
On Consistent Neighborhood Views
in Wireless Sensor Networks

Arshad Jhumka
University of Warwick, Coventry, UK
arshad@dcs.warwick.ac.uk

Luca Mottola
Swedish Institute of Computer Science, Sweden

luca@sics.se

Abstract—Wireless sensor networks (WSNs) are characterized
by localized interactions. Indeed, several WSN algorithms and
protocols work in a decentralized fashion by coordinating nodes
within the wireless communication range, e.g., localization al-
gorithms and MAC protocols. Nevertheless, most often these
mechanisms do not address faults that may affect the way wireless
neighborhoods are recognized by nodes, e.g., as in the case of data
corruption. As the operation of these mechanisms is rooted in
the use of topology information, these faults may be a significant
detriment to correct and efficient system operation.

In this paper, we argue that the above issues are particu-
lar instances of a general problem of consistent neighborhood
view. We present three increasingly weaker specifications of the
problem. Next, we prove the impossibility of solving the two
stronger specifications, and provide an algorithm to solve the
weakest specification. In addition, we implement our algorithm in
a commonly used WSN network stack, and assess its performance
both in simulation and in a real-world testbed. The results
show that, when possible, our mechanisms efficiently solve the
problem of consistent neighborhood view, providing higher-level
mechanisms with a re-usable building block to leverage off.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are distributed systems
of battery-powered, resource-constrained computing devices
equipped with a wireless communication interface. Charac-
teristics such as ease of deployment have made them a viable
solution to sense data in diverse contexts [1], [2].

To achieve energy efficiency, localized interactions [3] are
usually preferred in WSNs, where algorithms and protocols
typically operate by coordinating devices within the 1-hop
wireless communication range. Several existing solutions are
designed in this vein, e.g., localization algorithms and TDMA
(time-division multiple-access) MAC protocols [4]. Figure 1
illustrates an example of the latter functionality. To identify the
transmission schedules, TDMA protocols coordinate devices
so that no two nodes simultaneously transmit towards the
same receiver, a situation causing message losses due to
hidden terminal problems [4]. In addition, to reduce message
latencies, TDMA MAC protocols aim to minimize the total
number of transmission slots used.

In WSNs faults arise in a number of ways, e.g., as data
corruption due to defective hardware [5], [2] or erroneous
sensor readings [6], as link failures caused by fluctuating
topologies [7], or as node crashes due to exhausted batteries
or environmental factors [8]. Algorithms and protocols must
deal with these situations to maintain good performance. For
instance, if node 3 in Figure 1(a) fails, the protocol must

transmission schedule

topology

3

1

5

2

7

4

6

(a) Before failure: 4 transmis-
sion slots required.

topology

transmission schedule

1

5

2

7

4

6

(b) After failure: 3 transmission
slots required.

Fig. 1. TDMA example with node failures. (Dashed lines represent bi-
directional communication links).

recognize the topology change and reconfigure the schedules
to further minimize the number of slots used, for instance, as
shown in Figure 1(b).

For an efficient and correct operation of WSN algorithms
and protocols in situations like Figure 1, the physical network
topology must be accurately reflected in the nodes’ logical
states. Particularly, nodes are required to quickly and correctly
identify a “consistent” view on their 1-hop neighbors. Consis-
tency here intuitively indicates that, given any two devices
n and m, all nodes reachable from both n and m in 1 hop
must always appear in both n’s and m’s logical state, i.e.,
any 2-hop neighbors must agree on their shared neighborhood.
For instance, node 3 in Figure 1(a) must appear in node 1,
node 2, and node 5 neighborhoods, whereas it must correctly
disappear from every neighborhood in Figure 1(b). If so, the
TDMA protocol can correctly reconfigure the communication
schedules. Otherwise, inaccurate topology information may
yield an incorrect assignment of transmission slots, producing
collisions at the physical layer and message losses.

Besides TDMA MAC protocols, which are widely inves-
tigated in WSNs [4], similar situations arise in a number of
staple WSN functionality. For instance, when deciding on the
placement of data operators using distributed heuristics [9],
inaccurate topology information may lead to inefficient assign-
ments of operators to nodes. In localization protocols, incon-
sistent neighborhood views have been shown to cause severe
inaccuracies [10]. Finally, topology control mechanisms [11]
may fail if nodes are not correctly aware of the underlying
physical topology, to the point of creating network partitions
that may be impossible to repair.

Nevertheless, this issue is often overlooked. Periodic bea-

cons are normally used to signal the presence of a neighboring
node. This technique alone, however, cannot defend against
data corruption affecting the neighborhood views and induces
long delays before the nodes acquire the correct topology
information. To address this issue, this paper investigates the
problem of consistent neighborhood view from a theoretical
and a system perspective:

• we formally study the problem to determine the con-
ditions under which it can be solved and, if so, we
identify suitable algorithms. To achieve this, in Sec-
tion II we define system and fault models to provide a
foundation to develop and analyze algorithms rigorously.
Next, in Section III we present three increasingly weaker
specifications of the problem at stake. Our investigation
leads to an impossibility result for the two stronger
problem formulations, whose formal proofs are described
in Section IV. On the other hand, in Section V we present
a distributed algorithm to solve the weakest problem
specification, and prove its correctness.

• we implement our algorithm as a building-block in
Rime [12], the network stack employed in the Con-
tiki [13] operating system for WSNs. As described in
Section VI, the integration in Rime allows higher-level
algorithms and protocols to treat consistent neighborhood
views as an operating system service. We assess the
effectiveness of our implementation in simulation and in a
real-world testbed, as reported in Section VII. Our results
indicate that the overhead imposed by our implementa-
tion is very limited and, when possible, consistency of
neighborhood views is rapidly and efficiently achieved
with minimum disruption for upper-level algorithms and
protocols.

We end the paper with brief concluding remarks and directions
for future work in Section VIII.

To the best of our knowledge, we are the first to carry out a
similar study in the context of WSNs, where faults and topol-
ogy discovery have been mainly investigated from a system
perspective [14] with little or no formal treatment. Moreover,
with a few exceptions [15], [16], the issues stemming from
data corruption are seldom taken into consideration.

There exists, however, related work in the area of fault
tolerance in traditional distributed systems. For instance, the
problem we investigate is reminiscent of seminal work [17]
where, however, the authors considers a Byzantine environ-
ment, which is instead a failure model we do not study.
Self-stabilizing topology discovery and link coloring are also
related, and several work exist in this area, such as [18], [19].
However, our work involves maintaining a consistent neigh-
borhood view among 1-hop nodes, whereas topology discovery
normally involves the entire network. Group membership and
communication have been studied in both asynchronous dis-
tributed systems [20] and peer-to-peer systems [21]. However,
the hardware limitations of typical WSN devices make these
results hardly applicable in our context.

II. MODEL

This section serves as a stepping stone by describing a
model of WSNs and defining some concepts used next.
Topology. We define a WSN node as a computing device
equipped with a wireless interface and associated to a unique
identifier. Communication in wireless networks is typically
modeled with a circular communication range centered on the
node, and assuming all nodes have the same communication
range. With this model, a node is thought as able to exchange
data with all devices within its communication range.

In reality, however, communication between two WSN
devices may be temporarily disrupted by a number of factors,
e.g., co-location with other wireless technologies and environ-
mental noise [7]. Thus, in this work we define the physical
neighborhood of node n as the set of devices that node n
can exchange data with at a given point in time, and denote
this set by N . Based on this notion, we model the physical
topology of a WSN as S = (Γ, Σ), where Γ is a set of node
ids, and Σ is a set of (node id, physical neighborhood) pairs,
i.e., ∀n ∈ Γ : (n, N) ∈ Σ. Notice that in this formulation the
physical neighborhoods may change over time.

Information on the devices a node can exchange data with
are stored in the node logical state and, in a sense, represent
how algorithms and protocols perceive the underlying physical
topology. We refer to this notion as the logical neighborhood
of a node n, denoted by N l. Similarly as above, given a
physical topology S = (Γ, Σ) we denote by Sl = (Γl, Σl) the
corresponding logical topology, such that ∀n ∈ Γl : (n, N l) ∈
Σl, and Γl ⊆ Γ.

Ideally, Γl and Σl should always be the same as Γ and Σ,
respectively. However, Γ and Σ evolve over time because of
faults such as data corruption, node crashes, and link failures.
Thus, Γl, Σl may be different from Γ, Σ. We call physical (log-
ical) neighborhood view a snapshot of the physical (logical)
neighborhoods at a given point in time.
Programs. We model the processing on a WSN node as a
process1 containing non-empty sets of variables and actions.
A program is a non-empty set of processes.

Variables take values from a fixed domain. We denote a
variable v of process n by n.v. Each process has a special
channel variable, denoted by ch, modeling a FIFO queue of
incoming data sent by other nodes. This variable is defined
over the set of (possibly infinite) message sequences. Every
variable of every process, including the channel variable, has
a set of initial values. The state of a program is an assignment
to variables of values from their respective domains. The set
of initial states is the set of all possible assignments of initial
values to variables of the program. A state is called initial if
it is in the set of initial states. The state space of the program
is the set of all possible value assignments to variables.

An action has the form 〈name〉::〈guard〉 → 〈command〉.
In general, a guard is a state predicate defined over the
set of variables. When guard evaluates to true, the com-
mand can be executed, which takes the program from one

1We use the term node and process interchangeably.

state to another. A command is a sequence of assign-
ment and branching statements. Also, a guard or command
can contain universal or existential quantifiers of the form:
(〈quantifier〉〈boundvariables〉 : 〈range〉 : 〈term〉), where
range, term are boolean constructs. When a guard evaluates to
true in a certain program state, then the corresponding action
is enabled in that state.

A special timeout(timer) guard evaluates to true when
a timer variable reaches zero, i.e., timer expires. A
set(timer , value) command can be used to initialize the timer
variable to a specified value.

Semantics. We use guarded commands with interleaving
semantics for simplicity. Among program actions that are
enabled, one is chosen and its command is executed atom-
ically. A computation of a program is a sequence s0 · s1 ·
s2 . . . si · si+1 . . . of states of the program where state si+1

is reached from si by executing an action that is enabled in
si, i.e., execution of actions is atomic. A tuple (si, si+1) is
called a transition. We assume the computation model to be
synchronous, in the sense that there is a known upper bound
on the time it takes processes to take a step. This assumption
is not unreasonable as WSNs are often time-synchronized [22]
to either correlate sensor readings from different devices or for
time-based protocols such as TDMA [4].

A specification is a set of computations. Program P satisfies
specification ¶ if every computation of P is in ¶. Alpern and
Schneider [23] stated that every specification can be described
as the conjunction of a safety and liveness property. Intuitively,
safety states that something bad should not happen, whereas
liveness states that something good will eventually happen.
Formally, the safety specification identifies a set of finite com-
putation prefixes that should not appear in any computation. A
liveness specification identifies a set of computation suffixes
such that every computation has a suffix in this set.

Communication. An action with a rcv(msg ,sender) guard is
enabled when there is a message at the head of the channel
variable ch of that process. Executing the corresponding action
causes the message to be dequeued from the process’ channel,
while msg and sender are bound to the content of the message
and the identifier of the sender node.

Differently, the send(msg ,dest) command causes message
msg to be attached to the tail of the channel variable ch of
processes in the dest set. The semantics of send executed on
node n differs depending on the processes in dest :

• if all nodes in dest are in the physical neighborhood of
node n, i.e., ∀i ∈ dest : i ∈ N , then message msg is
appended to the tail of the channel variable ch at the
same time at all processes in dest ;

• if dest is a predefined value BCAST , then message msg
is simultaneously appended to the tail of the channel
variable ch of all processes that are in n’s physical
neighborhood N ;

• if at least one node in dest is not in N , then message
msg is appended to the tail of the channel variable ch
at all processes in dest possibly at different times. This
models multi-hop communication among nodes.

The above distinctions are required to model the broadcast
nature of the wireless medium used in WSNs. Specifically, we
need to render the fact that transmissions towards a broadcast
address deliver data also to nodes that are not necessarily
known to the sender, i.e., they are not in its logical neigh-
borhood. We assume a synchronous communication model,
i.e., there is a known upper bound on message transmission
delays.
Faults. A fault model stipulates the way programs may fail.
We consider two types of failures: i) transient failures, and
ii) pseudo-crash failures. The former are failures that corrupt
the program state by arbitrarily altering values of variables.
Thus, they model data corruption due to, e.g., bit-flips caused
by defective hardware [5]. Note that transient failures may
affect the channel variable ch as well, modeling data corruption
during message transmission. We assume that transient failures
do not occur infinitely often, otherwise system liveness may
be compromised. Differently, we say that a node n1 has
pseudo-crashed if there is a node n2 that can no longer
receive messages from n1. Thus, n1 appears as crashed to
n2. This may happen for several reasons, e.g., the directed
communication link between n1 and n2 failed, or because node
n1 crashed due to energy depletion. We also assume a (correct)
boot phase wherein nodes acquire their 2-hop neighborhood
before failures start occurring.

Formally, our fault model is a set F of faulty actions [24].
These are similar to program actions, as they may modify the
variables of programs and thus alter the program state. We say
that a fault occurs if a fault action is executed. Fault actions
can interleave program actions and they might or might not be
executed when enabled. We say a computation is F-affected if
the computation contains program transitions and transitions
from fault model F .

In the following, we consider two sets Ftr and Fpc of
faulty actions to model transient and pseudo-crash failures,
respectively. A program with transient failures contains an
action that assigns to any of its variable an arbitrary value from
its domain. As logical neighborhoods are part of the program
state, transient failures may alter them as well. Differently, a
pseudo-crash is modeled by an action that removes node en-
tries from information describing the physical neighborhoods
as soon as these information enter the program state.
Definitions. To complete our modeling, we provide formal
definitions of some concepts used in the following sections.
Firstly, we define how nodes remove from their logical
neighborhoods the devices that they assume to be unable to
exchange data with:

Definition 1 (Remove): Consider a physical topology S =
(Γ, Σ) and a logical topology Sl = (Γl, Σl) of S. We say that
a node p ∈ Γl removes a node q ∈ Γl if (q ∈ P l) ∧ (Σ′l =
Σl⊕{(p, P l\{q})}), where Σ′l represents the updated version
of Σl and ⊕ represents an update function [25].

Finally, we detail two additional terminologies we make use
of in the rest of the paper:

Definition 2 (Faulty nodes): A node n1 is said to be faulty

if its state has been altered by a transient fault. Otherwise, the
node is non-faulty.

Definition 3 (Localized algorithm): Given a logical topol-
ogy Sl = (Γl, Σl), problem specification ¶ for Sl, and an
algorithm A that solves ¶, algorithm A is said to be localized if
the message complexity of algorithm A varies with the size of
a neighborhood. It is global if the message complexity varies
with the network size.

III. PROBLEM SPECIFICATION

We define three increasingly weaker specifications of neigh-
borhood view consistency in terms of safety and liveness
properties. Note that the first two specifications are analogous
to perfect and eventually perfect failure detectors [26] respec-
tively, although in a different context. Recall that the physical
(logical) neighborhood of node n is denoted by N (N l).

Definition 4 (Strong view consistency): Given a logical
topology Sl = (Γl, Σl), and two nodes n, m ∈ Γl, a program
solves the strong neighborhood view consistency problem
for Sl if every computation of the program satisfies the
following:
• (Safety) If a node n removes a node m, then m has

pseudo-crashed.
• (Liveness) If node m has pseudo-crashed, then eventually
∀n : n ∈M : n removes m.

The strong view consistency of neighborhood states that,
whenever a node n removes a pseudo-crashed neighbor m,
every node that has m in its physical neighborhood eventually
removes it. In addition, the safety specification rules out nodes
mistakenly removing other nodes from their neighborhood.

Definition 5 (Stabilizing strong view consistency): Given a
logical topology Sl = (Γl, Σl), and two nodes n, m ∈ Γl, a
program solves the stabilizing [27] strong view consistency
problem for Sl if every program computation satisfies the
following:
• (Safety) Eventually, if a node n removes a node m, then

m has pseudo-crashed.
• (Liveness) If node m has pseudo-crashed, then eventually
∀n : n ∈M : n removes m.

Because transient faults can arbitrarily corrupt the program
state, nodes may end up wrongly removing non-pseudo-
crashed devices. The stabilizing strong view consistency en-
sures that eventually strong view consistency is established
again. Thus, it has similar liveness property as strong view
consistency. However, nodes are allowed to finitely make
mistakes by removing nodes that have not pseudo-crashed
from their logical neighborhoods.

Definition 6 (Weak view consistency): Given a logical
topology Sl = (Γl, Σl), and two nodes n, m ∈ Γl, a program
solves the weak neighborhood view consistency problem
for Sl if every computation of the program satisfies the
following:
• (Safety) Eventually, if a node n removes a node m, then

m has pseudo-crashed.

• (Liveness) If node m has pseudo-crashed, then eventually
∀n : n ∈ M : n removes m, or a fault is eventually
detected.

• (Validity) The fault is signalled only if there are faulty
processes in the network.

Therefore, weak view consistency attempts to enforce stabi-
lizing consistency but raises a fault signal if this is not possible.
However, the fault is only raised if it actually occurred2.

IV. IMPOSSIBILITY RESULTS

In this section, we show that i) there exists no algorithm
to solve the strong view consistency problem, and ii) there
exists no localized algorithm to solve the stabilizing strong
view consistency problem. Nevertheless, we provide a global
algorithm that solves the stabilizing view consistency problem.

A. Strong View Consistency

Intuition. The safety specification of the strong view consis-
tency problem prohibits a node n1 from removing a node n2

from its logical neighborhood unless n2 has pseudo-crashed.
However, in the presence of both transient and pseudo-crash
failures, it is generally impossible to distinguish the former
from the latter. For instance, a transient fault may corrupt the
memory content and make a node believe that communication
is not possible towards another device, even though this is not
the case. This intuition leads to the following:

Theorem 1 (Impossibility): Given a logical topology Sl =
(Γl, Σl), a transient fault model Ftr, and a pseudo-crash fault
model Fpc, there exists no algorithm that can solve the strong
view consistency problem in the presence of Ftr and Fpc.

Proof: Assume that an algorithm A exists that solves the
strong view consistency problem.

Consider a Ftr-free, Fpc-affected computation C1 of A and
a state si in C1 where a node n removes a node m. Since
A solves the strong view consistency problem, according to
the safety property, m has pseudo-crashed. According to the
liveness property of the strong view consistency problem,
eventually, there is a state sj in C1, j > i, where algorithm A
causes every node that is a neighbor of m to remove m, i.e.,
∀k ∈M : k removes m.

Now we construct a computation C2 = s0·s1 . . . of A which
is Ftr-affected and Fpc-free, and is similar to C1, in that in
state si, a node n removes a node m because of a transient
fault. Since C2 = C1 up to and including state si, algorithm
A again ensures that in state sj , for every node k ∈ M , k
removes m. This violates the safety property of the strong
view consistency problem, since the computation is Fpc-free.

Thus, A cannot distinguish between computations C1 and
C2. Hence, A cannot exist.

Note that this result applies to both localized and global
algorithm, although the proof deals with the localized case,
as it is based on neighborhood information. For a global
algorithm that computes the global network topology [18], the

2Henceforth, we will only say that “a program solves the strong/stabilizing
strong/weak view consistency problem” whenever Sl is obvious from the
context.

Logical topology

Physical topology

(Σ ,Γ)l l

s js ks i

(Σ ,Γ)l l

A transient failure masks
a pseudo-crash

Fig. 2. A transient failure masks a pseudo-crash.

topology information may still be corrupted due to incorrect
information coming from various processes, and the strong
view consistency specification cannot be satisfied.

The key requirement of the strong view consistency is that
no node may mistakenly remove a non-pseudo-crashed node.
In the next section, we relax this requirement and study the
stabilizing version of the strong view consistency problem.

B. Stabilizing Strong View Consistency

Intuition. The stabilizing strong view consistency problem
allows nodes to finitely make mistakes when removing nodes,
i.e., nodes that have not pseudo-crashed are allowed to be
wrongly removed. On the other hand, we still require pseudo-
crashed nodes to be eventually removed. However, in the
presence of transient faults, a pseudo-crash can go undetected
if it is masked by a transient fault that clears from a node’s
logical state all evidence of the pseudo-crashing neighbor, i.e.,
the logical neighborhood of a node n is corrupted such that
a pseudo-crashing neighbor m is deleted from n’s logical
neighborhood. Then, as illustrated in Figure 2, it is as if
node n has never seen the pseudo-crashed neighbor m and,
consequently, it will never remove it. In a such a situation, the
liveness property of the stabilizing strong view consistency
problem is violated, which leads to the following:

Theorem 2 (Impossibility): Given a logical topology Sl =
(Γl, Σl), a transient fault model Ftr, and a pseudo-crash fault
model Fpc, there exists no localized algorithm that can solve
the stabilizing strong view consistency problem in the presence
of Ftr and Fpc.

Proof: Assume that a localized algorithm A exists that
solves the stabilizing strong view consistency problem.

We assume a Ftr-free and Fpc-free computation C1 =
s0 · s1 . . . of A. According to the liveness property of the
stabilizing strong view consistency problem, every logical
neighborhood remains unchanged in C1.

Now we construct a computation C2 = s0 · s1 . . . of A
which is Ftr-affected and Fpc-affected, and is similar to C1,
in the sense that, in any given state sj of C2, there is no
node n that removes another node m because transient faults
mask every pseudo-crash, as we illustrated in Figure 2. The
construction is as follows: assume C1 = s0 ·s1 . . . si ·si+1 . . .,
and C2 = s0 · s1 . . . si · s′i+1 . . ., and a node m that pseudo-
crashes when C2 is in si. Node m can only be removed in
state sj , j > i. Now, in state sk, i ≤ k < j, a transient failure
occurs at node n such that m 6∈ N l. In state sj , j > k, n does
not remove m.

Since C2 is the same as C1, algorithm A keeps all logical
neighborhoods unchanged. This violates the liveness property

process j
variables

start: boolean, initially true;

% the network topology returned by the discovery algorithm
top: set of tuples, initially {(j, J)}

% a timer variable for periodic topology discovery
discover: timer init ∆;

actions
init:: start → start := false;
discovery:: timeout(discover)→

top:=topology discovery();
set(discover ,∆);

detect:: (∃q : j ∈ Q ∧ (q 6∈ J))→ ∀i : i ∈ Q :
send(j cannot detect q,i);

remove:: rcv(p cannot detect b, j)→ top:= top⊕{(j, J \ {b})};

Fig. 3. Algorithm GStrongC solving stabilizing strong view consistency.

of the stabilizing strong view consistency problem, since C2

is an Fpc-affected computation.
Thus, A cannot distinguish between computations C1 and

C2. Hence, A cannot exist.
Note that, differently from the impossibility result for the

strong view consistency problem in Section IV-A, this im-
possibility result applies only to localized algorithms, since
only local knowledge of pseudo-crashes is available. With
complete knowledge of the logical network topology, it is
possible to develop an algorithm that solves the stabilizing
strong view consistency problem. The topology of the network
can be obtained using a stabilizing topology discovering
algorithm [18]. The topology algorithm returns a set of {(node ,
neighborhood)} pairs that conveys not only information about
pseudo-crashed nodes, but also about correct nodes.

A global algorithm satisfying the stabilizing strong view
consistency specification is GStrongC, described in Figure 3.
Note that, according to Definition 3, algorithm GStrongC is a
global algorithm since its message complexity varies with the
network size. Since the topology discovery algorithm is self-
stabilizing, it means that eventually the topology is correct.
Algorithm GStrongC then identifies pseudo-crashes even if
the node that would have detected it has no recollection
of the pseudo-crashed neighbor. If there exists a node q
which contains a node j in its logical neighborhood, but
not vice-versa (as specified in the guard of action detect),
algorithm GStrongC makes j send a notification about this
to all neighbors of q. Upon receiving this notification, all
neighbors of q remove q. Thus, we state that:

Theorem 3 (Global algorithm): Algorithm GStrongC
solves stabilizing strong view consistency.

Proof: (Outline). When faults stop, top is eventually
correct because of the stabilizing property of the topology
discovery algorithm that returns a set of nodes and their re-
spective neighborhoods, i.e., {n, N}. In this situation, process
j can determine every node that it cannot detect, and send
notification messages to all neighbors of these undetected
nodes (action detect). Upon eventually receiving the notifica-
tion, these nodes remove the undetected devices. Stabilization
of GStrongC follows trivially from the stabilization of the
topology discovery algorithm of [18].

process j
variables

start: boolean, initially true;

% logical neighborhoods of j’s logical neighbors
% notice that N [j] implements J l

N[]: array of set of ids, initially N [j] = J ;

% identifier of nodes detected during a round
live: set of ids, initially J l;

% a timer that sets the beacon period
beacon: timer init ∆;

% a timer that sets the detection period, Θ < ∆
detect: timer init Θ;

actions
init::start →

start, live := false, ∅;
send(〈j, N [j]〉,BCAST);

dissem:: timeout(beacon)→
send(〈j, N [j]〉,BCAST);
set(beacon ,∆);
set(detect ,Θ);

compute:: rcv((〈p, P 〉,r) →
live:= live ∪{p};
N[p]:= P ;

detect:: timeout(detect)→
∀p : p ∈ (N [j]\live): ∀q : q ∈ N [p] :

send(j cannot detect p,q);
∃p : p ∈ (N [j]\live)∧(N [p] = ∅) :

send(fault,BCAST);
N[j]:= live; live:= ∅;

remove:: rcv(p cannot detect b,j)→
if (b ∈ N [j]) then

N [j] := N [j] \ {b};
else send(fault,BCAST); fi

skip:: rcv(fault, r)→ skip;

Fig. 4. Algorithm WeakC that solves the weak view consistency problem.

However, topology discovery algorithms are computation-
ally expensive. Further, to solve the stabilizing strong view
consistency problem, the topology discovery algorithm needs
to be executed periodically so as to eventually provide a
correct topology, after faults stop occurring. Therefore, this
solution would be impractical on resource-constrained devices
such as those employed in WSNs.

To redress this problem, in the following section we study
the weak view consistency problem and ultimately describe a
localized algorithm that satisfies its specification, along with
a correctness proof.

V. SOLVING WEAK VIEW CONSISTENCY

Since Theorem 1 demonstrates that it is impossible to
prevent nodes from mistakenly removing devices that have
not pseudo-crashed, and Theorem 2 demonstrates that it is
impossible to guarantee that pseudo-crashed nodes are eventu-
ally removed in the presence of transient faults and using only
local knowledge, the weak view consistency problem specifies
that a fault is signaled whenever such a fault is detected and
only if the fault occurred.

An algorithm providing the above functionality is described
in Figure 4. During initialization, every node knows its phys-
ical neighborhood. This is achieved by executing a round
of beaconing. Next, the nodes periodically exchange logical

neighborhood information with their physical neighbors using
the send with dest set to BCAST (action dissem). Once
the dissemination phase is over, the beacon timer is set for
the next phase of neighborhood exchange. Within a time
period Θ greater than the message latency but smaller than
the beacon period ∆, nodes collect and process neighborhood
messages. This way, every node eventually holds information
about the 2-hops logical neighbors within a given time period.
Based on this, every node compares its current 1-hop logical
neighborhood with the newly collected one (action compute).
Every pseudo-crashed node n is flagged, and a notification
message is sent to every neighbor of n (action detect).
Upon receiving a notification, a node proceeds to remove the
undetected neighbors from its logical neighborhood (action
remove). Whenever transient faults occur, WeakC signals a
fault which can act as an indication to higher-level algorithms
and protocols. This is modeled by a fault message sent to
destination BCAST .

In the following, we state four lemmas that we use to derive
the correctness of algorithm WeakC.

Lemma 1: Consider a logical topology Sl = (Γl, Σl). The
following predicate is an invariant of WeakC:
(∃j : j ∈ Γl : j.ch 6= 〈〉)∨
(∃j : j ∈ Γl : (J l \ j.live = ∅) ∧ (j.ch = 〈〉))∨
(∃j : j ∈ Γl : ∀k ∈ J : (fault) ∈ k.ch)∨
(∀j : (J \ j.live 6= ∅) ∧ (j.beacon = 0))

(∀k ∈ (J \ j.live)) :
∀i : i ∈ K : (k 6∈ I)∨ ((j cannot detect k) ∈ i.ch)

Proof: To prove that the predicate is an invariant, we
show that the predicate holds in the initial state, and that
the predicate is closed under every program action, i.e., the
execution of every action of any process do not invalidate the
predicate.

First, we show that the predicate holds in the initial state.
The predicate is satisfied as the second disjunct trivially holds
(initially J l = J and j.live = J ⇒ J l\j.live = ∅ and all chan-
nels are empty). Actions init and dissem modify the channel
content, by adding to the channel. All channels are therefore
non-empty, satisfying the first disjunct. Hence the predicate is
closed under actions init and dissem. During compute, j.ch
is non-empty, satisfying the first disjunct. Execution of action
detect satisfies either the third or the fourth disjunct. Hence,
the predicate is closed under detect. Similarly, execution of
remove causes either the third or the fourth disjunct to be
satisfied.

Executing action skip affects j.ch. The first time a fault
message is sent is during detect. Thus, the fault message
necessarily appears after any notification message, and no
notification message will appear after a fault message. When
the fault message is removed, either j.ch becomes empty or
j.ch contains more fault messages. If there are more fault
messages to process, the first disjunct is satisfied. If there are
no more fault messages to process, then j.ch is empty, and
the fourth disjunct is satisfied.

Thus, the predicate is true in the initial state, and is

preserved by WeakC actions, hence is an invariant of WeakC.

The following lemma proves that either liveness of stabiliz-
ing strong view consistency is obtained or a fault is signaled:

Lemma 2: If a computation of WeakC contains a state si

where, for process p and process n ∈ P l, n ∈ P l \ p.live,
then there is a state sj , j > i in the computation where either
a fault is signaled or all neighbors of n have removed n.

Proof: As shown above, the predicate in Lemma 1 is an
invariant of WeakC. When J l \j.live 6= ∅, for some process j,
either a fault message is sent, or, upon timeout, all neighbors
will remove the pseudo-crashed node.

Symmetrically, the following lemma demonstrates the safety
specification:

Lemma 3: If a computation of WeakC contains a state sn

where, for some processes p and k, p has removed k, then
there is a state sm, m < n in the computation where some
process j considers k as pseudo-crashed.

Proof: When p removes k from P l in state sn, it implies
that k ∈ P l in some state sm, m < n. This implies that in state
sm, p.ch contains a message of the form (j cannot detect k).
This message is sent during action detect, when k ∈ J l\j.live,
and thus k appeared as pseudo-crashed.

Finally, we prove the validity condition in the specification
of weak view consistency:

Lemma 4: A fault message is issued if there is a transient
fault in the system.

Proof: A fault message is sent under two different condi-
tions: i) in action detect, whenever a node is not detected, but
no neighborhood information of the node is held, indicating
a fault3, ii) in action remove, whenever a node j receives a
notification message to remove a node that it is not found
in its neighborhood, which indicates a fault in J l or in the
information held at the sender of the notification.

As a consequence, we can state the following regarding
algorithm WeakC and weak view consistency:

Theorem 4: Algorithm WeakC satisfies the weak view con-
sistency specification.

Proof: Follows from Lemma 2, Lemma 3, and Lemma 4.

VI. IMPLEMENTATION

We implement algorithm WeakC in Rime [12], the net-
work stack of the Contiki [13] WSN operating system. Our
implementation is very lightweight, as it only occupies 1.2
KBytes of program memory and 296 bytes of data memory.
Optimizing these figures is pivotal when the target hardware
platform is provided with only a few KBytes of memory, e.g.,
as in the case of the widespread TMote Sky node [28].

In addition to the mechanisms in Figure 4, in the imple-
mentation we use a neighborhood view identifier to indicate

3This does not apply to the boot phase, when we assume no fault may
occur

changes in the logical neighborhood. For instance, in the
topology of Figure 1(a), if the link between node 4 and node
7 disappears and no other failures occur, node 2 removes
node 4 and proceeds to re-acquire it at the next exchange
of neighborhood information. In doing so, the neighborhood
identifier is changed as well. Thus, although the logical
neighborhood at node 2 appears the same as the one before the
link failure, higher-level protocols may recognize the topology
change based on a different view identifier.

Next, we describe the two constituents of our implementa-
tion: the API available to higher-level algorithms and proto-
cols, and the network support required.

API. Two primitives are made available:
uint8_t getNeighborhood(uint16_t* ids,

uint8_t* num);
bool isNeighbor(uint16_t id);

The former is used to query the current logical neighborhood.
Memory areas to hold the set of corresponding node identifiers
and their number are given as input parameters. Callers obtain
these information along with the neighborhood view iden-
tifier as return parameter. Differently, isNeighbor checks
whether the node identifier given as parameter belongs to the
current logical neighborhood view.
Network Support. To implement the periodic exchange of
neighborhood information, we straightforwardly rely on the
1-hop broadcast functionality of Rime, embedding within
messages both the identifier of the sender node and its current
logical neighborhood view.

Differently, messages carrying neighborhood notifications
require reliable multi-hop multicast to reach their destinations.
This could be implemented using explicit routing tables. As
in our algorithms all nodes may be sources or destinations of
multicast messages, this would entail maintaining large routing
tables, with considerable use of memory resources. In addition,
routing tables may be unusable when nodes or link fail,
i.e., exactly when our algorithm needs multicast functionality.
However, we observe that in our scenario multicast messages
most often target a subset of the 2-hop neighbors of a device.
As WSNs tend to be dense networks [7], [29], in case of node
failures the distance to the former 2-hop neighbors is very
unlikely to increase drastically, if not at all.

Based on this observation, we opt for an expanding-ring n-
hop flooding for routing, embedding the list of destinations
within messages. Starting with n = 2, we periodically re-
transmit the message by doubling the number of hops tra-
versed until we receive an acknowledgment from all desti-
nation nodes. Acknowledgments are sent along the reverse
path towards the originator using reliable 1-hop unicast. This
mechanism provides reliable multicast with very little memory
overhead compared to existing solutions [30] and generates no
control traffic for route maintenance.

VII. PERFORMANCE EVALUATION

The objective of our evaluation is to verify that our imple-
mentation of WeakC solves the weak view consistency prob-
lem efficiently and with minimum disruption for upper-level

Parameter Range Default value Step
Average neighbors Dp 4 nodes—20 nodes 10 nodes 2 nodes
Node failure Pnf 2%—10% 6% 2%
Link failure Plf 2%—10% 6% 2%
Data corruption Pc 2%—10% 2% 2%

Fig. 5. Simulation settings.

algorithms and protocols. To this end, we use both simulation
experiments and a real-world testbed. The former enables
fine-grained control and inspection of the system operation,
the latter assesses the effectiveness of our implementation in
realistic environments.
Metrics. We study the following figures:
• the latency to establish consistent neighborhood views,

i.e., the time from when some change in the physical
topology is detected to when all nodes affected re-gain
consistent neighborhood views or a fault message is sent;

• the network overhead, defined as the total number of
packets exchanged at the physical level to carry out a
view change, including retransmissions for reliability;

• the total energy spent during a view change, measured
using Contiki’s energy estimation mechanism [31].

The latency figure provides a measure of the time spent
by higher-level functionality with inconsistent topology in-
formation. This may be source of inefficient behaviors, and
must thus be minimized. The network overhead caters for an
indication of the network resources employed. Network traffic
may generate collisions and thus message losses, possibly
affecting the operation of upper-level mechanisms. This metric
must therefore be minimized as well. Finally, energy is a
fundamental metric in WSNs, as these systems are mostly
battery-powered. The less the energy spent by our algorithm,
the longer the system operates.

A. Simulation

Settings. We use Cooja [32], the Contiki’s simulator. We
randomly deploy 100 nodes with varying densities. Note that
our algorithm is localized. Thus, it is the network density
that determines the complexity of the processing. We quantify
network density with the average number of nodes Dp in the
physical neighborhood of a device. Simulations are divided
in rounds of 30 seconds. The first round is reserved as boot
phase to acquire the initial topology information, and no faults
occur. During the following rounds, we independently simulate
different types of faults:
• to simulate node crashes, each node is associated a

probability Pnf of being shut down by the simulator. To
keep the network density constant, at each round new
nodes appear in the simulation with the same probability.

• to model link failures, every link has probability Plf of
disappearing. Failed links are restored after 2 rounds to
maintain, on average, the same network density.

• to model data corruption, we randomly modify an entry
in a node’s logical neighborhood with probability Pc.

The values used for the various settings are summarized in
Figure 5. The values for Dp reflect the network densities
in real deployments [1]. Differently, the failure probabilities
overestimate the occurrence of similar situations in real-world

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 4 6 8 10 12 14 16 18 20

L
a

te
n

c
y
 (

m
s
)

Average number of neighbors

(a) Latency against node density Dp.

 0

 100

 200

 300

 400

 500

 600

 700

 0.02 0.04 0.06 0.08 0.1

L
a

te
n

c
y
 (

m
s
)

Failure probability

Node failures
Link failures

Data corruption

(b) Latency against failure probability for different failures.

Fig. 6. Latency.

scenarios. For instance, in a network of 100 nodes, a node
failure probability Pnf = 6% per round entails that 6 devices
fail every 30 seconds. We intentionally pushed on these values
to stress our implementation.

We use Cooja’s free-space radio propagation model and
Contiki’s implementation of the XMAC protocol [33] working
with the default settings. We configure our network support,
described in Section VI, to exchange neighborhood infor-
mation every 5 seconds, and we set the acknowledgement
time out in our reliable multicast protocol to 300 ms. Our
simulations explore all combinations of the settings in Figure 5
by performing 100 repetitions with different random topolo-
gies for each combination. The results presented hereafter are
averages over these repetitions.

Results. The latency results we obtained are shown in Fig-
ure 6. Figure 6(a) illustrates the latency to re-establish consis-
tent views with varying network densities and default failure
probabilities. The absolute values at stake are very limited,
being always within one second. This is at least one order
of magnitude smaller than the dynamics of typical WSN
applications where, for instance, sensed data is reported to
the user once every 30 seconds [1]. Therefore, higher-level
MAC and routing protocols are very likely not to be affected
by the operation of our algorithm. The results also illustrate
a correlation between latency and network density. In sparse
networks the expanding ring technique we employ for mul-
ticast may repeat the transmission with increased maximum
hops to reach the target nodes. This situation becomes very

 0

 5

 10

 15

 20

 25

 30

 35

 40

 4 6 8 10 12 14 16 18 20
 0

 5

 10

 15

 20

 25
E

n
e

rg
y
 (

m
J
/v

ie
w

 c
h

a
n

g
e

)

N
e

tw
o

rk
 o

v
e

rh
e

a
d

 (
m

s
g

s
/v

ie
w

 c
h

a
n

g
e

)

Average number of neighbors

Per-node energy
Network overhead

Fig. 7. Per-node energy consumption and network overhead.

unlikely with more than 8 neighbors per each device. In these
cases, a single 2-hop flooding is usually sufficient.

Figure 6(b) illustrates the latency for specific classes of
failures against failure probability. In every case, the remaining
simulation parameters are set to their default values. The trends
are almost constant in this case and essentially do not differ
for different types of failures. This highlights the ability of
our implementation to deal effectively with diverse failures in
highly unreliable scenarios. We also verified that combinations
of failures probabilities outside the ranges of Figure 5 do exist
that generate a sharp latency increase, up to about two seconds.
For instance, one such combination is with Pnf = Plf = 30%
and Pc = 10%. With these values failures occur so often that
the control traffic generates frequent collisions at the physical
layer, and consequently multiple retransmissions are required
for reliable delivery. We do believe, however, that similar
scenarios are quite unrealistic.

The chart in Figure 7 depicts the trends in network over-
head against node density. As already observed, when the
network is sparse, the expanding-ring technique requires more
retransmissions. Conversely, with dense networks the number
of possible destinations increases and so does the probability
that multiple nodes simultaneously send acknowledgements
back. In this situation, acknowledgments are likely to collide at
the original sender, a problem known as ack implosion [7]. As
these messages are sent using Rime’s reliable unicast, which
is based on multiple retransmission, more packets are sent to
recover such collisions. In all cases, however, the number of
messages being exchanged is very limited. Therefore, upper-
level protocols perceive very little disruption. The trend in
energy consumption against network density, still in Figure 7,
resemble the network overhead. This was expected, as radio
communication dominates energy consumption in WSNs [34].
The additional energy consumption due to our implementation
is negligible, especially considering the energy budget that
modern WSNs are equipped with [2].

We also verified that both network overhead and energy
consumption are essentially constant against varying failure
probabilities. Indeed, during single view changes the network
overhead —and hence energy consumption— is affected only
by the the shape of the physical topology when faults occur,
and not by the frequency of faults.

10

1

2

3 4

5

67

8

9

11

12

13

14

Fig. 8. Testbed deployment.

B. Testbed

Settings. We use our lab testbed, illustrated in Figure 8,
to evaluate our implementation in a real-world setting. The
testbed is composed of 14 TMote Sky nodes [28] installed
in an office environment. With nominal transmission power,
every node typically has an average of 5 neighbors.

We deploy on all nodes the same implementation as in
our simulation experiments. To simulate node failures, every
node randomly turns off the radio with probability Pnf = 6%
every 30 seconds, and reactivates it after two minutes. Data
corruption is triggered within the same period with artificial
changes in the entries of a node’s logical neighborhood with
probability Pc = 2%. Differently from the simulation exper-
iments, however, we do not cause artificial link failures, and
just let the wireless links fluctuate as they naturally do in
office-like environments [7]. We time synchronize the nodes
using Contiki’s time synchronization protocol, and dump a
timestamped description of all events of interests on flash
memory. We let the nodes run for 24 hours and retrieve these
data at the end of the experiment for off-line analysis.
Results. The average latency to re-establish consistent neigh-
borhood views observed in our testbed is of 923.13 ms with
a standard deviation of 23.31 ms across different nodes. This
is comparable to the results we obtained in simulation, shown
in Figure 6(a), confirming the validity of our argument in a
real-world environment.

Nevertheless, the network-level behavior is different. On
average, 40.35 messages are transmitted per view change,
which is higher than what we showed in Figure 7. This
was expected, as simulators can reproduce the behavior of
real-world wireless transmissions only to some extent [7].
Interestingly, however, increased network overhead is not a
general trend, but it is caused by failures at specific devices.
Figure 9 plots this metric depending on the node that somehow
triggers the view change, i.e., because it turns off the radio
or a link to it stops transmitting. The number of messages
exchanged is markedly higher when it is one among node 4,
5, 10, and 11 to trigger our algorithm. Most probably, the
devices involved in the view change when one such node fails
have poor connectivity with each other, which requires more
retransmissions for reliable delivery of multicast messages.

 0

 10

 20

 30

 40

 50

 60

 70

 80

1413121110987654321N
e

tw
o

rk
 o

v
e

rh
e

a
d

 (
m

s
g

s
/v

ie
w

 c
h

a
n

g
e

)

Node id

Fig. 9. Network overhead depending on the node triggering the view change.

The same reasoning applies to energy consumption, as in
WSNs this is dominated by the radio operation.

VIII. CONCLUSION AND FUTURE WORK

We presented three increasingly weaker specifications for
the problem of neighborhood view consistency in WSNs. We
proved that the two stronger specifications cannot be solved
using only local knowledge, and presented an algorithm to
solve the weakest specification, along with a correctness proof.
We implemented the algorithm in a commonly used WSN
network stack and assessed its performance both in simulation
and in a real-world testbed. Our implementation can be used
as a building block in higher-level algorithms and protocols.

Our ongoing investigation includes theoretical work to study
how Byzantine failures may impact the results we obtained,
alongside with further implementation effort to make the
solutions we will devise in this context available as building
blocks in the WSN stack.
Acknowledgements. This work has been partially supported
by CONET, the Cooperating Objects Network of Excellence,
under EU contract FP7-2007-2-224053; by VINNOVA, the
Swedish Agency for Innovation Systems; and by SSF, the
Swedish Foundation for Strategic Research.

REFERENCES

[1] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson,
“Wireless sensor networks for habitat monitoring,” in Proc. of the
1st ACM Int. Wkshp. on Wireless Sensor Networks and Applications
(WSNA), 2002.

[2] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh,
“Fidelity and yield in a volcano monitoring sensor network,” in Proc. of
7th Symp. on Operating Systems Design and Implementation (OSDI),
2006.

[3] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, “Next century
challenges: scalable coordination in sensor networks,” in Proc. of the 5th

Int. Conf. on Mobile Computing and Networking (MOBICOM), 1999.
[4] I. Demirkol, C. Ersoy, and F. Alagoz, “MAC protocols for wireless

sensor networks: A survey,” IEEE Communications Magazine, vol. 44,
no. 4, 2006.

[5] N. Finne, J. Eriksson, A. Dunkels, and T. Voigt, “Experiences from
two sensor network deployments self-monitoring and self-configuration
keys to success,” in Proc. of Int. Conf. on Wired/Wireless Internet
Communications (WWIC), 2008.

[6] A. Sharma, L. Golubchik, and R. Govindan, “On the prevalence of
sensor faults in real-world deployments,” in Proc. of the IEEE Int. Conf.
on Sensor and Ad-hoc Communications and Networks (SECON), 2007.

[7] J. Zhao and R. Govindan, “Understanding packet delivery performance
in dense wireless sensor networks,” in Proc. of the 1st Int. Conf. on
Embedded Networked Sensor Systems (SENSYS), 2003.

[8] J. Beutel et al., “Operating a sensor network at 3500 m above sea level,”
in Proc. of the 8th Int. Conf. on Information Processing in Sensor
Networks (IPSN), 2009.

[9] B. J. Bonfils and P. Bonnet, “Adaptive and decentralized operator
placement for in-network query processing,” in Proc. of 2nd Int. Wkshp.
on Information Processing in Sensor Networks (IPSN), 2003.

[10] K. Langendoen and N. Reijers, “Distributed localization in wireless sen-
sor networks: A quantitative comparison,” Computer Networks, vol. 43,
no. 4, 2003.

[11] X.-Y. Li, P.-J. Wan, Y. Wang, and O. Frieder, “Sparse power efficient
topology for wireless networks,” in Proc. of the 35th Annual Hawaii
International Conference on System Sciences (HICSS), 2002.

[12] A. Dunkels, F. Os̈terlind, and Z. He, “An adaptive communication
architecture for wireless sensor networks,” in Proc. of the 5th Conf.
on Networked Sensor Systems (SENSYS), 2007.

[13] A. Dunkels, B. Grönvall, and T. Voigt, “Contiki - a lightweight and
flexible operating system for tiny networked sensors,” in Proc. of 1st

Wkshp. on Embedded Networked Sensors, 2004.
[14] L. Paradis and Q. Han, “A survey of fault management in wireless sensor

networks,” Journal Networkvi System Management, vol. 15, no. 2, 2007.
[15] Z. Ma and A. Krings, “Dynamic hybrid fault models and the applications

to wireless sensor networks,” in Proc. of the 11th Int. Symp. on
Modeling, Analysis and Simulation of Wireless and Mobile Systems
(MSWiM), 2008.

[16] S. Kulkarni and M. Arumugam, SSTDMA: A self-stabilizing MAC for
sensor networks. IEEE Press, 2006.

[17] M. Pease, R. Shostak, and L. Lamport, “Reaching agreements in the
presence of faults,” Journal of the ACM, vol. 27, no. 2, 1980.

[18] T. Masuzawa, “A fault-tolerant and self-stabilizing protocol for topology
problem.” in Proc. Workshop on Self-stabilizing Systems, 1995.

[19] T. Masuzawa and S. Tixeuil, “A self-stabiliizng link-coloring algorithm
resilient to unbounded byzantine faults in arbitrary networks,” in Proc.
OPODIS, 2005.

[20] G. Chockler, I. Keidar, and R. Vitenberg, “Group communication spec-
ifications: A comprehensive study,” ACM Computing Surveys, vol. 33,
no. 4, 2001.

[21] A. Ganesh, A. Kermarrec, and L. Massoulié, “Peer-to-peer membership
management for gossip-based protocols,” IEEE Transactions on Com-
puters, vol. 52, no. 2, 2003.

[22] B. Sundararaman, U. Buy, and A. D. Kshemkalyani, “Clock synchro-
nization for wireless sensor networks: A survey,” Ad Hoc Networks,
vol. 3, no. 3, 2005.

[23] B. Alpern and F. B. Schneider, “Defining liveness,” Information Pro-
cessing Letters, vol. 21, 1985.

[24] A. Arora and S. S. Kulkarni, “Detectors and correctors: A theory of fault-
tolerance components,” in Proc. of the 18th Int. Conf. on Distributed
Computing Systems (ICDCS), 1998.

[25] B. Potter, J. Sinclair, and D. Till, An introduction to formal specification
and Z. Prentice Hall, 1996.

[26] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable
distributed systems,” Journal of the ACM, vol. 43, no. 2, 1996.

[27] S. Dolev, Self-Stabilization. MIT Press, 2000.
[28] J. Polastre, R. Szewczyk, and D. Culler, “Telos: enabling ultra-low

power wireless research,” in Proc. of the 5th Int. Conf. on Information
Processing in Sensor Networks (IPSN), 2005.

[29] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann, “Impact
of network density on data aggregation in wireless sensor networks,” in
Proc. of the 22th Int. Conf. on Distributed Computing Systems (ICDCS),
2002.

[30] Q. Cao, T. He, and T. Abdelzaher, “ucast: Unified connectionless
multicast for energy efficient content distribution in sensor networks,”
IEEE Trans. Parallel Distrib. Syst., vol. 18, no. 2, 2007.

[31] A. Dunkels, F. Österlind, N. Tsiftes, and Z. He, “Software-based on-
line energy estimation for sensor nodes,” in Proc. of the 4th Wrkshp.
on Embedded Networked Sensors (Emnets IV), 2007.

[32] T. Voigt, N. Finne, J. Eriksson, A. Dunkels, and F. Os̈terlind, “Cross-
level sensor network simulation with COOJA,” in Proc. of the 1st Int.
Wrkshp. on Practical Issues in Building Sensor Network Applications
(SenseApp), 2006.

[33] M. Buettner, G. Yee, E. Anderson, and R. Han, “X-mac: a short preamble
mac protocol for duty-cycled wireless sensor networks,” in Proc. of the
3rd Int. Conf. on Embedded Networked Sensor Systems (SENSYS), 2006.

[34] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey
on sensor networks,” IEEE Communication Mag., vol. 40, no. 8, 2002.

