmissions
occur sufficiently often to keep nodes synchronized.
Reducing overhead. At t = 70s in Fig. 4, the host detects
that no new stream requests were recently received. It infers
that the traffic demands are stable and increases the round

period T from 1 second to 30 seconds. This value is based
on the current traffic demands and the scheduling policy de-
scribed in Sec. 4. As a result, the following rounds occur ev-
ery 30 seconds starting from t = 100s. Increasing the round
period reduces overhead, because it spares communication
rounds with no data slots. At each round, the host indeed
allocates T/IPI = 5 data slots to every source node, corre-
sponding to the number of data packets generated between
consecutive rounds. LWB takes care of buffering these pack-
ets at the source nodes until a data slot is available.
3.4 Optimizations

We complement the LWB operation just described with
optimizations that further reduce the overhead and improve
system responsiveness to changes in the traffic demands.
Schedule transmissions. Fig. 4 already shows that sched-
ules are transmitted twice in a round. In principle, this is
not necessary: the schedule transmitted at the beginning of a
round would suffice to keep nodes synchronized and instruct
them on when to access the bus. However, if the host changes
the round period T as a result of computing the schedule for
the next round, it would like to promptly communicate the
new T to the nodes, so they can immediately switch to the
new period (e.g., to save energy if the new round period is
larger, as is the case at t = 70s in Fig. 4). We make this possi-
ble by transmitting the schedule for the next round already at
the end of the current round. This improves responsiveness,
because it makes nodes adapt earlier to new round periods.
Scheduling contention slots. Under stable traffic conditions
similar to those in Sec. 3.3, new stream requests arrive rarely.
Besides increasing the round period T , the host schedules
contention slots according to a different period, independent
of T . The right part of Fig. 4 indeed already shows that con-
tention slots appear only once every minute. This optimiza-
tion further reduces the overhead, especially when rounds
unfold quickly to satisfy high, but stable, traffic demands.
Piggybacking stream requests. With long round periods,
as in the right part of Fig. 4, contention slots occur rarely,
and the optimization above makes them occur even more
sparingly. Nevertheless, many nodes may compete in the
contention slot, and at most one at a time succeeds. These
factors increase the latency in communicating changed traf-
fic demands to the host. To ameliorate the problem, we let
nodes piggyback stream requests on data packets if they are
already assigned a data slot. This improves responsiveness,

as gives nodes more chances to send stream requests, and
also reduces the pressure on the contention slot.
3.5 Node and Communication Failures

LWB needs to deal with node and communication fail-
ures, and nodes that spontaneously disconnect from the net-
work (e.g., because of mobility). Host failures, instead, re-
quire special countermeasures, as discussed in Sec. 3.6.
Node failures and disconnections. If a node fails or dis-
connects from the network, its active streams are eventually
reclaimed. LWB uses a simple counter-based scheme to de-
tect such situations at the host. If the host does not receive
any packet within a certain number of consecutive rounds
from a stream s, it removes s from the set of active streams.
The threshold for removal is set as a protocol parameter. As
a result, the scheduler stops allocating data slots to stream s,
which saves bandwidth and energy.

This policy allows LWB to effectively detect situations
where, for example, multiple nodes fail concurrently, as we
show in Sec. 9.2. Due to Glossy’s high reliability, our simple
scheme is quite resilient to false positives: it is very unlikely
that Glossy does not deliver data for a number of consecutive
rounds while a node is still running and connected.
Communication failures. Lost stream requests are not an
issue: our acknowledgment scheme ensures that all requests
eventually reach the host. Problems may, however, arise if
schedule packets are lost. These are critical to keep nodes
synchronized and to instruct them on when to access the bus.

To address this problem, LWB applies two policies. First,
a node is allowed to participate in a communication round
only if it received the schedule for the current round. Oth-
erwise, it turns the radio off and keeps quiet for the remain-
ing part of the round. Second, to compensate for a possibly
higher synchronization error after a missed schedule packet,
a node increases its guard times and wakes up slightly be-
fore the beginning of the next round. Moreover, if a node
misses the schedule packet for a given number of consecu-
tive rounds, it continuously listens until it receives again a
new schedule. The specific threshold for turning the radio
on is a protocol parameter.

Because of Glossy’s high reliability, situations like those
above happen very rarely, and usually indicate that a node is
disconnected from the network or that the host has failed.
3.6 Host Failures

We address host failures by deploying the scheduler on
all nodes, and by complementing LWB with mechanisms
to dynamically enable or disable the scheduler at specific
nodes according to a given policy. We describe next a simple
failover policy that avoids multiple hosts being active on the
same channel (e.g., when networks merge after partition).
Failover policy. Nodes detect a failure of the host based on
the complete absence of communication within a specified
time interval Th f . If neither schedule nor data packets are
received within Th f , it is very likely that also other nodes are
not receiving schedules and thus that the host has failed.

We hardcode into all LWB nodes a circular ordered list
of 〈channel,host id〉 pairs that maps a set of communication
channels to an appointed host for each channel. Upon detect-
ing a host failure, a node switches to the channel next in the

0 0.25 0.5 0.75 1 1.25
0

20

40

60

Ch. 26 (Host H
1
) Ch. 15 (Host H

2
) Ch. 25 (Host H

3
)

H
1

 fails H
2

 fails H
2

 resumes H
3

 fails

Time [h]

P
a
c
k
e
ts

 r
e
c
e
iv

e
d

Figure 5. Packets received at the sink while hosts fail and
resume. A few minutes after detecting a host failure, com-
munication resumes on a different channel with a new host.

list. If the node is the appointed host for the channel, it acti-
vates the scheduler and starts distributing (empty) schedules.
Otherwise, the node turns the radio on and listens; if sched-
ule packets eventually arrive, it joins the LWB running on the
new channel. In both cases, if no communication from other
nodes is ever heard within another time interval Th f , the node
switches to the next channel and the procedure repeats.

Our simple failover policy makes LWB remain functional
despite repeated host failures. We note, however, that it is
possible that after a network partition several buses operate
on different channels and never merge again. More sophisti-
cated failover policies are in our immediate research agenda,
possibly based on self-stabilizing leader election [11].
Sample execution. We exemplify the functioning of our pol-
icy by inducing host failures in a real-world experiment. We
use a multi-hop network of one sink and 50 sources that gen-
erate packets with IPI = 1min. We set Th f = 2min, and use
IEEE 802.15.4 channels 26, 15, and 25 with hosts H1, H2,
and H3. Initially, nodes use channel 26 and H1 is the host.

Fig. 5 shows the number of packets received at the sink
over time. When host H1 fails at t = 0.25h, communication
successfully resumes after Th f = 2min on the next channel in
the list and with H2 as the new host. All nodes join again, and
the source nodes issue stream add requests, considering also
packets that were generated while they were disconnected
from the bus. The new host eventually activates all previous
streams and communication resumes as before the failure of
H1. The same events occur after H2 fails at t = 0.5h: nodes
switch to channel 25 and H3 is the new host.

When H2 recovers at t = 0.75h, there is no visible impact
on the bus operation. This is because nodes are operating on
a different channel: after Th f without receiving any stream
request on channel 15, H2 switches to channel 25 where it
joins the ongoing LWB operation with H3 as the host. Fi-
nally, after the failure of H3 at t = 1h, communication re-
sumes after 2×Th f = 4min. Host H1 for channel 26 has in-
deed not recovered yet, and a second timeout expires before
nodes switch to channel 15 where H2 is the new host.

4 Scheduler
The scheduler running at the host orchestrates communi-

cation over the bus by computing the communication sched-
ule. This involves (i) determining the round period, and (ii)
allocating data slots to streams. We describe next a schedul-
ing policy to minimize energy costs for low-power appli-
cations that can tolerate end-to-end latencies of a few sec-
onds. We use this policy in Secs. 5–10 to evaluate LWB.
Sec. 11 presents alternative scheduling policies that trade
smaller end-to-end latencies for slightly higher energy costs.

4.1 Determining the Round Period
Several trade-offs are involved in determining the round

period T . It must be set sufficiently small to provide enough
bandwidth for all traffic demands. However, the faster the
rounds unfold, the higher is the energy overhead for dis-
tributing the schedule. We choose one specific design point:
minimize the energy overhead under steady traffic conditions
while satisfying all traffic demands whenever possible.

In addition, a LWB implementation on real devices im-
poses three constraints: (i) a lower bound Tmin ensures that T
is longer than the total duration of a round Tl (see Fig. 2), the
latter being an implementation-dependent constant; (ii) the
round period T must also not exceed Tmax, to ensure that
nodes update their Glossy synchronization state sufficiently
often; (iii) platform-dependent restrictions on the packet size
also determine an upper bound dmax on the number of data
slots that the scheduler can map in a single schedule packet,
and thus on the number of data slots it can allocate per round.

Based on the above considerations, the scheduler com-
putes the round period T as follows. To satisfy all traffic de-
mands, it should allocate Rtot = ∑

N
s=1(1/IPIs) data slots per

time unit, corresponding to the rate of data slots required by
all N existing streams. To minimize the energy overhead for
distributing the schedule, the scheduler should use the mini-
mum number of rounds; that is, it should allocate all possible
dmax data slots every round. The round period Topt that min-
imizes energy while satisfying all traffic demands is thus:

Topt =
dmax

Rtot
=

dmax

∑
N
s=1(1/IPIs)

(1)

Shorter round periods can also satisfy all traffic demands, but
entail more rounds and thus higher energy overhead. Longer
round periods, instead, cannot satisfy all traffic demands.

Due to constraints (i) and (ii) above, the scheduler bounds
Topt in (1) within Tmin and Tmax and sets it to the largest previ-
ous multiple of 1 second before updating the round period T .
If Topt < Tmin, the number of available data slots is insuffi-
cient for the current traffic demands: the network is satu-
rated. When the scheduler detects saturation, it embeds this
information into the schedule packet, allowing source nodes
to take appropriate actions if needed, such as temporarily
storing data in external memory to prevent queue overflows.

We complement the solution above with a simple policy
to promptly react to varying traffic demands. If stream re-
quests were recently received (e.g., in the last minute), the
scheduler sets T to Tmin regardless of the current traffic de-
mands, and allocates a contention slot in every round in an-
ticipation of further stream requests. Such conditions oc-
cur, for example, when bootstrapping a network, as shown
in Sec. 3.2, or when a subset of nodes wishes to send data at
higher rates, as we show in Sec. 7.3.
4.2 Allocating Data Slots to Streams

The scheduler allocates data slots to maximize fairness
across all streams according to Jain’s fairness index [21], a
widely used metric in the literature [40, 46]. Other metrics
or algorithms can be applied by modifying the scheduler.

To compute Jain’s fairness index, we denote with as the
number of data slots the scheduler allocates to stream s dur-
ing a round, and with rs = T/IPIs the number of data slots

0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

Time [h]

G
o
o
d
p
u
t
a
t
th

e
 s

in
k
 [
k
b
p
s
]

L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L

H

L
L
L
L

H

H

H

H

H

H
H
H
H
H
H
H
H
H

〈1〉 〈2〉 〈3〉 〈4〉

Generation rates:
L = 4 pkt/s
H = 16 pkt/s

saturation (60 pkt/s)

Unsaturated Saturated

Figure 6. Goodput at the sink when 9 source nodes gener-
ate varying amount of traffic. LWB always allocates slots
fairly, based on traffic demands and available bandwidth.

stream s demands every round. The allocation to stream s is
thus xs = min(as/rs,1) [21]. Using the allocations of all N
streams, Jain’s fairness index is defined as:

f (x) =

(
∑

N
s=1 xs

)2

N ·∑N
s=1 x2

s
(2)

A fairness index of 1 indicates that the scheduler is equally
fair to all streams; smaller values indicate less fairness.

As illustrated next, our slot allocation scheme achieves a
fairness index of 1 in the long run, because it is in general
not possible to achieve fairness in individual rounds. For in-
stance, a fair allocation in individual rounds may in principle
require allocating a non-integer number of slots to streams.

In the following, we use an experiment on a multi-hop
network of 10 nodes to exemplify how the scheduler allo-
cates data slots in both the unsaturated and saturated case.
One node acts as host and sink. Each of the other 9 nodes
generates one stream of 15-byte packets, either at low rate
L = 4pkt/s or at high rate H = 16pkt/s. These generation
rates follow patterns of four phases 〈1〉–〈4〉 in Fig. 6, where
different nodes generate data at different rates. In our LWB
prototype, we set Tmin = 1s, Tmax = 30s, and dmax = 60 slots.
Unsaturated network. When the network is not saturated,
the scheduler can allocate sufficient data slots to satisfy all
traffic demands, that is, as = rs for all streams s. This also
implies that the slot allocation is eventually fair across all
streams: f (x) = 1, because xs = 1 for all streams s.

In the example experiment, the network is not saturated
in phases 〈1〉 and 〈2〉. In phase 〈1〉, all 9 streams gener-
ate packets at low rate L: using (1), the scheduler computes
Topt〈1〉= 1.67s > Tmin. In phase 〈2〉, one node generates
data at higher rate H, and Topt〈2〉 = 1.25s is still greater
than Tmin. The scheduler sets T = Tmin = 1s in both phases,
and allocates data slots as follows.

Phase 〈1〉: all streams demand 4 data slots every round
and the scheduler satisfies this demand by allocating in total
36 slots, 4 to each stream. Source nodes indeed contribute
equally to the total goodput at the sink, as shown in Fig. 6.

Phase 〈2〉: one source node increases its data rate to H.
The scheduler allocates every round 16 slots to this node and
4 to the other nodes. In total, 48 slots are allocated, and all
traffic demands are satisfied.
Saturated network. If the network is saturated, the sched-
uler sets the round period T to the lower bound Tmin but can-
not satisfy all traffic demands. This means as < rs for at
least one stream s. The scheduler allocates then as data slots
to each stream s such that the provided bandwidth is maxi-

Term Description Value
Tmin Minimum round period 1s
Tmax Maximum round period 30s
dmax Max. data slots per round 60

Ts Length of a schedule slot 15ms
Td Length of a data slot 10ms

Table 1. LWB parameters.

Protocol Code Footprint
LWB 22 kB

CTP+{CSMA, LPL, A-MAC} {26, 28, 27} kB
Dozer 38 kB

Muster+{CSMA, LPL} {35, 37} kB
BCP+CSMA 23 kB
Table 2. Code footprints.

Name Nodes TX Power Diameter
TWIST 90 -7dBm 3 hops

KANSEI 260 -20dBm 4 hops
CONETIT 26 (5 mobile) -25dBm 3 hops

FLOCKLAB 55 0dBm 5 hops

Table 3. Testbeds.

mized and the allocation is eventually fair across all streams:

allocate as slots such that
N

∑
s=1

as = dmax and f (x) = 1 (3)

It can be shown that allocating as = Topt/IPIs data slots to
each stream s is a solution to (3). Intuitively, this entails allo-
cating slots to streams proportionally to their data rates. This
allocation is fair because xs = as/rs = Topt/Tmin is constant
across all streams s, and hence f (x) = 1 according to (2).

The network in our example experiment is saturated dur-
ing phases 〈3〉 and 〈4〉 in Fig. 6, because the corresponding
Topt are smaller than Tmin. The scheduler sets T = Tmin and
allocates data slots to streams as follows.

Phase 〈3〉: 5 streams generate packets with rate H and
4 with rate L, leading to Topt〈3〉 = 0.625s. Streams demand
altogether 96 slots per second, but the scheduler can allo-
cate at most dmax = 60 slots. To achieve fairness, it allocates
slots proportionally to their data rates; that is, on average,
0.625×16 = 10 slots to each of the 5 streams with rate H
and 0.625×4= 2.5 slots to each of the 4 streams with rate L,
against a demand of 16 slots and 4 slots, respectively.

Phase 〈4〉: all streams generate data at rate H, and the
network is saturated: Topt〈4〉 = 0.417s. The scheduler al-
locates on average as = 6.67 slots to every stream, against a
demand of rs = 16 slots. The source nodes equally contribute
to the goodput at the sink, as shown in Fig. 6.

Worth noticing is that the slot allocation in the saturated
case is fair because it applies the same allocation xs to all
streams s: xs = 10/16= 2.5/4 in phase 〈3〉 and xs = 6.67/16
in phase 〈4〉. Fig. 6 indeed shows that during both these
phases nodes with the same rate have the same goodput, and
the four nodes with rate L in phase 〈3〉 have together the
same goodput as one node with rate H, for L = H/4.

5 Evaluation Methodology
Before presenting experimental results, we describe the

metrics, protocols, and testbeds we use to evaluate LWB.
Metrics. We consider two key performance metrics com-
monly used for evaluating low-power wireless communica-
tion protocols [6, 18, 36, 37]: (i) data yield, defined as the
fraction of application data packets successfully received at
the sink(s) over those sent; and (ii) radio duty cycle, com-
puted as the fraction of time a node keeps the radio on. The
former is an indication of the level of service provided to ap-
plications in delivering sensed data, whereas the latter pro-
vides a measure of a protocol’s energy efficiency.

To determine data yield and radio duty cycle, we embed
packet sequence numbers and radio timings into data pack-
ets. We measure the radio duty cycle in software, using Con-
tiki’s power profiler and a similar approach in TinyOS. For
each experimental setting and protocol, we compute these
metrics based on three independent runs and report per-node

or network-wide averages and the 5th and 95th percentiles.
Protocols. We implement our LWB prototype on top of the
Contiki operating system, targeting the TelosB platform. We
set the LWB configuration parameters as in Table 1. Our
choice for Td and Ts is further discussed in Sec. 11.2. We
compare our LWB prototype with seven different combina-
tions of routing and link-layer protocols. Each in its own
setting, these protocols represent the current state of the art:
• The Collection Tree Protocol (CTP) [18] is a staple ref-

erence for many-to-one scenarios. We run CTP over a
non duty-cycled Carrier Sense Multiple Access (CSMA)
layer, the Low-Power Listening (LPL) [38] layer, and
A-MAC [14]. The CSMA case serves as a baseline
for CTP’s data yield performance, since it provides the
highest network capacity. The LPL setting matches the
configuration used by Gnawali et al. [18]. A-MAC is
a receiver-initiated link layer shown to outperform LPL
when running CTP in specific settings [14].

• Dozer is a state-of-the-art TDMA-based collection pro-
tocol for periodic, low-rate many-to-one scenarios [6]. It
achieves ultra-low radio duty cycles of 0.07–0.34% in
real deployments [22]. To compare Dozer with LWB,
we port the original TinyNode/SX1211 implementation
to the TelosB platform and the CC2420 radio. Our re-
sults confirm that our port performs comparably to the
original implementation under similar testbed settings.

• Muster is one of the few protocols for many-to-many
communication tested on real nodes [37]. We run Muster
atop LPL and CSMA. The LPL setting matches the con-
figuration used by Mottola et al. [37], and the CSMA case
serves as a baseline for Muster’s data yield performance.

• The Backpressure Collection Protocol (BCP) represents
the state of the art in data collection at a single mo-
bile sink [36]. Results indeed suggest that BCP outper-
forms recent mobile sink routing protocols in terms of
data yield [28, 36, 41]. We run BCP atop CSMA, which
matches the configuration used by Moeller et al. [36].

Table 2 lists the code footprints of all protocol configurations
we consider in our evaluation, including test applications.

We use an application payload of 15 bytes in all exper-
iments. Unless otherwise stated, we neglect the bootstrap-
ping phase not to bias our results, and start measuring after
10min with LWB, after 0.5h with CTP and Muster, after 2h
with Dozer, and after 15min with BCP, giving each proto-
col enough time to discover the network and stabilize. We
evaluate the bootstrapping performance separately in Sec. 6.
Testbeds. We use four testbeds: TWIST [20], KANSEI [16],
the CONET integrated testbed (CONETIT) [1], and an ex-
tended instance of FLOCKLAB [33]. All testbeds feature
TelosB nodes but differ along several dimensions as shown
in Table 3, including number of nodes, density, diameter, and
node mobility. KANSEI is the largest testbed we were able to

0 1 2 3 4 5
0

20

40

60

80

100

Time [min]

A
v
g

.
ra

d
io

 d
u

ty
 c

y
c
le

 [
%

]

 LWB

Dozer−30s

CTP+A−MAC−250ms

CTP+LPL−200ms

Figure 7. Average radio duty cycle during bootstrapping.
LWB lets nodes join fast initially, and saves energy by quickly
adapting the round period as is visible from the peaks.

gain access to. The 5 mobile nodes in CONETIT are attached
to robots, allowing for repeatable mobility patterns.

The network diameter in Table 3 is based on the physical
topology, matching LWB’s perception; the maximum route
stretch with other protocols is typically larger. Using a re-
ceived signal strength indicator (RSSI) scanner, we find that
on FLOCKLAB channel 20 is most exposed to WiFi traffic.
We use this channel in Sec. 9.1 to assess a protocol’s vulner-
ability to external interference, whereas we use channel 26
in all other experiments to minimize WiFi interference.
6 Bootstrapping

Bootstrapping can be a critical phase in real deployments,
because nodes may already spend a considerable amount of
energy merely on commencing communication. By examin-
ing this facet of LWB, we find that:

Finding 1. LWB bootstraps quickly and efficiently, while
distributing energy costs equally among nodes.
Scenario. We consider a many-to-one scenario on TWIST,
where 89 sources start generating packets with IPI = 1min.
Nodes log every second their current radio duty cycle into the
local flash memory, and dump these logs over the serial port
after 30min. We run tests with LWB, Dozer, and CTP over
A-MAC and LPL. We use the default 30s beacon interval
in Dozer [6], and set the wake-up intervals of A-MAC and
LPL to 250ms and 200ms, which provide a good trade-off
between data yield and energy consumption in this setting.
Results. We consider the systems fully bootstrapped when
all 89 source nodes delivered at least one packet to the sink.
We find that LWB and CTP (independently of the link layer)
bootstrap in 2min, whereas Dozer requires more than 18min.
Our results also indicate that LWB bootstraps most energy-
efficiently: during the first 30min of operation, nodes have
an average radio on-time of 27s with LWB against 128s with
Dozer, 130s with CTP+A-MAC, and 131s with CTP+LPL.

Fig. 7 shows a fine-grained analysis of energy costs by
plotting the average radio duty cycle across all nodes over the
first 5min of operation. The high energy efficiency of LWB
is due to the scheduler setting the round period to Tmin = 1s
on startup, which allows nodes to quickly time-synchronize
and start duty cycling their radios after a few seconds; and
increasing the round period to T = 30s and allocating fewer
contention slots after roughly 2.5min when all stream add
requests are served, which further reduces energy costs. The
initial synchronization is instead very expensive in Dozer,
because of its fixed beaconing period of 30s.

CTP’s adaptive beaconing [18] ameliorates the problem,
but still requires nodes to transmit broadcasts frequently dur-
ing the first seconds. Broadcasts are costly over link layers

like LPL and A-MAC, as visible from the peaks with increas-
ing period in Fig. 7. In Dozer, the synchronization between
parent and children in the tree compounds the problem, be-
cause nodes need to keep the radio on for a full beacon period
to discover their neighbors. This scanning phase is visible in
the step-wise pattern in Fig. 7, particularly between 30s and
1min where the average radio duty cycle is 100%.

Finally, we find that Dozer and CTP distribute the energy
load unevenly among nodes. After 30min, the difference
between the maximum and minimum radio on-time of a node
is 236s with Dozer, 192s with CTP, and less than 27s with
LWB. This may later cause a network partition due to faster
battery depletion at nodes nearby the sink [39]. The absence
of a routing hierarchy makes LWB immune to this problem.

7 Many-to-One Communication
In this section, we investigate the performance of LWB

in many-to-one scenarios under varying traffic loads, which
represent a significant fraction of existing low-power wire-
less applications [3, 31, 34, 43]. Our results indicate that:

Finding 2. In many-to-one scenarios, LWB operates re-
liably and efficiently under a wide range of traffic loads, and
promptly adapts when the traffic demands change over time.

A key aspect to understand the following performance
results is that radio activity in LWB is exclusively driven by
the global communication schedule. This spares nodes from
periodically waking up merely for probing the channel, as in
contention-based protocols like LPL or A-MAC. Placing this
observation in perspective: with the energy budget A-MAC
requires solely for probing the channel every 500ms, LWB
supports 50 streams with IPI = 1min to a single sink.

7.1 Light Traffic
We first look at a common scenario for low-power wire-

less sensor networks: periodic low-rate data collection. This
is typical of environmental monitoring, where high data yield
and energy efficiency are paramount [34, 43].
Scenario. We use FLOCKLAB and let 54 sources generate
packets with IPI = 2min for 4h. We compare LWB with
Dozer and CTP over A-MAC and LPL. Given the light traf-
fic load and stable network conditions in this scenario, we
use Dozer’s default 30s beacon interval, and set the wake-up
interval in A-MAC and LPL to 500ms.
Results. Fig. 8 plots CDFs of per-node data yield and per-
node radio duty cycle. Fig. 8(a) shows that all protocols but
CTP+LPL deliver more than 99% of the packets from all
sources. In particular, LWB and Dozer exhibit a very high
and almost identical average data yield of 99.98%. Because
of their synchronized operation, these protocols perform at
their best under stable network conditions, and better than
contention-based protocols like A-MAC and LPL.

Fig. 8(b) indeed shows that LWB and Dozer achieve low
average radio duty cycles of 0.43% and 0.23%, respectively.
LWB’s efficiency is due to the little control overhead to dis-
tribute schedules and allocate contention slots, which ac-
counts for only 0.05% of a node’s radio duty cycle. More-
over, we again observe that tree-based protocols like Dozer
and CTP bias the routing load towards the sink. For ex-
ample, radio duty cycles with Dozer range between 0.04%

0 0.2 0.4 0.6 0.8 1
95

96

97

98

99

100

[CDF]

D
a

ta
 y

ie
ld

 [
%

]

LWB

Dozer−30s

CTP+A−MAC−500ms

CTP+LPL−500ms

(a) Data yield.

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

[CDF]

R
a

d
io

 d
u

ty
 c

y
c
le

 [
%

]

(b) Radio duty cycle.
Figure 8. Per-node performance at
light traffic. Synchronized protocols
outperform contention-based proto-
cols at stable network conditions.

30 20 10 5
0

20

40

60

80

100

IPI [s]

D
a

ta
 y

ie
ld

 [
%

]

LWB

CTP+CSMA

CTP+LPL−20ms

CTP+LPL−50ms

CTP+LPL−100ms

(a) Data yield.

30 20 10 5
0

20

40

60

80

100

IPI [s]
R

a
d

io
 d

u
ty

 c
y
c
le

 [
%

]

(b) Radio duty cycle.
Figure 9. Performance at heavy traffic
from 259 nodes. LWB consistently pro-
vides a higher network capacity and is
more energy-efficient than CTP+LPL.

0 0.5 1 1.5
20

40

60

80

100

Time [h]

A
v
g

.
d

a
ta

 y
ie

ld
 [

%
]

Traffic
peak

1

Traffic
peak

2

LWB

Dozer−15s

CTP+LPL−100ms

CTP+LPL−200ms

(a) Average data yield.

0 0.5 1 1.5
0

10

20

Time [h]

A
v
g

.
ra

d
io

 d
u

ty
 c

y
c
le

 [
%

]

Traffic
peak

1

Traffic
peak

2

(b) Average radio duty cycle.
Figure 10. Performance as the traffic
demands change. LWB balances energy
costs and network capacity by adapting
round period and data slot allocation.

and 1.91%, whereas LWB distributes the energy load more
evenly, achieving per-node radio duty cycles of 0.41–0.48%.
7.2 Heavy Traffic

We next consider hundreds of nodes generating relatively
heavy network traffic. Applications such as data center mon-
itoring exhibit similar aggregate traffic loads [31].
Scenario. We use the 260 nodes available on KANSEI. All
nodes but the sink act as sources and generate packets with
the same fixed IPI for 4h. We test four different IPIs: 30s,
20s, 10s, and 5s, and compare LWB with CTP over CSMA
and LPL, using wake-up intervals of 100ms, 50ms, and
20ms for the latter.1 We exclude Dozer, as it is not designed
for such heavy traffic: constraints on the maximum packet
queue size and an increased risk of collisions [6] cause sig-
nificant packet loss at higher traffic loads (see also Sec. 7.3).
Results. Fig. 9 plots data yield and radio duty cycle for dif-
ferent IPIs. Bars show network-wide averages; error bars in-
dicate the 5th and 95th percentiles. We see from Fig. 9(a)
that LWB and CTP+CSMA achieve a data yield close to
100% across all IPIs. LWB delivers a goodput of 6.1kbps
at IPI = 5s: its synchronized operation provides sufficient
bandwidth to cope with these high traffic demands. By con-
trast, CTP+LPL collapses at IPI = 5s even with the shortest
wake-up interval: the bandwidth provided by LPL is insuffi-
cient, leading to congestion and more than 80% packet loss.

Fig. 9(b) exposes the trade-off between energy costs and
network capacity in CTP+LPL. A longer LPL wake-up in-
terval may save energy, but reduces the available bandwidth.
In a network of 259 source nodes, LWB constantly provides
a higher network capacity and is more energy-efficient than
CTP+LPL. This holds particularly for nodes in the vicinity
of the sink, which have the highest radio duty cycles with
CTP+LPL as they carry the highest loads. Overall, LWB re-
quires only 2.50ms of radio-on time to deliver a single appli-
cation packet, whereas CTP+LPL needs four times as much.

1We omit inconsistent results with CTP+A-MAC. Because the current
A-MAC implementation does not support multiple channels when using
broadcasts, many probes collide with data packets at heavy and fluctuating
traffic, which affects A-MAC’s performance significantly in these scenarios.

7.3 Fluctuating Traffic
In this experiment, we evaluate the performance of LWB

when the traffic demands change over time, which is charac-
teristic of applications that adjust the data rates in response
to external stimuli [3].
Scenario. We use 54 source nodes on FLOCKLAB that gen-
erate packets with IPI = 60s for 1.5h. During two periods
of 15min each, 14 spatially close nodes switch to IPI = 5s
(traffic peak 1) and IPI= 2s (traffic peak 2), respectively. We
compare LWB with Dozer and CTP over LPL1. In Dozer, we
halve the beacon interval to 15s and triple the queue size to
60 packets to help performance during traffic peaks. We test
100ms and 200ms as LPL wake-up intervals.
Results. Fig. 10 plots data yield and radio duty cycle over
time, averaged over all source nodes. Fig. 10(a) shows that
data yield with LWB is always close to 100%, even during
the two traffic peaks: LWB promptly reacts to the changed
traffic demands and adapts the round period T . For example,
the scheduler sets T = 30s when nodes generate packets with
IPI = 60s, but reduces it to T = 7s during peak 2. Fig. 10(b)
shows that the radio duty cycle rises from 0.8% to 7.8% dur-
ing traffic peak 2, but returns to 0.8% once the peak is over.

Dozer and CTP+LPL lack such adaptability. Dozer’s data
yield is almost 100% before peak 1, but drops severely when
the traffic load increases, below 30% during peak 2. Because
Dozer sets no limit on packet retransmissions, lost packets
are entirely due to queue overflows. Numerous queue over-
flows occur also with the largest queue size we could fit in
RAM (220 packets). With CTP+LPL the drop in data yield
is less severe, and depends on the LPL wake-up interval.

More generally, Dozer’s beacon interval and LPL’s
wake-up interval are fixed and set before operation, based
on the desired trade-off between energy efficiency and net-
work capacity. For instance, the better data yield with 100ms
wake-up interval comes at the price of higher energy costs,
paid also during low-traffic periods when a longer wake-up
interval would suffice. Finding suitable parameters for these
protocols is indeed a challenge, and additional complexity is
often required to adapt them at runtime [49].

0.2 0.5 0.8
80

85

90

95

100

[Fraction of source nodes]

D
a

ta
 y

ie
ld

 [
%

]

LWB

Muster+CSMA

Muster+LPL−50ms

Muster+LPL−200ms

Muster+LPL−500ms

(a) Data yield.

0.2 0.5 0.8
0

5

10

15

[Fraction of source nodes]

R
a

d
io

 d
u

ty
 c

y
c
le

 [
%

]

(b) Radio duty cycle.
Figure 11. Performance with 8 sinks
and varying fractions of sources. LWB
performs as in single-sink scenarios,
since all nodes receive all data.

Channel 26 Channel 20
80

85

90

95

100

[Radio channel]

D
a

ta
 y

ie
ld

 [
%

]

(no WiFi interference) (WiFi interference)

LWB

Dozer−15s

CTP+A−MAC−500ms

CTP+LPL−200ms

(a) Data yield.

Channel 26 Channel 20
0

5

10

15

[Radio channel]

R
a

d
io

 d
u

ty
 c

y
c
le

 [
%

]

(no WiFi interference) (WiFi interference)

(b) Radio duty cycle.
Figure 12. Performance with
and without WiFi interference.
LWB is more resilient to WiFi in-
terference than other protocols.

0 0.5 1 1.5
95

96

97

98

99

100

Time [h]

A
v
g

.
d

a
ta

 y
ie

ld
 [

%
]

Node
failures

Node
failures

LWB

Dozer−15s

CTP+CSMA

CTP+A−MAC−500ms

(a) Average data yield.

0 0.5 1 1.5
0

2

4

6

8

10

12

Time [h]

A
v
g

.
ra

d
io

 d
u

ty
 c

y
c
le

 [
%

]

Node
failures

Node
failures

(b) Average radio duty cycle.
Figure 13. Average performance while
8 nodes concurrently fail. When nodes
recover, LWB reduces the round period to
make them quickly join the bus operation.

8 Many-to-Many Communication
We assess LWB’s performance in many-to-many scenar-

ios. These arise, for example, in control applications, where
multiple sources feed different control loops running at mul-
tiple actuators [7]. We observe that:

Finding 3. LWB efficiently supports many-to-many com-
munication without any changes to the protocol logic.
Scenario. Out of the 90 nodes available on TWIST, we ran-
domly pick 8 as sinks and a fraction of 0.2, 0.5, or 0.8 of the
total as sources. These generate packets with IPI = 1min for
4h. We use the same LWB implementation and parameter
settings as in Sec. 7. We compare LWB with Muster [37],
a state-of-the-art routing protocol for many-to-many com-
munication. We run Muster atop the CSMA and LPL link
layers, using three different wake-up intervals for the latter:
500ms, 200ms, and 50ms.
Results. Fig. 11 shows that LWB consistently outperforms
Muster in data yield and radio duty cycle. The average
data yield across all sinks and sources with LWB, shown
in Fig. 11(a), is always above 99.94%. In contrast, with
Muster over CSMA, data yield starts at 99.01% and drops
to 97.98% as the fraction of source nodes increases. Muster
performs route maintenance on a source-sink basis; more
sources (or sinks) translate into higher control overhead and
hence higher packet loss due to collisions. This behavior is
even more evident with LPL, as it provides less bandwidth.

The trends in radio duty cycle, shown in Fig. 11(b), con-
firm the trade-off between reliability and energy already ob-
served in Sec. 7. With LWB, the average radio duty cycle is
0.31–1.06%. The highest data yield with Muster+LPL cor-
responds to an average radio duty cycle of 10.14–12.57%.
Compared with Dozer and CTP, however, Muster distributes
the load more evenly, as indicated by the 5th and 95th per-
centiles. This is due to a load-balancing mechanism added
on top of Muster’s normal protocol operation [37]. By con-
trast, LWB achieves network-wide load balancing by design,
because all nodes participate in every flood.

9 Topology Changes
Low-power wireless communication protocols must be

robust against topology changes caused by external interfer-
ence [32] and node failures [4]. This sections investigates
the resilience of LWB to these changes and reveals that:

Finding 4. Thanks to the absence of topology-dependent
state, LWB operates efficiently also in the presence of topol-
ogy changes due to external interference and node failures.

Dozer and CTP, like most existing protocols, rely on pe-
riodic broadcasts to keep routing and synchronization state
up-to-date, which is extremely costly atop contention-based
link layers [39]. The high efficiency of Glossy keeps the en-
ergy cost of LWB’s little control traffic (e.g., to distribute the
schedule and time-synchronize the nodes) to a minimum.

9.1 External Interference
WiFi interference can significantly degrade the perfor-

mance of low-power wireless protocols [14, 32, 42].
Scenario. We run 3-hour experiments on FLOCKLAB dur-
ing working hours, letting 54 sources generate packets with
IPI = 1min. We first use channel 26, which is most immune
to WiFi [42], and then channel 20, which is most affected
by WiFi in FLOCKLAB. We compare LWB with Dozer and
CTP over A-MAC and LPL. We set the beacon interval in
Dozer to 15s to improve reactiveness to topology changes.
The wake-up intervals of A-MAC and LPL are set to 500ms
and 200ms, providing a good trade-off between data yield
and energy consumption at this traffic load.
Results. Fig. 12 plots data yield and radio duty cycle, with
and without WiFi interference. Fig. 12(a) shows that all pro-
tocols but CTP+LPL maintain high data yield also with WiFi
interference, averaging above 99%. LWB shows also no no-
ticeable impact on radio duty cycle, shown in Fig. 12(b).
In contrast, the radio duty cycles increase considerably with
Dozer and CTP; for example, the 95th percentile with Dozer
rises from 0.60% to 1.61%. These protocols must adapt the
routing tree to varying channel conditions, leading to higher
radio activity, whereas LWB is immune to the problem.

4 2 1
70

80

90

100

IPI [s]

D
at

a
yi

el
d

[%
]

Static sink:
Mobile sink:

LWB
LWB

BCP+CSMA
BCP+CSMA

CTP+CSMA
CTP+CSMA

(a) Data yield.

4 2 1
0

50

100

IPI [s]

R
ad

io
 d

ut
y

cy
cl

e
[%

]

(b) Radio duty cycle.
Figure 14. Performance with a mobile sink.
LWB performs as if the sink was static.

70

80

90

100

[Protocol]

D
a

ta
 y

ie
ld

 [
%

]

LWB

BCP+CSMA

CTP+CSMA

(a) Data yield.

0

20

40

60

80

100

[Protocol]

R
a

d
io

 d
u

ty
 c

y
c
le

 [
%

]

(b) Radio duty cycle.
Figure 15. Performance
with a mobile sink and 4
mobile source nodes.

8 AM 10 AM 12 PM 2 PM 4 PM 6 PM 8 PM
0

2

4

0

2

4

0

2

4

0

2

4

0

2

4

Time of the day [h]

P
a

c
k
e

ts
 r

e
c
e

iv
e

d
 [

p
k
t/

s
]

B

M
1

M
2

M
3

M
4

Figure 16. Packets received by 5 mobile
nodes in a real-world trial. Arrows indicate
when the button is pressed on B; areas are
lighter when more mobile nodes are active.

9.2 Node Failures
Real deployments must deal with temporary node dis-

connections and persistent outages [4]. In the following, we
evaluate how effectively LWB adapts to these situations.
Scenario. We run experiments on FLOCKLAB for 1.5h, let-
ting 54 source nodes generate packets with IPI = 1min. We
adopt a similar scenario as Gnawali et al. [18]: after 15min,
we turn off 8 nodes in the vicinity of the sink. We turn
them on again after 15min, and repeat the off-on pattern after
30min. We compare LWB with Dozer and CTP over CSMA
and A-MAC. Because the traffic load is the same as in the
previous experiment, we set again Dozer’s beacon interval to
15s and A-MAC’s wake-up interval to 500ms.
Results. Fig. 13 plots data yield and radio duty cycle over
time, averaged over all functional nodes. In the first 15min,
all protocols deliver more than 99% of the packets and have
a stable radio duty cycle. When 8 nodes are turned off, we
observe no noticeable change in LWB’s data yield, shown
in Fig. 13(a), since its route-free operation renders state re-
configurations unnecessary. The only effect is that the host
realizes that it receives no packets from streams generated by
the 8 failed nodes and eventually removes these streams.

The removal of inactive streams reduces the number of
allocated data slots, slightly improving the average radio
duty cycle, from 0.83% to 0.72%. When the failed nodes
recover, they turn the radio on to synchronize again, causing
the short increases in radio duty cycle in Fig. 13(b). As soon
as the scheduler receives the first stream request, it reduces
the round period to Tmin = 1s to make nodes join faster. In
less than 20s all 8 nodes are again part of the bus, and after
1min the scheduler sets the round period back to 30s.

By contrast, Dozer’s average data yield drops below 96%
when nodes are removed, and a slight dip is also visible with
CTP. Due to the tree topology in these protocols, the failing
nodes close to the sink forward most packets. After a failure,
both protocols update the routing tree, which generates more
control traffic and thus higher radio activity, as visible from
the increase in radio duty cycle. This process is also prone
to temporary inconsistencies such as routing loops. These
factors all concur to packet losses. With no routing state to
update, LWB keeps delivering packets reliably without an in-
creases in energy costs, as long as the network is connected.

10 Mobility
We evaluate LWB’s performance in the presence of mo-

bile nodes, a scenario that proved challenging [13, 26, 28].
At the same time, emerging real-world applications increas-
ingly rely on the ability to attach sensor nodes to mobile en-
tities [5, 9, 15]. Our experimental results indicate that:

Finding 5. LWB supports mobile nodes acting as sinks,
sources, or both without any changes to the protocol logic
and performance loss compared with the static network case.

10.1 Mobile Sink
We first consider data delivery to a mobile sink, a setting

frequently found in participatory sensing applications [5].
Scenario. We program one robot in CONETIT to move at
a constant speed of 1 m/s (approximately human walking
speed) along a predefined zigzag trajectory that starts at one
corner of the testbed area and ends at the opposite corner.
Every run lasts 30min. During the movement, the node at-
tached to the robot is within the neighborhood of any other
static node at least once. The other 4 robots remain at their
default locations and act together with the 21 static nodes as
sources, using an IPI of 4s, 2s, or 1s in different runs.

We compare LWB with BCP+CSMA and CTP+CSMA,
using default parameter settings. CTP is not designed for
mobile scenarios, but we consider it nevertheless to under-
stand how the state of the art for static networks performs
when the sink is mobile. We use no duty-cycled link layer:
most existing protocols supporting mobile nodes do not tar-
get energy efficiency [36, 28], and would possibly require
modifications to existing link layers to do so [36]. We also
perform several runs with a static sink to obtain a baseline.
Results. Fig. 14 plots the results for different IPIs. Fig. 14(a)
shows that the same LWB prototype used so far achieves an
average data yield above 99.94% also when the sink moves.
This is because LWB keeps no topology-dependent state: as
long as the network is connected, LWB is oblivious to topol-
ogy changes. In contrast, BCP and CTP deliver fewer pack-
ets when the sink moves: they need to constantly reconfigure
state that depends on a node’s current neighbors and connec-
tivity. Although the degree of mobility is fairly limited, this
already suffices to affect the performance of both protocols.

A deeper look reveals that with sink mobility CTP deliv-

ers consistently around 90% of the packets almost regardless
of data rates. Instead, BCP’s data yield peaks at 98% with
IPI= 2s. We conjecture that the optimal parameter setting in
BCP is sensitive to traffic load. In contrast, LWB is equally
efficient in both static and mobile networks with the same
configuration, also in terms of radio duty cycle: Fig. 14(b)
shows that LWB’s performance in a mobile setting is similar
to that in static networks regardless of the traffic load.

10.2 Mobile Sources and Mobile Sink
We look at a typical setting where mobile sources deliver

data to a mobile sink via a stationary infrastructure [24].
Scenario. Four robots on CONETIT act as mobile sources,
generating packets with IPI = 1s; one robot acts as the mo-
bile sink. The robot trajectories and experiment duration are
as in Sec. 10.1. The remaining 21 static nodes generate no
packets and form a stationary relay backbone. We compare
LWB with BCP+CSMA and CTP+CSMA. Although simi-
lar solutions are employed in settings akin to ours [12], these
protocols are not expressly designed for mobile sources. Un-
fortunately, we could not gain access to a reliable implemen-
tation of an alternative baseline conceived for such scenarios.
Results. Fig. 15 depicts the results. Overall, the performance
is consistent with the mobile sink case discussed above. To
leverage mobile sources through a static infrastructure, LWB
requires no changes to the protocol logic. Specifically, LWB
achieves an average performance of 99.98% in data yield
and 0.84% in radio duty cycle. The latter figure is lower than
in Sec. 10.1, because now only four nodes generate data.

10.3 Real-World Trial
Finally, we run a week-long experiment at ETH to study

LWB in a longer-term setting involving many-to-many and
one-to-many traffic, changes in traffic demands and active
nodes, and mobile nodes acting as sources and sinks. Such
setting would currently require two network-layer protocols
(e.g., Muster and Trickle [30]) atop a link-layer protocol.
LWB provides all required features in a single protocol logic.
Scenario. We use 5 battery-powered nodes carried by peo-
ple on 7 consecutive days during working hours. People
roam around FLOCKLAB, which acts as a static infrastruc-
ture. People carrying the nodes entail less structured move-
ment than in the previous experiments, mimicking mobility
of real-world applications [9]. All mobile nodes act as both
sources and sinks, generating packets with IPI = 5min. All
nodes in FLOCKLAB also generate packets at the same rate.

To induce changes in the traffic demands and set of active
nodes, people switch their node off when they leave (e.g., af-
ter work). They switch their node on again when they come
back, eventually reconnecting the node to the bus. One mo-
bile node, named B, plays a special role: the person can
press its user button to trigger a second high-rate stream at
IPI = 1s. When the other 4 mobile nodes M1–M4 recog-
nize this, they generate such high-rate stream as well. When
the person presses the button again, B cancels the high-rate
stream and so do M1–M4.
Results. Fig. 16 shows a 14h-excerpt of our measurements
throughout the week. At about 10 AM, node B triggers the
high-rate stream. All mobile nodes are running at this time
besides M2, which is off the very moment the traffic peak

begins. It also starts generating high-rate packets as soon
as it becomes active. This corresponds to the reception of
slightly more than 4 pkt/s, one from each of the other 4 mo-
bile nodes plus the low-rate traffic, as shown in Fig. 16. As
a consequence of the traffic increase, the scheduler reduces
the round period T from Tmax = 30s to 11s. The radio duty
cycle accordingly rises from 0.18% to about 3.78%.

At around 12 PM, node M1 is turned off. As a result, the
throughput at the other mobile nodes lowers to about 3 pkt/s
and their radio duty cycle decreases correspondingly: the
host detects that M1 disconnected and then reclaims its ac-
tive streams. Close to 1 PM, node M1 restarts, but right after
that node B removes all high-rate streams. This manifests
in the short-lived peak shown in Fig. 16 right before 1 PM.
Nodes only generate packets at low rate afterwards, and the
radio duty cycle of all mobile nodes drops again to 0.18%.

At around 3 PM, node B triggers again the high-rate
streams. Both throughput and radio duty cycle increase sim-
ilarly as before at all mobile nodes. After 5 PM, people start
leaving: node M3 is the first to be switched off, followed
by M4, B, M2, and finally M1 right before 9 PM. As a result,
LWB progressively adapts its operation, and both throughput
and radio duty cycle decrease in a step-wise fashion.
11 Discussion

This section illustrates LWB’s scalability as the number
of streams increases, the impact of the network diameter on
LWB’s efficiency and a few protocol parameters, and alter-
native scheduling policies to reduce end-to-end latency.
11.1 Scalability Properties
Memory and computation time. The number of streams
determines the computation and memory overhead at the
host. The worst-case computation time in our experiments
is 49ms with 259 streams (see Sec. 7.2). Memory scales lin-
early with the number of streams; our LWB prototype uses
13 bytes per stream. Nevertheless, memory and computation
costs are paid only at the current host, and proved to be af-
fordable with several hundreds of streams on TelosB nodes.
Bandwidth. Bandwidth provisioning also scales linearly
with the number of active streams. Depending on their
number and IPIs, different solutions may perform better.
In a sense, we hit this point in the KANSEI experiments
in Sec. 7.2, where CTP+CSMA slightly outperforms LWB
in data yield at IPI = 5s. This, however, comes at the price
of 100% radio duty cycle: a possible, yet rarely affordable
design choice in real-world applications.
11.2 Impact of Network Diameter

The time taken for a Glossy flood to cover the entire net-
work depends on the network diameter [17]. Because LWB
uses only Glossy floods for communication, its efficiency de-
creases in deep networks that span several tens of hops, and
other approaches may perform better [23].

In particular, the length of data (Td) and schedule (Ts)
slots must be sufficient for a Glossy flood to cover the entire
network. Our setting in the evaluation is sufficient for net-
works whose physical topology spans at most 7 hops [17].
However, networks may be longer and it may be difficult to
determine in advance the network diameter. In these situa-
tions, LWB users need to conservatively increase Td and Ts.

Protocol Data Yield Radio Duty Cycle Latency
LWB 99.98% 1.40% 11.13s

LWB-low-latency 99.83% 1.44% 1.19s
LWB-fixed-period 99.99% 1.94% 1.23s

Dozer-30s 98.42% 0.19% 31.82s
CTP+A-MAC-500ms 99.80% 4.16% 1.73s

CTP+LPL-200ms 98.97% 6.99% 0.42s

Table 4. Average performance of three LWB scheduling
policies versus Dozer and CTP over A-MAC and LPL.

We study how this affects LWB’s performance through 3-
hour experiments on FLOCKLAB with 54 sources that gener-
ate packets with IPI = 1min. Besides the default parameter
setting, we test a configuration called LWB-long-slots that
doubles the values for Td and Ts to support network diame-
ters of up to 14 hops. We find that the average radio duty cy-
cle increases only by 0.02%: using Glossy, nodes typically
turn off their radios before the end of a slot already with the
default parameter setting. Data yield is marginally affected:
LWB-long-slots delivers 99.98% of data against 99.97%.

Longer slots, however, translate into fewer available slots
per round, and thus into an overall decrease in bandwidth.
For example, based on (1), we conclude that the default
parameter setting would support N = 300 streams generat-
ing packets with IPI = 5s or higher without saturating the
network, whereas LWB-long-slots would sustain at most
IPI = 10s from the same number of streams. In the applica-
tions we target, however, this bandwidth still largely suffices.

11.3 Alternative Scheduling Policies
The scheduling policy in Sec. 4 aims at energy savings

while still being responsive to changes in the network. To do
so, it trades packet latency for energy efficiency. Although
this choice seems appropriate for the applications we target,
others may afford to spend some energy for smaller latencies.

We provide two simple alternative scheduling policies
that aim primarily at minimizing packet latency. The first
policy, LWB-low-latency, adapts the round period T such
that the next round occurs immediately after the genera-
tion of new packets. The second policy, LWB-fixed-period,
fixes T = Tmin. We assess their performance based on 3h-
experiments on TWIST, where all nodes but a sink generate
data at IPI = 1min; nodes use transmit power -15dBm. In
addition to the usual performance metrics, we measure end-
to-end latency by timestamping packets at the source. We
compare LWB with Dozer and CTP over A-MAC and LPL.

Table 4 shows the results. We see that the two alterna-
tive policies achieve average packet latencies in the order of
1s, similar to CTP+A-MAC and CTP+LPL. This comes at
a marginal increase in energy costs for LWB-low-latency,
whereas LWB-fixed-period shows a larger increase due to
the overhead for distributing the schedule every Tmin = 1s.

Worth noticing is that in LWB the logic to trade perfor-
mance requirements resides at a single place, the scheduler,
whereas most other protocols may require non-trivial modifi-
cations in various places. As a result, users can easily imple-
ment custom LWB schedulers using well-defined interfaces.

12 Related Work
Flooding has long been considered too expensive for reg-

ular communication in low-power wireless networks. Never-

theless, a few protocols exploit the robustness of flooding for
routing while reducing collisions and energy costs, mostly by
adding random delays before or by completely suppressing
retransmissions [35, 47, 48]. Different from LWB, these pro-
tocols keep substantial topology-dependent state, which in-
creases their control overhead and sensitivity to link changes.

Completely contrary to LWB’s flooding-based approach,
the Broadcast-Free Collection Protocol (BFC) [39] avoids
costly broadcasts in the presence of duty-cycled link layers
altogether. Targeting low-rate data collection at a single sink,
BFC achieves significant energy savings in comparison with
CTP even under poor connectivity conditions, which comes
at the price of higher delays when forming the collection tree
initially. By contrast, LWB is applicable to a wider range of
scenarios and bootstraps as fast as CTP.

At the network layer, routing protocols construct multi-
hop paths based on some cost metric [2]. Efficient solutions
exist that tackle the single-sink [18], multi-sink [37], mo-
bile sink [28, 36], and mobile sources [19] case. In addition,
Trickle-based protocols provide reliable network-wide data
dissemination [30]. At the link layer, the many protocols
available can be divided into contention-based and TDMA-
based [27]. The former, sender-initiated [38] or receiver-
initiated [14], better tolerate topology changes, whereas the
latter enable higher energy savings. LWB instead replaces
the standard network stack with a single-layer solution. Our
experimental results demonstrate that LWB supports effi-
cient and reliable many-to-one, one-to-many, and many-to-
many traffic in both static and mobile scenarios.

LWB’s design is inspired by prior work on fieldbus-based
communication protocols [25]. Intended for distributed real-
time control applications, these protocols primarily focus on
providing predictable transmissions and guaranteed timeli-
ness. Different from these protocols, LWB must cope with
the unreliability of low-power wireless communications and
the resource limitations of the employed devices, particularly
in terms of bandwidth, energy, and memory.

13 Conclusions
Many emerging low-power wireless applications feature

multiple traffic patterns and mobile nodes in addition to static
ones, but existing communication protocols support only in-
dividual traffic patterns in dedicated network settings. LWB
overcomes this limitation by using exclusively Glossy floods
for communication, thereby making all nodes in the network
potential receivers of all data. As a result, LWB inherently
supports one-to-many, many-to-one, and many-to-many traf-
fic. Since LWB also keeps no topology-dependent state, it is
more resilient to external interference and node failures than
prior approaches, and seamlessly caters for node mobility
without any performance loss. Our experimental results con-
firm LWB’s versatility and superior performance across a va-
riety of scenarios. LWB thus provides a unified solution for a
broad spectrum of applications, ranging from traditional data
collection to emerging control and mobile scenarios.

Acknowledgments. We thank Olaf Landsiedel, Olga Saukh,
and Thiemo Voigt for feedback on early versions of this pa-
per, Roman Lim for sharing his expertise in Dozer, Alberto
De San Bernabé Clemente for help in using CONETIT, and

the anonymous reviewers for helpful comments. This work
was supported by Nano-Tera.ch, NCCR-MICS under SNSF
grant #5005-67322, the Cooperating Objects Network of Ex-
cellence under contract #EU-FP7-2007-2-224053, and pro-
gramme IDEAS-ERC, Project EU-227977-SMScom.
14 References

[1] CONET integrated testbed. https://conet.us.es/cms/.
[2] K. Akkaya and M. Younis. A survey on routing protocols for wireless

sensor networks. Elsevier Ad Hoc Networks, 3(3), 2005.
[3] A. Arora et al. A line in the sand: A wireless sensor network for target

detection, classification, and tracking. Elsevier Computer Networks,
46(5), 2004.

[4] J. Beutel et al. PermaDAQ: A scientific instrument for precision sens-
ing and data recovery under extreme conditions. In 8th ACM/IEEE
Intl. Conf. on Information Processing in Sensor Networks (IPSN ’09).

[5] J. Burke et al. Participatory sensing. In 1st Workshop on World-
Sensor-Web (WSW ’06).

[6] N. Burri, P. von Rickenbach, and R. Wattenhofer. Dozer: Ultra-low
power data gathering in sensor networks. In 6th ACM/IEEE Intl. Conf.
on Information Processing in Sensor Networks (IPSN ’07).

[7] M. Ceriotti et al. Is there light at the ends of the tunnel? Wireless sen-
sor networks for adaptive lighting in road tunnels. In 10th ACM/IEEE
Intl. Conf. on Information Processing in Sensor Networks (IPSN ’11).

[8] M. Ceriotti et al. Monitoring heritage buildings with wireless sensor
networks: The Torre Aquila deployment. In 8th ACM/IEEE Intl. Conf.
on Information Processing in Sensor Networks (IPSN ’09).

[9] O. Chipara et al. Reliable clinical monitoring using wireless sensor
networks: Experiences in a step-down hospital unit. In 8th ACM Conf.
on Embedded Networked Sensor Systems (SenSys ’10).

[10] J. Choi, M. Kazandjieva, M. Jain, and P. Levis. The case for a network
protocol isolation layer. In 7th ACM Conf. on Embedded Networked
Sensor Systems (SenSys ’09).

[11] S. Dolev, A. Israeli, and S. Moran. Uniform dynamic self-stabilizing
leader election. IEEE Trans. Parallel Distrib. Syst., 8(4), 1997.

[12] A. Dunkels et al. The announcement layer: Beacon coordination for
the sensornet stack. In 8th European Conf. on Wireless Sensor Net-
works (EWSN ’11).

[13] P. Dutta and D. Culler. Mobility changes everything in low-power
wireless sensornets. In 12th USENIX Workshop on Hot Topics in Op-
erating Systems (HotOS XII), 2009.

[14] P. Dutta et al. Design and evaluation of a versatile and efficient
receiver-initiated link layer for low-power wireless. In 8th ACM Conf.
on Embedded Networked Sensor Systems (SenSys ’10).

[15] V. Dyo et al. Evolution and sustainability of a wildlife monitoring
sensor network. In 8th ACM Conf. on Embedded Networked Sensor
Systems (SenSys ’10).

[16] E. Ertin et al. Kansei: A testbed for sensing at scale. In 5th ACM/IEEE
Intl. Conf. on Information Processing in Sensor Networks (IPSN ’06).

[17] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh. Efficient network
flooding and time synchronization with Glossy. In 10th ACM/IEEE
Intl. Conf. on Information Processing in Sensor Networks (IPSN ’11).

[18] O. Gnawali et al. Collection tree protocol. In 7th ACM Conf. on
Embedded Networked Sensor Systems (SenSys ’09).

[19] A. Gonga, O. Landsiedel, and M. Johansson. MobiSense: Power-
efficient micro-mobility in wireless sensor networks. In 7th IEEE Intl.
Conf. on Distributed Computing in Sensor Systems (DCOSS ’11).

[20] V. Handziski et al. TWIST: A scalable and reconfigurable testbed for
wireless indoor experiments with sensor networks. In 2nd ACM Intl.
Workshop on Multi-hop Ad Hoc Networks (REALMAN ’06).

[21] R. Jain, D.-M. Chiu, and W. Hawe. A quantitative measure of fairness
and discrimination for resource allocation in shared computer systems.
Technical Report 301, DEC, 1984.

[22] M. Keller et al. Comparative performance analysis of the PermaDozer
protocol in diverse deployments. In 6th Intl. Workshop on Practical
Issues in Building Sensor Network Applications (SenseApp ’11).

[23] S. Kim et al. Health monitoring of civil infrastructures using wire-
less sensor networks. In 6th ACM/IEEE Intl. Conf. on Information
Processing in Sensor Networks (IPSN ’07).

[24] J. Ko, C. Lu, M. Srivastava, J. Stankovic., A. Terzis, and M. Welsh.
Wireless sensor networks for healthcare. Proc. IEEE, 2010.

[25] H. Kopetz and G. Grünsteidl. TTP – a time-triggered protocol for
fault-tolerant real-time systems. In 23rd Intl. Symp. on Fault-Tolerant
Computing (FTCS-23), 1993.

[26] B. Kusy et al. Predictive QoS routing to mobile sinks in wireless sen-
sor networks. In 8th ACM/IEEE Intl. Conf. on Information Processing
in Sensor Networks (IPSN ’09).

[27] K. Langendoen. Medium access control in wireless sensor networks.
In Medium Access Control in Wireless Networks. Nova Science Pub-
lishers, 2008.

[28] J. W. Lee, B. Kusy, T. Azim, B. Shihada, and P. Levis. Whirlpool
routing for mobility. In 11th ACM Intl. Symp. on Mobile Ad Hoc Net-
working and Computing (MobiHoc ’10).

[29] K. Leentvaar and J. Flint. The capture effect in FM receivers. IEEE
Trans. Commun., 24(5), 1976.

[30] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A self-regulating
algorithm for code propagation and maintenance in wireless sensor
networks. In 1st USENIX Symp. on Networked Systems Design and
Implementation (NSDI ’04).

[31] C.-J. M. Liang, J. Liu, L. Luo, A. Terzis, and F. Zhao. RACNet:
A high-fidelity data center sensing network. In 7th ACM Conf. on
Embedded Networked Sensor Systems (SenSys ’09).

[32] C.-J. M. Liang, N. B. Priyantha, J. Liu, and A. Terzis. Surviving Wi-
Fi interference in low power ZigBee networks. In 8th ACM Conf. on
Embedded Networked Sensor Systems (SenSys ’10).

[33] R. Lim et al. Demo abstract: Distributed and synchronized measure-
ments with FlockLab. In 10th ACM Conf. on Embedded Networked
Sensor Systems (SenSys ’12).

[34] A. Mainwaring et al. Wireless sensor networks for habitat monitoring.
In 1st ACM Intl. Workshop on Wireless Sensor Networks and Applica-
tions (WSNA ’02).

[35] M. Maroti. Directed flood-routing framework for wireless sensor net-
works. In 5th ACM/IFIP/USENIX Intl. Middleware Conf., 2004.

[36] S. Moeller et al. Routing without routes: The backpressure collection
protocol. In 9th ACM/IEEE Intl. Conf. on Information Processing in
Sensor Networks (IPSN ’10).

[37] L. Mottola and G. P. Picco. MUSTER: Adaptive energy-aware multi-
sink routing in wireless sensor networks. IEEE Trans. Mobile Com-
put., 10(12), 2011.

[38] J. Polastre, J. Hill, and D. Culler. Versatile low power media access for
wireless sensor networks. In 2nd ACM Conf. on Embedded Networked
Sensor Systems (SenSys ’04).

[39] D. Puccinelli, M. Zuniga, S. Giordano, and P. Marron. Broadcast-
free collection protocol. In 10th ACM Conf. on Embedded Networked
Sensor Systems (SenSys ’12).

[40] I. Rhee, A. Warrier, M. Aia, and J. Min. Z-MAC: A hybrid MAC for
wireless sensor networks. In 3rd ACM Conf. on Embedded Networked
Sensor Systems (SenSys ’05).

[41] T. Schoellhammer, B. Greenstein, and D. Estrin. Hyper: A routing
protocol to support mobile users of sensor networks. Technical report,
UCLA, 2006.

[42] K. Srinivasan, P. Dutta, A. Tavakoli, and P. Levis. An empirical study
of low-power wireless. ACM Trans. on Sens. Netw., 6(2), 2010.

[43] G. Tolle et al. A macroscope in the redwoods. In 3rd ACM Conf. on
Embedded Networked Sensor Systems (SenSys ’05).

[44] Z. Vincze, V. Rolland, and A. Vidacs. Deploying multiple sinks in
multi-hop wireless sensor networks. In IEEE Intl. Conf. on Pervasive
Services (ICPS ’07).

[45] M. Wachs et al. Visibility: A new metric for protocol design. In 5th
ACM Conf. on Embedded Networked Sensor Systems (SenSys ’07).

[46] M. Welsh, D. Culler, and E. Brewer. SEDA: An architecture for well-
conditioned, scalable internet services. In 18th ACM Symp. on Oper-
ating Systems Principles (SOSP ’01).

[47] F. Ye, G. Zhong, S. Lu, and L. Zhang. A robust data delivery proto-
col for large scale sensor networks. In 2nd Workshop on Information
Processing in Sensor Networks (IPSN ’03).

[48] Y. Zhang and M. Fromherz. Constrained flooding: A robust and effi-
cient routing framework for wireless sensor networks. In 20th IEEE
Intl. Conf. on Advanced Information Networking and Applications
(AINA ’06).

[49] M. Zimmerling et al. pTunes: Runtime parameter adaptation for low-
power MAC protocols. In 11th ACM/IEEE Intl. Conf. on Information
Processing in Sensor Networks (IPSN ’12).

https://conet.us.es/cms/

	Introduction
	Overview
	Protocol Operation
	Steady-State Conditions
	Bootstrapping
	Long-Run Conditions
	Optimizations
	Node and Communication Failures
	Host Failures

	Scheduler
	Determining the Round Period
	Allocating Data Slots to Streams

	Evaluation Methodology
	Bootstrapping
	Many-to-One Communication
	Light Traffic
	Heavy Traffic
	Fluctuating Traffic

	Many-to-Many Communication
	Topology Changes
	External Interference
	Node Failures

	Mobility
	Mobile Sink
	Mobile Sources and Mobile Sink
	Real-World Trial

	Discussion
	Scalability Properties
	Impact of Network Diameter
	Alternative Scheduling Policies

	Related Work
	Conclusions
	References

