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Abstract—By integrating computational and physical elements
through feedback loops, CPSs implement a wide range of safety-
critical applications, from high-confidence medical systems to
critical infrastructure control. Deployed systems must therefore
provide highly dependable operation against unpredictable real-
world dynamics. However, common CPS hardware—comprising
battery-powered and severely resource-constrained devices inter-
connected via low-power wireless—greatly complicates attaining
the required communication guarantees. VIRTUS fills this gap by
providing atomic multicast and view management atop resource-
constrained devices, which together provide virtually synchronous
executions that developers can leverage to apply established
concepts from the dependable distributed systems literature. We
build VIRTUS upon an existing best-effort communication layer,
and formally prove the functional correctness of our mechanisms.
We further show, through extensive real-world experiments, that
VIRTUS incurs a limited performance penalty compared with
best-effort communication. To the best of our knowledge, VIRTUS
is the first system to provide virtual synchrony guarantees atop
resource-constrained CPS hardware.

I. INTRODUCTION

Cyber-physical systems (CPSs) are engineered systems de-
ployed in the physical world whose operation is controlled by
a computing and communication core. By gathering data from
the environment through sensors and by taking actions on it
through actuators, CPSs can realize safety-critical control loops
in scenarios where traditional systems are hardly applicable.

Motivation. As a concrete example, consider the TRITon
project [1], which deals with the implementation of closed-
loop control for adaptive lighting in road tunnels. TRITon
uses battery-powered sensor nodes to report, via low-power
wireless, periodic light readings to a central controller running
on embedded hardware [1]. This closes the loop by setting
the lamp intensity to match a legislated curve. The ability
to dynamically match the lighting levels to the environmental
conditions improves the tunnel safety.

Nevertheless, the safety-critical nature of many CPSs raises
concerns [2]. Using current communication protocols, for
example, TRITon designers cannot provide dependability as-
surances [1]. Moreover, the centralized controller represents
a single-point of failure. Designers wish to address these
concerns, for example, by replicating the control logic across
devices, as the mainstream practice would recommend [3].
Similar issues are also found in diverse CPS applications, such
as healthcare [4], logistics [5], and automation [6].

Unfortunately, applying established designs of dependable
distributed systems to CPSs is often not possible, as these
require communication guarantees that existing CPS network

protocols do not provide. Such guarantees notably include,
for example, well-defined message delivery orderings that
facilitate the implementation of replicated functionality, as
well as failure handling mechanisms operating w.r.t. both node
crashes and message omissions [3], [7].

In fact, existing low-power wireless protocols typically
operate in a best-effort manner, their design being optimized
towards non-functional properties, such as energy consump-
tion [8]. Nevertheless, low-power wireless networks are most
often characterized by dynamic multi-hop topologies, created
out of unreliable channels with limited bandwidth. Typical
CPS devices also feature poor processing capabilities and
limited storage facilities. Such characteristics make providing
even simple communication guarantees impractical. For exam-
ple, it may be extremely difficult to enforce message orderings
whenever nodes: i) are unable to buffer several messages due
to the memory shortage, and ii) need to rely on a time-varying
set of intermediate devices to achieve global coordination.

Virtual synchrony. The virtual synchrony [9] model for
distributed computation may be one of the designated tech-
nologies to underpin dependable CPSs. Birman et al. describe
virtual synchrony as [10]:

It will appear to any observer that all processes ob-
served the same events in the same order. This applies
not just to message delivery events, but also to failures,
recoveries, and group membership changes.

Two key concepts thus concur to create virtually-
synchronous executions. First, virtual synchrony entails a
notion of group: a set of processes exchanging messages
originated at one node in the group and addressed to all other
group members. The group membership is reflected in a data
structure called view, which reports information on the nodes
in a group at a given point in time. As group members fail
and new nodes possibly join, a virtually-synchronous system
must accordingly reflect such changes in the view.

Second, message exchanges must occur according to a no-
tion of atomic multicast. This grants applications the guarantee
that messages are delivered to either all or no group members.
Moreover, message deliveries must happen in the same order
at all group members: a feature called total order. As a result,
every process in a group receives the same messages in the
same order. Applications thus run with the illusion that the
underlying distributed executions are synchronous and fault-
free, although the underlying interactions are way more com-
plex. This greatly eases the design of dependable distributed
applications, e.g., based on replication techniques [3], as every
replica sees the same events in the same order.



Contribution and road-map. This paper presents VIRTUS, a
virtually-synchronous inter-process messaging layer we con-
ceive for typical resource-constrained CPSs platforms, e.g.,
limited to a few kB of RAM and with short-range low-
power wireless radios. To provide virtual synchrony, VIRTUS
combines a dedicated atomic multicast service—delivering
messages reliably and with total order—with a custom view
management service—managing group changes as nodes fail
or join. This renders applicable a vast portion of the exist-
ing literature on dependable distributed systems [3], enabling
formally-proven dependable operation of CPSs.

After illustrating in Sec. II the system model we base
this work upon, in Sec. III we briefly describe Low-Power
Wireless Bus (LWB), an existing best-effort communication
protocol we use as a foundation for VIRTUS. LWB misses,
however, a number of features required for virtual synchrony.
Sec. IV describes the functionality VIRTUS adds to provide
atomic multicast and view management, along with formal
proofs that our design does provide virtually-synchronous
executions. We then describe in Sec. V how we complement
virtual synchrony in VIRTUS with further delivery policies, and
report implementation details for our target platform in Sec. VI.

Virtual synchrony comes at a cost. Based on extensive
real-world experiments, we show in Sec. VII that our VIRTUS
implementation provides virtual synchrony at a marginal cost
compared with LWB’s best-effort operation. For example,
message latency and energy consumption increase only by
1 % and 11 %, respectively. We also report on the impact of
different settings of the VIRTUS parameters, demonstrating the
ease to fine-tune the system.

To the best of our knowledge, we are the first to offer
formally-proven virtual synchrony atop similarly resource-
constrained hardware. Nevertheless, our work “stands on the
shoulders of giants”, leveraging decades of work on depend-
able distributed systems that we revisit in a new context. We
provide due account of such literature in Sec. VIII, together
with a brief description of CPS protocols that provide com-
munication guarantees in specific applications.

II. SYSTEM MODEL

We consider wireless multi-hop networks of resource-
constrained embedded devices. This generally entails a device
can directly exchange data only with a subset of other nodes:
those that lie within its radio range. However, nodes cooperate
to relay packets on each other’s behalf to enable communica-
tion between nodes outside of each other’s radio range.

We target typical CPS applications where processing oc-
curs in distinct and periodic sense-process-actuate cycles [2].
Sensing occurs at nodes equipped with application-specific
sensing devices, which periodically report sensed data to nodes
with attached actuators. These nodes process the data and
drive the actuators accordingly. Unlike mainstream systems,
a distinction therefore exists between sensor nodes—which
generate data and act as senders—and actuator nodes—which
consume data and act as receivers. Our work is based on such
a distinction, although a node may simultaneously act as both.

We accept that both nodes and links between nodes may
fail, although such failures do not occur infinitely often or
liveness may be compromised. Nodes fail according to a crash-
stop model [11], i.e., nodes execute correctly until they silently
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Figure 1. Time-triggered operation in LWB.

halt and execute no further action. In principle, nothing pre-
vents us from considering a crash-recovery failure model [11],
where a process silently halts but then recovers from where
it left. CPS devices, however, often lack the stable storage
required to log information for recovery [12]. Nevertheless, a
crash-stop model fits the reality of deployed systems, where
nodes may fail because of battery depletion and lose the
previous state upon rebooting when power is again available.

We consider a synchronous and unreliable communication
model. This entails that: i) there is a known upper bound
on message transmission delays, and ii) the communication
channel may silently lose individual messages. The latter,
in particular, matches experimental evidence about the time-
varying nature of network topologies in low-power wireless,
for example, due to interference and obstacles [13].

We do not consider Byzantine failures, which may affect
communication or a node’s state in ways different than those
stipulated by a protocol’s actions. For example, messages are
either correctly delivered or not delivered at all—a node never
processes corrupted messages. Similarly, a node’s state always
evolves in ways that map to a feasible execution of a protocol’s
actions. In general, such Byzantine failures require dedicated
solutions that we plan to investigate in the near future.

III. COMMUNICATION SUPPORT

We build VIRTUS on top of Low-Power Wireless Bus
(LWB), a best-effort low-power wireless protocol [14]. The
key idea in LWB is to abstract away the multi-hop nature of a
low-power wireless network, turning it into a communication
infrastructure similar to a shared bus, where all nodes are
potential receivers of all messages. To achieve this, LWB maps
all communication demands onto Glossy network floods [15].
A Glossy flood blindly propagates every message to all nodes.
Multicast communication is implemented by filtering messages
at the receiver side. Although this may appear wasteful,
the techniques employed by LWB, illustrated next, make it
outperform state-of-the-art low-power wireless protocols [14].

LWB employs a time-triggered scheme to arbitrate access
to the (wireless) bus: nodes are time-synchronized and commu-
nicate according to a global communication schedule computed
and distributed by a dedicated host node. This adheres to the
bus analogy, as traditional bus communication systems employ
similar techniques [16]. The host computes the schedule based
on traffic demands from the senders, but independently of the
receivers’ identities, as all nodes in fact receive all messages.
A message is delivered to the upper-level application only if it
lists the node as an intended receiver. Should the current host
crash, LWB includes failover mechanisms to automatically
elect a new host [14].



LWB employs a round-based operation [17]. As shown in
Fig. 1 (A), activity on the bus is confined within communication
rounds—executed simultaneously at all nodes—that repeat
with a possibly varying round period T . Nodes keep their
radios off between two rounds to save energy. Each round
consists of non-overlapping communication slots, as shown in
Fig. 1 (B). All nodes participate in the communication during
a slot: one node puts a message on the bus (initiates a flood)
and all other nodes read the message from the bus (receive
and relay the flood), as shown in Fig. 1 (C). At the end of a
slot, the intended receivers deliver the received message to the
application, while all other nodes discard it.

Every round starts with a slot used by the host to distribute
the communication schedule. This sched message specifies the
round period T and which nodes can transmit data messages
in the subsequent data slots. If a node receives the schedule, it
time-synchronizes with the host and participates in the round;
otherwise, it does not take any action until the next round.
To inform the host about their traffic demands, nodes compete
in a final contention slot. Because of a wireless phenomenon
called “capture effect” [18], with high probability one node
succeeds and reaches the host. Traffic demands take the form
of periodic streams of data messages, as LWB targets the
periodic traffic pattern typical of CPS applications [5], [1].
Based on the received traffic demands, the host computes the
schedule for the next round.

We choose LWB as the foundation for VIRTUS mainly
because of its bus-like operation, which eases the design of the
interactions required to implement virtual synchrony. More-
over, LWB already provides some of the mechanisms required
for virtual synchrony, such as: i) implicit total ordering if data
messages are received, due to the exclusive access to the bus
during data slots; and ii) an explicit join operation for senders,
along with mechanisms to detect possible failures afterwards.

Nevertheless, using LWB, the gap to provide virtual syn-
chrony includes functionality such as: i) guaranteed delivery,
because LWB does not ensure by itself that messages even-
tually reach the intended receivers; ii) total ordering in the
presence of communication failures, as the ordering feature in
LWB, which is a side-effect of the time-triggered operation,
breaks if messages are not delivered; iii) explicit join opera-
tions for receivers, together with the required mechanisms to
detect their failures, necessary to create the group; and iv) view
management, as a notion of view, along with its management
as senders and receivers join or fail, is absent in LWB.

IV. BUILDING UP TO VIRTUAL SYNCHRONY

Many variants of virtual synchrony exist [19]. We consider
the most traditional incarnation, corresponding to the intuitive
definition in the Introduction. Formally, given any two nodes P
and Q, any two messages 1 and 2 generated in any arbitrary
relative order, and any two consecutive views V and V ′ that
include P and Q, we wish to ensure that if P delivers message
1 before message 2 between view V and view V ′, then Q
also delivers 1 before 2 between V and V ′ [9].

VIRTUS achieves the above by implementing two core
functionality: i) an atomic multicast service, providing reliable
and totally-ordered multicast delivery at member nodes, illus-
trated in Sec. IV-B; and ii) a view management service, used at
any non-faulty member to maintain the list of view members,
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Figure 2. Operation and exchange of messages during a VIRTUS round.
Highlighted in red is the functionality added to LWB.

described in Sec. IV-C. We conclude in Sec. IV-D by proving
that our design provides virtual synchrony guarantees.

Compared to virtual synchrony systems for mainstream
platforms [10], we reckon that some of our design choices
may appear pessimistic. This is intentional, as it simplifies
processing: to provide virtual synchrony in the challenging
CPS scenarios, we favor easier reasoning and provably sound
mechanisms over uncertain performance improvements. Ar-
guably, the difficulty in understanding the system operation
has been a hampering factor in low-power wireless [20].

A. Overview
VIRTUS provides applications with traditional virtual syn-

chrony operations such as sending and receiving messages, and
notification of view changes. Moreover, the application may
use a join() operation to notify VIRTUS that it intends to join
a view as a sender or a receiver. We distinguish between i) view
members: non-faulty nodes that are members of the current
view V; ii) participating nodes: nodes not yet in view V that
use (or used) join() to notify their intent to join the view; and
iii) non-participating nodes: nodes that only help propagate
packets across multiple hops, and thus operate transparently
w.r.t. virtual synchrony. A view member may also request at
any time to be removed from the view.

VIRTUS round. Fig. 2 depicts an example VIRTUS round,
highlighting the functionality added to LWB. The VIRTUS-
specific processing occurs mainly at four distinct stages:
• Schedule & View. After a sched message, the host dis-

tributes a view message with the current view V =
{V.id, V.S, V.R}. This consists of an identifier V.id and
a list of member nodes, split between senders V.S and
receivers V.R. Based on sched and view messages, re-
ceivers possibly deliver previously buffered messages to the
application right after processing the view message. Should
the received view V differ from the currently installed one,
members of the new view perform a view installation and
deliver a view change() notification to the application.

• Data. As in the original LWB, senders in V.S transmit
data messages during data slots according to the content of
the sched message. Unlike LWB, receivers in V.R locally
buffer received messages and wait until the next view
message before possibly delivering them to the application.

• Acks. After the exchange of data messages, each receiver
in V.R sends an ack message to inform the host of the
set of messages currently in its buffer. This information is
mainly used for reliable delivery in atomic multicast, but
also to ensure correct view changes, as we describe next.

• Requests. As in LWB, the round ends with a non-allocated
contention slot, where participating nodes compete to in-



round r = 1
Sched & View Data Acks Reqs
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Figure 3. VIRTUS: example execution of atomic multicast. Symbol 3 denotes a successful reception; symbol 7 denotes a communication failure.

Table I. SETS OF MESSAGE IDENTIFIERS.

Symbol Meaning

Kr Messages scheduled in round r
Fr Messages scheduled in round r for the first time
Cr Messages previously generated by senders expelled from a view in round r
Ar Messages acknowledged by all non-faulty receivers in round r
Sr Messages generated by senders in the view installed at round r
BR

r Messages in the buffer of receiver R after the data slots of round r
DR

r Messages delivered by receiver R during round r
ER

r Messages discarded by receiver R during round r

form the host about their intention to join the view. If any
of these nodes succeeds, the host updates the current view.
The host then computes the next round schedule, based
also on received ack messages and possible view updates.

Concepts and notations. We say that a view member executes
during a round only if it receives both sched and view mes-
sages. Should instead a member fail to receive either of them,
it refrains from any processing during the round. The sched
message is needed for the original LWB operation, the view
message is required to check the current group membership.
We also call a round r stable if the host receives ack messages
in round r from all non-faulty members in V.R.

For simplicity, the following description considers the host
as a non-participating node, although nothing prevents it from
being a view member. The discussion does not consider host
failures, as they are dealt with by the original LWB failover
mechanisms. We show in Sec. IV-D that these mechanisms do
not break the virtual synchrony guarantees VIRTUS provides.

We express the VIRTUS processing as operations on
sets of message identifiers. A message identifier Ii is
a triple Ii = {sender id, stream id, generation time}
that uniquely specifies a data message i generated by a sender.
Table I summarizes the sets we introduce throughout the paper.

B. Atomic Multicast
The atomic multicast service in VIRTUS provides reliable

and totally-ordered multicast to view members. As discussed
in Sec. III, LWB provides neither guaranteed delivery nor total
ordering in the presence of communication failures. We add
the following mechanisms to fill the gap:
• Receivers buffer received data messages and use ack mes-

sages to inform the host of the messages in their buffers.
• Based on the received ack messages, the host reallocates

slots for messages missing from at least one receiver buffer.
• After receiving a new sched message, receivers deliver

buffered messages for which no slot is reallocated.

To ease understanding, we explain these mechanisms based on
an example where nodes do not fail. We discuss in Sec. IV-C
how to account for the output of the view management service.

Example. Fig. 3 shows an example execution in a network
with four nodes: one sender S, two receivers P and Q, and
a host H. Nodes S, P, and Q are view members and have
view V = {1, {S} , {P,Q}} installed. Sender S has a new
message r to transmit at every round r. For each slot, the
figure shows messages exchanged, the content of the receiver
buffers, and the messages that the receivers P and Q deliver
to the application. As no other node intends to join, no req
messages are transmitted. Because there are also no node
failures, view V never changes. At the beginning of round
r = 1, the receiver buffers are empty.

Round 1. The host transmits schedule K1 = {I1}, in-
structing sender S that it can transmit data message 1 in the
assigned data slot. In general, the schedule Kr for round r is an
ordered set of message identifiers {Ii, Ij , . . . } that senders can
transmit during r; we omit the additional information in sched
messages related to the LWB operation, described in Sec. III.

All nodes receive the schedule and communicate during
the data slot: S transmits message 1 ; both P and Q receive 1
and insert it into their buffers. To ensure total order, receivers
buffer multiple messages in the relative order they appear in
the schedule. In the two ack slots, receivers P and Q inform the
host about the content of their buffers. As BP

1 = BQ
1 = {I1},

both ack messages include the identifier I1 of message 1 .
Round 1 is a stable round, as the host receives ack messages

from all receivers in V.R. The host computes the set of data
messages it can stop scheduling as A1 = {I1}. In general,
for a stable round r, the set of message identifiers Ar not
to reschedule in subsequent rounds is the intersection of the
messages in the receiver buffers BR

r of any receiver R in V.R:

Ar =
⋂

R
BR
r , ∀R ∈ V.R, r stable (1)

The messages in Ar are indeed already in the receivers’ buffers
and do not need to be retransmitted.

Round 2. The new schedule specifies that there is only one
data slot, for message 2 : because all receivers in V.R received
message 1 , the host allocates no more slots for it. The schedule
Kr of a generic round r is indeed obtained from the schedule
of the previous round Kr−1 by: i) removing the identifiers of
messages acknowledged by all receivers in the previous round,
included in Ar−1; and ii) possibly adding identifiers of newly-
generated messages never scheduled before, included in Fr:

Kr = (Kr−1 \Ar−1) ∪ Fr (2)



round r = 3
Sched & View Data Acks Reqs
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Figure 4. VIRTUS: example execution including view changes. Symbol 3 denotes a successful reception; symbol 7 denotes a communication failure.

Fig. 3 shows that P fails to receive the schedule, thus it does
not execute in round 2 and the content of its buffer does not
change: BP

2 = {I1}. Differently, Q receives the schedule and
from K2 = {I2} it infers that message 1 reached all receivers
in V.R and can be delivered to the application. We indicate
the delivery with DQ

2 = {I1}. In general, during a round r,
a receiver R delivers messages that are in its buffer from the
previous round BR

r−1 and whose identifiers are not included in
the current schedule Kr, meaning they reached all receivers:

DR
r = BR

r−1 \Kr (3)

To provide totally-ordered delivery, this operation occurs in
the order the messages are found in the buffer.

During the data slot, S transmits message 2 , which is
buffered at Q only, as P is not participating in round 2. The host
receives an ack message from Q but not from P, thus round 2 is
non-stable. The host computes the set of data messages not to
reschedule as A2 = ∅. This applies for any non-stable round
r, as at least one receiver may be missing at least one message:

Ar = ∅, r non-stable (4)

Round 3. For A2 = ∅, the schedule for round 3 reassigns a
slot for message 2 in addition to a slot for the new message 3 .
From (2) indeed follows K3 = ({I2} \∅) ∪ {I3} = {I2, I3}.

This time, both receivers obtain the schedule. Finally, P
realizes that 1 reached all receivers because no slots are allo-
cated to it in K3, and accordingly delivers it: with BP

2 = {I1},
from (3) follows DP

3 = {I1} \ {I2, I3} = {I1}. Differently,
Q delivers no messages at this round, because although it
already received message 2 , a slot is still scheduled for it;
with BQ

2 = {I2}, from (3) follows DQ
3 = {I2} \ {I2, I3} = ∅.

Based on schedule K3, sender S retransmits message 2 : P
does not receive it, while Q does but immediately drops it as
2 is already buffered from round 2. Both receivers receive and
buffer 3 . The host receives both ack messages BP

3 = {I3} and
BQ

3 = {I2, I3}, thus the round is stable. From (1) it computes
A3 = {I3}: only message 3 is indeed in both buffers.

Round 4. Schedule K4 specifies that a slot is rescheduled
for message 2 , plus another slot is scheduled for message 4 :
according to (2), K4 = ({I2, I3} \ {I3}) ∪ {I4} = {I2, I4}.
This makes both receivers deliver message 3 : from (3), DP

4 =
{I3} \ {I2, I4} = {I3} and DQ

4 = {I2, I3} \ {I2, I4} = {I3}.
Summary. Throughout the four rounds in the example, and in
the presence of arbitrary communication failures, receivers P
and Q deliver the same messages 1 and 3 in the same order.
The key to this functionality is in equations (1)–(4). These
equations, however, require modifications to account for node
crashes and corresponding view changes, as we illustrate next.

C. View Changes
The view management service informs the application at

member nodes about the current view V and updates it in
response to node crashes or recoveries. As discussed in Sec. III,
LWB has no notion of view and provides no explicit support
for receivers. The following mechanisms fill this gap:
• Both senders and receivers compete during contention slots

and transmit req messages to the host to join the view. At
each round, the host distributes the current view V, possibly
updated based on node crashes and received req messages.

• The host overhears messages exchanged among view mem-
bers to monitor their continuing operation. To detect mem-
ber crashes, the host uses a simple counter-based scheme
that marks a view member as crashed when not heard for
a consecutive rounds, a being a protocol parameter whose
tuning we investigate in Sec. VII.

• To provide atomic multicast also in the presence of sender
and receiver crashes, delivery occurs only at receivers in
V.R and only for messages from senders in V.S.
We also observe that the failure detector we use may be

inaccurate [11] and mistake message loss for node crashes.
However, we show that even in case of false positives VIRTUS
does not break virtual synchrony guarantees. We again use a
concrete example to explain these mechanisms.

Example. Consider the example execution in Fig. 4. The
overall setting and the first two rounds are as in Fig. 3. For
simplicity, we set the number of rounds for detecting node
crashes as a = 1. This time, the execution unfolds as follows.

Round 3. As seen before, the schedule for this round is
K3 = {I2, I3}, and receiver P delivers message 1 . This time,
however, sender S crashes immediately after receiving the view
message. As a result, S cannot (re)transmit data messages as
instructed by the schedule. This potentially creates a situation
violating atomic multicast: message 2 , already in the buffer of
receiver Q, needs to be delivered by both P and Q or neither.
For simplicity we make the latter happen, based on the crash-
stop model we consider for nodes, as shown in the next rounds.

In the remainder of the round, the data slots remain unused,
thus the buffers at both receivers remain unchanged. Receivers
send ack messages BP

3 = ∅ and BQ
3 = {I2}, thus A3 = ∅.

Round 4. With K3 = {I2, I3}, A3 = ∅, and F4 = {I4},
from (2) follows schedule K4 = {I2, I3, I4}. Sender S recov-
ers before the beginning of this round and executes join(). As
we consider a crash-stop model, S cannot replay the execution
before the crash and transmit messages 2 , 3 , 4 according
to the schedule. Therefore, we must treat these situations as
if the recovered node were a new device, and force the view



change corresponding to the crash of the now-recovered node.
To accomplish this, the recovered node keeps silent while it
sees itself listed in the current view, meaning that the crash was
not yet detected and no corresponding view change occurred.

As a result, although sender S in Fig. 4 receives both sched
and view messages, it transmits no data message in round 4,
finding itself listed in the view after booting. Being a = 1 in
this example, at the end of this round the host detects the crash
of sender S and expels it from the updated view {2,∅, {P,Q}}.

Round 5. As there is no sender in the view, F5 = ∅.
However, with K4 = {I2, I3, I4} and A4 = ∅, computing
the schedule based on (2) would incorrectly lead to K5 =
{I2, I3, I4}. These messages indeed belong to an execution of
S that will never be replayed, and S will never retransmit them.
Therefore, the host must stop scheduling messages generated
by the crashed S. We achieve this by modifying (2) as:

Kr = [Kr−1 \ (Ar−1 ∪ Cr−1)] ∪ Fr (5)

where Cr−1(⊆ Kr−1) includes the identifiers of messages
from crashed senders removed from the view at the end of
round r− 1. In this example, C4 = {I2, I3, I4} and, as shown
in Fig. 4, K5 = [{I2, I3, I4} \ (∅ ∪ {I2, I3, I4})] ∪∅ = ∅.

During the remainder of round 5, receiver P executes and
installs the new view. Receiver Q, still having message 2 in
its buffer, misses either the sched or view message, so it does
not execute, and is stuck at the previous view that still includes
sender S. The now-recovered S sees itself not listed in the new
view, so it sends a req to join during the contention slot.

Round 6. Two issues may arise. First, if sender S is
immediately readmitted and the view updated again, the new
view {3, {S} , {P,Q}} would trick receiver Q to think that
S never crashed. Besides the identifier, this view is indeed
identical to {1, {S} , {P,Q}}, which Q still has installed as it
did not execute in round 5. Second, we need receiver Q to
discard message 2 when it installs view {2,∅, {P,Q}} and
realizes that S crashed. As K6 = ∅, based on (3) Q would
deliver DQ

6 = {I2}\∅ = {I2}. This violates virtual synchrony,
as the other non-faulty receiver P will never deliver 2 .

To address these issues, we both postpone adding new
senders until after a stable round—ensuring that all non-faulty
receivers install the latest view—and modify (3) as:

DR
r = [BR

r−1 \Kr] ∩ Sr (6)

where Sr includes any message generated by senders that are
members of the current view. Note that Sr is merely a formal
artifact: receivers do not need to know the list of messages ever
generated by senders. It suffices to check whether a message
that a receiver is about to deliver is generated by a sender
in the current view. If so, the message is delivered. If not,
this message is surely not in Sr, and is discarded as it is not
guaranteed to be delivered by all non-faulty receivers.

The set ER
r of data messages discarded by a receiver R is:

ER
r = [BR

r−1 \Kr] \ Sr (7)

In the example of Fig. 4, EQ
6 = I2 and message 2 is discarded

at Q because sender S is not in the current view. Sender
S, on the other hand, not seeing itself admitted to the view,
retransmits the req message during the contention slot.

Round 7. Round 6 was stable, so sender S is finally
admitted to the view, a view change occurs, and the new view
is disseminated to the nodes. The processing resumes normally.

Summary. The example shows how VIRTUS retains atomic
multicast also against sender crashes. The processing for
receiver crashes is simpler: they can be removed from a view
as soon as the crash is detected, and admitted to a view as soon
as they send a req. If the host expels a non-faulty receiver from
a view due to the repeated loss of ack messages, such receiver
empties its buffer before sending a req, as no virtual synchrony
guarantees can be provided for messages already in its buffer.

As described, we integrate view management with atomic
multicast by taking additional care in scheduling and delivering
messages, as reflected in (5) and (6), and by possibly discard-
ing them, as specified by (7). From these equations, and (1)
and (4) from Sec. IV-B, one also observes that VIRTUS satisfies
basic properties of group communication systems [19]: i) self
inclusion: a node is a member of a view it installs; ii) local
monotonicity: the identifiers of the views installed by a node
are monotonically increasing; iii) initial view event: message
delivery occurs within a view; and iv) primary component
membership: views installed by nodes are totally ordered.

D. Virtual Synchrony
We prove that VIRTUS does guarantee virtual synchrony.

Bounded buffer. First, we show that VIRTUS determines an
upper bound on the number of messages buffered at a receiver.

Lemma 1: At the end of a round r, the set BR
r of message

identifiers buffered at a receiver R is a subset of the schedule
Kq received by R in the last round q ≤ r where R executes.

Proof: After receiving schedule Kq and view Vq during
round q, every non-faulty receiver R in Vq.R delivers and
discards buffered messages according to (6) and (7). From that
moment and until the next round where R executes, R buffers
only messages with identifiers in Kq and that are not already
buffered. Indeed, R can add messages to the buffer only in
round q, as it does not execute in any following round.

In general, the number of message identifiers that can fit a
sched message is bounded by m, for example, due to platform-
dependent restrictions on packet sizes. The cardinality of any
schedule Kr is thus bound to |Kr| ≤ m. From Lemma 1, it
immediately follows that a receiver has at most m messages
buffered at any point in time, and thus:

Theorem 1: A buffer size of at least m ensures that no
buffer overflows occur at a receiver.

Virtual synchrony. We first prove the following lemma, which
we use later to study the virtual synchrony properties.

Lemma 2: Every receiver that executes in a stable round
r′ and is a view member until the next stable round r′′ delivers
the same set of messages from the end of r′ to the end of r′′.

Proof: According to (5), the schedule for round r′ + 1
is Kr′+1 = [Kr′ \ (Ar′ ∪ Cr′)] ∪ Fr′+1. The schedule for the
remaining rounds r = {r′ + 2, . . . , r′′} is Kr = Kr−1∪Fr, as
the host removes message identifiers from the schedule only
after a stable round, and only the last round r′′ in this sequence
is stable; thus, Ar−1 = Cr−1 = ∅ for these rounds. As a
result, the schedule for a round r = {r′ + 1, . . . , r′′} is:

Kr = (Kr′ \ (Ar′ ∪ Cr′)) ∪ (Fr′+1 ∪ · · · ∪ Fr) (8)



Consider a receiver R that is a member of every view Vr
in rounds r = {r′, . . . , r′′}. Receiver R thus executes in r′

and does not crash between the end of r′ and the end of r′′.
Being round r′ stable, the host receives an ack message also
from receiver R during this round, which in turn ensures that
R receives schedule Kr′ and has view Vr′ installed during r′.

Let us name ρ ∈ {r′ + 1, . . . , r′′} the first round after r′
where R executes. Round ρ is stable if and only if ρ = r′′.
The messages delivered by R before, during, and after ρ are:
• Rounds r = {r′ + 1, . . . , ρ− 1}. Receiver R misses either

the sched or the view message, thus it does not execute and
delivers no messages: DR

r = ∅. The set of messages in its
buffer remains the one of the last stable round: BR

r = BR
r′ .

• Round ρ. Receiver R receives schedule Kρ and view Vρ.
It delivers messages as per (6), in the same relative order
their identifiers appear in the sched message of the last
round where R executed, which is r′. From (6) descends:

DR
ρ = Ar′ (9)

See the Appendix for the derivation of (9). Similarly, as per
(7) receiver R discards messages ER

ρ = BR
r′∩Cr′ generated

by crashed senders. If view Vρ differs from the currently
installed view Vr′ , R installs Vρ after the message delivery.

• Rounds r = {ρ+ 1, . . . , r′′}. If receiver R misses the
sched or the view message, it does not execute and delivers
no messages; otherwise, it executes and delivers messages
as per (6). However, we show in the Appendix that this set
is also empty, because every message acknowledged by all
receivers was in Ar′ and was delivered in ρ, and no stable
round occurs after r′ and until r′′.

Because Ar′ in (9) depends neither on the specific receiver R
nor on the round ρ, every non-faulty receiver delivers the same
set of messages between the end of r′ and the end of r′′.

The example in Fig. 3 showed a concrete case between
r′ = 1 and r′′ = 3. Despite message loss, both receivers P and
Q deliver the same message 1 . Receiver Q delivers it in round
ρQ = 2, whereas receiver P delivers it in ρP = 3. The virtual
synchrony property is a direct consequence of Lemma 2:

Theorem 2: If two receivers both install the same new
view V following the same previous view V ′, then they deliver
the same set of messages in the former.

Proof: Lemma 2 ensures that, while members of the same
view Vr′ = · · · = Vr′′ , all receivers deliver the same set of
messages within that view. Moreover, any receiver that installs
a new view Vρ following view Vr′ delivers the same set of
messages Ar′ right before installing the new view.

Same view delivery. From Lemma 2 it also follows that:
Theorem 3: If two receivers deliver the same message,

they deliver it in the same view.
Proof: Based on the proof of Lemma 2, a receiver R

delivers messages Ar′ during round ρ and within view Vr′ . As
Vr′ depends neither on R nor on ρ, any receiver that delivers
these messages delivers them within the same view Vr′ .

Total ordering. The following theorem ensures that receiver
members deliver messages in the same order.

Theorem 4: When receivers deliver the messages, they
deliver them in the same order.

Proof: Based on the proof of Lemma 2, a receiver R

delivers messages Ar′ during round ρ, and in the same relative
order their identifiers had in schedule Kr′ . As this order
depends neither on R nor on ρ, any receiver member that
delivers these messages delivers them in the same order.

Host failures. We observe that the theorems above hold also
in the face of host failures. After a crash of the current host,
nodes stop receiving sched or view messages and the entire
VIRTUS processing stops. If the host does not recover within
a specified amount of time, the LWB failover policy elects a
different node as the new host [14]. In this case, the system
restarts from scratch, with the new host distributing empty
sched and view messages. Senders and receivers thus realize
they are not listed in the view and, after discarding all buffered
messages, transmit req messages to join the view.

This simple operation entails a performance overhead due
to a new bootstrapping process, but it ensures that none of
the virtual synchrony guarantees discussed above are violated.
We plan to investigate mechanisms that keep the overhead to
a minimum, e.g., by making the new host reuse information
included in the last view it received from the crashed host.

V. FIFO DELIVERY

Fault-tolerant distributed systems often require messages to
be delivered in the same order they are sent [3], [19]. In addi-
tion to total ordering, VIRTUS provides per-node and system-
wide FIFO delivery by means of very limited modifications.

Per-node FIFO ordering. The default scheduling policy of
LWB, which we inherit also in VIRTUS, ensures that the host
schedules in FIFO order slots for data messages from each
sender [14]. In VIRTUS, however, non-faulty receivers may
violate the per-node FIFO ordering when delivering messages,
due to retransmissions. This happens, for example, in Fig. 3:
receivers P and Q deliver message 3 before message 2 .

We can provide per-node FIFO delivery with a simple
modification to the scheduling algorithm at the host. The
key idea is to keep scheduling slots for data messages even
though these are already acknowledged by all non-faulty
receivers, should these messages be generated later than non-
acknowledged messages from the same sender. In the example
of Fig. 3, this entails rescheduling slots for message 3 in
round 4, even if it was already acknowledged by both P and
Q. Because the identifier of message 3 keeps appearing in the
schedule, both receivers do not deliver it as per (6).

Specifically, when the host computes the schedule Kr+1 at
the end of a stable round r, in (5) it uses AnF

r ⊆ Ar instead
of Ar. The set AnF

r includes messages in Ar whose generation
time at the sender is not greater than the generation time of
any other message in Kr from the same sender.

System-wide FIFO ordering. Similarly, system-wide FIFO
delivery entails that receivers deliver no messages generated
before already delivered messages, regardless of the sender.

This requires two modifications. First, we change the LWB
scheduler such that the system-wide FIFO ordering holds
within messages scheduled for the first time, included in Fr.
This is possible because the host knows when each sender
generates new messages, due to the periodic generation of
data by the senders. Second, similarly to the per-node FIFO
delivery above, we modify how the host decides which data
messages to reschedule. Specifically, when the host computes



the schedule Kr+1 at the end of a stable round r, in (5) it uses
AsF
r ⊆ Ar instead of Ar. The set AsF

r ⊆ Ar includes messages
in Ar whose generation time is not greater than the generation
time of any other message in Kr, regardless of the sender.

With either of these modifications, VIRTUS maintains
totally-ordered delivery, because the mechanisms at the re-
ceivers remain the same. FIFO delivery, however, entails allo-
cating slots not strictly needed, as the corresponding messages
are already buffered at all non-faulty receivers, introducing
additional overhead. We evaluate this aspect in Sec. VII.

VI. IMPLEMENTATION

We implement VIRTUS on top of the Contiki operating
system [21]. We target the TelosB platform, which features
a 16-bit 8 MHz MSP430 MCU, an IEEE 802.15.4-compliant
250 kbps wireless transceiver, 10 kB of RAM, and 48 kB of
program memory [22]. The mechanisms added to LWB occupy
only 6 kB of program memory: altogether, VIRTUS occupies
28 kB of program memory, leaving 20 kB for the application.

Compared to the original LWB implementation, we reduce
from 60 to 40 the maximum number of data slots m allocated
per round. This makes our prototype support up to 15 ack slots
and thus up to 15 receivers, but it decreases the bandwidth
available for data messages. This setting is representative of
existing CPS deployments where virtual synchrony may be
necessary [2], [1], [4], [5], [6]. Nevertheless, designers can
tune this value based on application requirements. All other
functional parameters retain the original LWB values [14].

To reduce energy consumption, the host allocates ack slots
only when needed, that is, in rounds with at least one data
slot or between a view update and the next stable round. The
latter is to ensure that all receivers install an updated view,
as discussed in Sec. IV-C. Finally, we apply an optimization
to overcome the loss of view messages. If a node detects that
the current view V—whose identifier V.id is embedded in the
sched message—is the same as the one installed, it executes
even if it misses the view message, as it already knows V.

VII. EVALUATION

VIRTUS incurs a run-time overhead compared with LWB’s
best-effort operation. We use our prototype to quantitatively
assess this aspect based on real-world experiments, and to
study also the impact of different parameter settings.

A. Settings and Metrics
We use two real-world testbeds. Twist is an indoor instal-

lation of 90 TelosB nodes spanning three floors of a university
building [23]. On Twist we use an intermediate transmit power
of -15 dBm, yielding a network depth of 4 hops. FlockLab
includes 30 TelosB nodes with a network depth of 4 hops at the
maximum transmit power of 0 dBm [24]. Both testbeds feature
back-channels to every node, allowing fine-grained control of
the experiments and inspection of the system state.

To factor out sources of network unreliability we cannot
control, we use channel 26 to minimize interference with co-
located Wi-Fi networks. In contrast, we artificially emulate
message loss during ad-hoc experiments. In all experiments,
data messages carry a payload of 15 bytes. Unless otherwise
stated, we set a = 10 as the threshold to detect node crashes.
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Figure 5. Cost of virtual synchrony in a network of 90 nodes.

The specific traffic profile w.r.t. number of senders, receivers,
and message rate varies depending on the type of experiment.

To assess the performance overhead in exchange of virtual
synchrony, we consider an unmodified LWB as the baseline
and measure for both LWB and VIRTUS: i) the data latency,
defined as the interval from when the application at a sender
sends a data message to when a receiver delivers that message;
and ii) the radio duty cycle, defined as the fraction of time a
node has the radio turned on, commonly regarded as an indica-
tion of energy efficiency in low-power wireless protocols [8].
We expect virtual synchrony to impact both: latency should
increase because messages are delivered only after all receivers
buffered them; radio duty cycle should increase because of
additional control traffic and retransmissions absent in LWB.

Complementary to these figures, we assess how effective
are the virtual synchrony guarantees VIRTUS provides by mea-
suring: i) the system-wide data yield, defined as the fraction of
generated data messages successfully delivered at all receivers;
and ii) the view latency, defined as the interval from when a
view member crashes to when all non-faulty nodes install an
updated view. In the absence of crashes, the former should
measure 100 % due to atomic multicast. Nevertheless, it is
interesting to check the LWB performance in the same settings,
to relate the gap to virtual synchrony with the performance
overhead. View latency is instead useful to understand the
tradeoffs for different parameter settings.

B. The Cost of Virtual Synchrony
On Twist, we randomly pick 45 senders and let them

generate one data message per minute, addressed to a variable
number of 2, 5, 10, and 15 receivers across different exper-
iments. These settings depict scenarios akin to typical CPS
deployments [2], [1], [4], [5], [6]. For each scenario, we run
1-hour long experiments with LWB and VIRTUS, the latter
with different delivery policies: no FIFO, per-node FIFO, and
system-wide FIFO. The round period is set to T = 10 s.

Based on the results, we verify that atomic multicast in
VIRTUS delivers all data messages, whereas in LWB only
98.04 % of messages are delivered by all 15 receivers. Fig. 5
plots the performance overhead in data latency and radio duty
cycle. Bars denote average values, error bars represent 15th
and 85th percentiles. Fig. 5(a) shows that with two receivers
LWB and VIRTUS deliver messages with similar average
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Figure 6. Performance of VIRTUS in a network of 90 nodes when communication failures are artificially injected, for different types of ordered delivery.

latency of 2.11 s and 2.13 s, respectively. As LWB’s reliability
already approaches 100 %, most messages indeed require no
retransmissions and the processing in VIRTUS resembles LWB.

With more receivers, it is more likely that at least one data
or ack message is lost. In VIRTUS, this triggers retransmissions
from the senders and buffering at the receivers. This, however,
results only in a slight increase in latency, which averages
2.39 s with 15 receivers. The type of ordered delivery has little
impact on latency: because of few retransmissions, only in rare
cases the host reallocates data slots for already acknowledged
messages to enforce FIFO delivery as described in Sec. V.

Fig. 5(b) shows the energy overhead of VIRTUS compared
with LWB. With two receivers, the average radio duty cycle
in VIRTUS is only 0.18 % higher than in LWB: 1.73 % against
1.55 %. More receivers entail more ack slots and a higher prob-
ability that data or ack messages are lost. Different from LWB,
the radio duty cycle with VIRTUS thus increases but averages
less than 2.25 % even with 15 receivers, again independently of
the type of ordered delivery. Notably, this figure is way smaller
than in most existing best-effort multicast protocols for low-
power wireless. For instance, on the same Twist testbed and in
a similar scenario with 8 receivers and 45 senders generating
one data message per minute, the Muster multisink routing
protocol [25] combined with the Low-Power Listening (LPL)
layer [26] achieves an average radio duty cycle of 11.54 %
while delivering only 98.67 % of messages [14].

C. Resilience to Network Unreliability
CPSs are often employed in scenarios with significant

network unreliability, e.g., due to wireless interference [27].
We evaluate the resilience of VIRTUS to these scenarios by
injecting artificial message loss, in a setting with 45 senders
and 10 receivers. Specifically, we make all 90 nodes on Twist
randomly discard between 1 % and 5 % of the messages in
data and ack slots, in 1 % steps. Similar scenarios are very
challenging; say every node in a 4-hop route drops 5 % of
messages: a simple best-effort protocol would yield only about
81 % of the messages at a single receiver. Similar settings are
extremely unlikely to occur in real deployments. Nevertheless,
they are useful to understand the behavior of VIRTUS w.r.t.
network reliability. All other settings are as in Sec. VII-B.

Fig. 6 shows the results. Due to best-effort operation, the
system-wide data yield in LWB increasingly suffers as the
network becomes less reliable, as Fig. 6(a) shows. For example,
only around 58 % of data messages are delivered by all
receivers when every node discards 5 % of data messages.
Atomic multicast in VIRTUS instead ensures a 100 % system-
wide data yield across the board. In addition, it ensures that
total ordering is adhered to even in this challenging setting.

The cost for the performance in Fig. 6(a) is illustrated in
Fig. 6(b) and Fig. 6(c), showing data latency and radio duty
cycle as the network becomes less reliable. With LWB, both
metrics are largely independent of the network reliability: only
one slot is allocated for each data message regardless of how
many receivers successfully receive it. In VIRTUS, these figures
increase as the network is less reliable, because more slots for
data and ack messages are allocated—possibly across multiple
rounds—before the receivers finally deliver.

Particularly, Fig. 6(b) shows that data latency grows signif-
icantly. The values at hand are, however, within tolerance of
most CPS applications, whose dynamics often follow slowly-
changing environmental phenomena, e.g., temperature, and
control loops run with periods of several minutes [2], [1], [4],
[5], [6]. Nevertheless, we may further reduce data latency in
VIRTUS by using smaller values for the LWB round period T ,
at the cost of increased radio duty cycle [14]. As for radio duty
cycle in Fig. 6(c), the performance in absolute terms is again
better than many multicast protocols for low-power wireless
that only provide best-effort operation [8].

By comparing different ordering policies in Fig. 6(b) and
Fig. 6(c), one notes that the performance loss is higher when
FIFO delivery, and in particular system-wide FIFO, is en-
forced. Indeed, the latter entails the allocation of data slots
for a message until all previous messages have been delivered,
which in turn causes receivers to delay message delivery.

D. Influence of Parameter Setting
A key parameter in VIRTUS is a: the number of rounds

the host must not hear from a view member to detect a crash.
This value significantly impacts the resulting view latency.

An illustrative example. We analyze a 1-hour experiment
on FlockLab with four senders S1,S2,S3,S4 generating one
data message every 10 s, and four receivers R1,R2,R3,R4.
We emulate node crashes and recoveries by making them not
communicate (corresponding to a crash) at a random instant
and then reboot (corresponding to a recovery) between 0 s and
600 s after the crash. The round period T is 2 s; a is set to 10.

Fig. 7(a) shows a 12-minute excerpt of the VIRTUS oper-
ation. Symbol t denotes a node crash; symbol s denotes a
recovery. Nodes start with view 8 installed, and the receivers
deliver 4 data messages every 10 s. At t = 57.4 s receiver
R1 crashes; the non-faulty nodes install view 9 at t = 82 s,
yielding a view latency of 24.6 s. Fig. 7(b) zooms into this
time interval and shows the contribution of a to this latency.
1) From t = 57.4 s to t = 60 s: the host allocates no data

or ack slots at t = 58 s because the senders have no new
messages to transmit. Because of this, it can not detect the
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Figure 7. VIRTUS operation across view changes.

crash of R1. The length of this stage thus depends on the
interleaving of the node crash and existing traffic.

2) From t = 60 s to t = 80 s: the host allocates data and ack
slots for newly generated messages at t = 60 s, 62 s, . . . ,
but it receives no ack messages from R1. The length of
this stage is a · T , and in this case is 20 s.

3) From t = 80 s to t = 82 s: the host detects at t = 80 s
that it received no ack messages from R1 in the last
a = 10 rounds (6 in the figure). As a result, it updates
the view by removing R1 and starts distributing it in the
next round. Non-faulty members receive and install the new
view already at t = 82 s. The length of this stage thus
depends on when nodes successfully receive the new view.
After nodes install view 9, senders S2, S3, and S4 crash

one after the other, as shown in Fig. 7(a). The following view
changes occur with latencies between 30 s and 32 s, due to
executions similar to the one above. As expected, within each
view all active receivers deliver the same amount of messages.

Setting parameter a. The example shows that the most critical
stage is 2), the one affected by parameter a. Determining a
suitable value for a entails exploring a critical tradeoff: the
smaller a, the sooner the host detects node crashes and updates
the view. If a is too small, however, the host may mistake
message loss for crashes and trigger unnecessary view changes.

To understand this tradeoff, we run 1-hour experiments
on FlockLab with 24 senders generating one data message
every 30 s and 5 receivers. The round period is T = 2 s. In
one series of experiments, we emulate the crash of 25 view
members and inject no artificial message loss. In another series
of experiments, nodes do not crash but discard 10 % of data
and ack messages. In both cases, we vary a between 1 and 20.

Table II reports the results. The left columns in the table
confirm that a larger value of a causes a higher view latency,
because the host awaits more rounds before removing a crashed
node from the view. The additional data slots unnecessarily
allocated to a crashed node also cause the radio duty cycle to
increase with a. However, the right columns show that with
severe network unreliability a low value of a may lead to false
positives, causing unnecessary view changes. The radio duty
cycle also increases when a is too small, as nodes that are
wrongly removed from a view need to re-send requests to join.

The default value a = 10 in our prototype is sufficiently

Table II. IMPACT OF THE THRESHOLD a ON THE VIRTUS PERFORMANCE.

0 % communication failures, 10 % communication failures,
25 node crashes 0 node crashes

a View latency Duty cycle False positives Duty cycle

1 20.64 s 2.18 % 59 3.42 %
2 21.58 s 2.22 % 8 3.22 %
3 21.80 s 2.27 % 1 3.06 %
4 22.49 s 2.27 % 0 3.07 %

10 39.34 s 2.51 % 0 3.04 %
20 56.35 s 2.95 % 0 3.10 %

high to minimize the probability of false positives, while
also providing reasonable view latencies. Nevertheless, a user
can fine-tune the value of a according to the application
requirements and the foreseeable amount of message loss.

VIII. RELATED WORK

VIRTUS bridges research efforts in two previously unre-
lated areas: virtual synchrony and low-power wireless.

Virtual synchrony lies in a vein of research originated
from seminal work [28] on distributed agreement. In similar
cases, however, the authors often consider a Byzantine envi-
ronment, a failure model we do not study. Different flavors
and implementations of virtual synchrony emerged over the
years [10], often to explore the tradeoff between provided
guarantees and run-time overhead. Admittedly, our incarnation
almost corresponds to the “textbook” definition [9], as we hope
it serves as a stepping stone for others. The work by Chockler
et al. [19], who systematically survey group communication
systems, helped us relate our solutions to the existing literature.

In low-power wireless, solutions exist to provide com-
munication guarantees in specific application scenarios. For
example, structural health monitoring applications [29] often
require guaranteed message delivery from multiple sensors to
a single data sink. Protocols such as RCRT [30] and several
ad-hoc solutions [29], for instance, provide such functionality.
Different from VIRTUS, however, these protocols only support
a many-to-one traffic pattern. This is a mismatch against the
sense-process-actuate cycles of CPS applications, which gen-
erally require many-to-many coordination. In addition, these
protocols seldom provide any guarantee against node crashes.
Low-power multicast protocols [8], [25], on the other hand,
mostly provide only best-effort operation.

IX. CONCLUSIONS

We presented VIRTUS, a virtually-synchronous messaging
layer conceived for extremely resource-constrained devices.
VIRTUS provides atomic multicast and view management in
CPS applications with a combination of dedicated techniques
that build on an existing best-effort communication layer.
We formally proved the correctness of such techniques and
used extensive real-world experiments to assess their limited
performance overhead compared with best-effort operation.

We maintain the value of VIRTUS lies in opening to CPSs
a vast and established literature on dependable distributed sys-
tems that builds upon virtual synchrony or variations thereof.
We are confident that this will increase the dependability of
CPS applications to an extent that is not achievable without
relying on such sound conceptual basis.



APPENDIX

To compute the set of messages delivered by receiver R
after it receives schedule Kρ and view Vρ during round ρ, we
combine (6) and (8):

DR
ρ = [BR

ρ−1 \ [(Kr′ \ (Ar′ ∪ Cr′)) ∪ (Fr′+1 ∪ · · · ∪ Fρ)]] ∩ Sρ

R does not execute in rounds r = {r′ + 1, . . . , ρ− 1}, thus the
set of messages in its buffer does not change since r′: BR

ρ−1 =
BR
r′ . For the same reason, before the data slots in round ρ,

receiver R buffers no messages scheduled for the first time
during rounds r′+1, . . . , ρ, thus BR

r′ \ (Fr′+1∪· · ·∪Fρ) = ∅.
Because the set of active senders does not change between the
end of two consecutive stable rounds r′ and r′′, we also have
that Sρ = Sr′+1. We can thus rewrite DR

ρ as:

DR
ρ = [BR

r′ \ [Kr′ \ (Ar′ ∪ Cr′)]] ∩ Sr′+1

= [((Ar′ ∪ Cr′) ∩BR
r′) ∪ (BR

r′ \Kr′)] ∩ Sr′+1

Based on Lemma 1 and knowing that R executes during
stable round r′, BR

r′ ⊆ Kr′ and thus BR
r′ \ Kr′ = ∅.

Moreover, Ar′ ∩ Sr′+1 = Ar′ because all messages in Ar′ are
from senders that are members during round r′ + 1, whereas
Cr′∩Sr′+1 = ∅ because all messages in Cr′ are from senders
that crashed by round r′ and that are not members during r′+1:

DR
ρ = Ar′ ∩BR

r′

According to (1), for stable round r′ we have that Ar′ ⊆ BR
r′ ,

thus we can finally write the result in (9):

DR
ρ = Ar′

We now show that a receiver R delivers no messages during
a round r = {ρ+ 1, . . . , r′′}, even if it executes during r.
Assuming that q is the last round before r where R executed
(ρ ≤ q < r), we have BR

r−1 ⊆ Kq from Lemma 1 and
Kq ⊆ Kr from (8). The latter is because the host removes
no message identifiers from the schedule between the end of
two consecutive stable rounds r′ and r′′. By combining these
two properties, BR

r−1 ⊆ Kr, and from (6) follows DR
r = ∅.
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