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Abstract—Mathematical models play a pivotal role in under-
standing and designing advanced low-power wireless systems.
However, the distributed and uncoordinated operation of tradi-
tional multi-hop low-power wireless protocols greatly complicates
their accurate modeling. This is mainly because these protocols
build and maintain substantial network state to cope with the dy-
namics of low-power wireless links. Recent protocols depart from
this design by leveraging synchronous transmissions (ST), whereby
multiple nodes simultaneously transmit towards the same re-
ceiver, as opposed to pairwise link-based transmissions (LT). ST
improve the one-hop packet reliability to an extent that efficient
multi-hop protocols with little network state are feasible.

This paper studies whether ST also enable simple yet accurate
modeling of these protocols. Our contribution to this end is two-
fold. First, we show, through experiments on a 139-node testbed,
that characterizing packet receptions and losses as a sequence of
independent and identically distributed (i.i.d.) Bernoulli trials—a
common assumption in protocol modeling but often illegitimate
for LT—is largely valid for ST. We then show how this finding
simplifies the modeling of a recent ST-based protocol, by deriving
(i) sufficient conditions for probabilistic guarantees on the end-to-
end packet reliability, and (ii) a Markovian model to estimate the
long-term energy consumption. Validation using testbed experi-
ments confirms that our simple models are also highly accurate;
for example, the model error in energy against real measurements
is 0.25%, a figure never reported before in the related literature.

I. INTRODUCTION

Low-power wireless networks facilitate advanced applica-
tions that use wirelessly interconnected sensors and actuators
to monitor and act on the physical world, such as environmen-
tal control, assisted living, and intelligent transportation [1].
Effectively employing low-power wireless in these applications
demands thoroughly understanding the behavior of the proto-
cols that power the network operation. For example, the ability
to estimate the energy consumption is crucial to self-sustaining
systems based on energy harvesting [2], and guarantees on the
packet delivery are key to dependable wireless automation [3].

Unfortunately, the current literature falls short in modeling
multi-hop low-power wireless protocols. Two aspects concur:
• Low-power wireless transmissions are subject to a number

of unpredictable environmental factors, including wireless
interference, presence of obstacles and persons, as well as
temperature and humidity variations [4]. As a result, low-
power wireless links suffer from unpredictable packet loss
that varies in time and space [5]. This, in combination with
failure-prone devices, for example, due to battery depletion
or damage, makes the network topology highly dynamic.

• To tame this unpredictability, existing communication pro-
tocols gather substantial network state, such as link quality
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(a) Link-based transmissions (LT).
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(b) Synchronous transmission (ST).

Fig. 1. Using synchronous transmissions, multiple nodes transmit simultane-
ously to the same receiver, as opposed to pairwise link-based transmissions.

estimates [6] and packet queue occupancies [7]. Protocols
use this information, for example, to build multi-hop rout-
ing paths [6] and to adapt packet transmission rates [7].
However, the network state needs to be updated at runtime
against the topology dynamics. For scalability reasons, the
network state is also distributed across the nodes, which
operate concurrently with little or no coordination.

These reasons render multi-hop low-power wireless proto-
cols intricate and difficult to model [8]. As a result, existing
models often stop at the link layer, achieving model errors in
the range of 2–7% [9]. Only a few attempts exist to model
also higher-layer functionality [8], [10]–[12]. However, their
validation is limited to numerical simulations, lacking precisely
those real-world dynamics that complicate the modeling.

A new breed of communication protocols is emerging that
leverages synchronous transmissions (ST) [13]–[20], illustrated
in Fig. 1. Unlike single transmissions over sender-receiver links
in (a), with ST multiple nodes transmit simultaneously towards
the same receiver in (b). Because of two phenomena of low-
power wireless communications, constructive interference [14]
and capture effects [13], ST vastly improve the one-hop packet
reliability compared with link-based transmissions (LT) [14].

As we further discuss in Sec. II, the salient features of
ST enable multi-hop protocols that require very little network
state and outperform LT-based protocols. The open question is
whether ST also simplify accurately modeling these protocols.
To answer this question, we put forward two key contributions:
1) We investigate in Sec. III to what extent the Bernoulli as-

sumption applies to ST. The assumption stipulates that sub-
sequent packet receptions and losses at a receiver adhere to
a sequence of independent and identically distributed (i.i.d.)
Bernoulli trials. Models of communication protocols often
make this assumption to simplify the specification [9], [21],
but prior work suggests that this may be invalid for LT [5],
[22]. By contrast, nothing is known for ST, as far as we are



aware. By studying a specific flavor of ST, Glossy network
floods [15], through experiments on a 139-node low-power
wireless testbed, we show that the Bernoulli assumption is
largely valid for ST, and way more than for LT.

2) We build upon these findings to demonstrate that modeling
an ST-based protocol is in fact simpler and yields signifi-
cantly higher accuracy than models of LT-based protocols.
We do so based on Low-Power Wireless Bus (LWB) [18],
a representative protocol, described in Sec. IV, of a grow-
ing number of solutions [16], [17], [19], [20] that build
upon Glossy. Specifically, we present in Sec. V sufficient
conditions for providing probabilistic guarantees on LWB’s
end-to-end packet reliability, and in Sec. VI a discrete-time
Markov chain (DTMC) model to estimate LWB’s expected
long-term energy consumption. Results from our validation
based on real-world experiments in Sec. VII indicate that
the end-to-end reliability guarantees are correctly matched,
and that the estimates of the energy model are within 0.25%
of the real measurements. This error margin is unmatched
in the low-power wireless literature we are aware of.

II. BACKGROUND AND RELATED WORK

Our work builds upon recent advancements in low-power
wireless communications. In this section, we provide the nec-
essary background on multi-hop protocols exploiting different
flavors of ST, contrast these with the existing literature on
LT, and review related modeling efforts. We conclude with an
outlook on how this paper fills the gaps in the current literature.

A. Synchronous Transmissions

Little work exists to deeply understand the behavior of ST
in low-power wireless. For example, Son et al. [23] conduct
an experimental study of the capture effect, a physical layer
phenomenon that allows a receiver to correctly decode a packet
despite interference from other transmitters. In low-power
wireless, this is typically due to power capture, which occurs
when the received signal from a node is 3 dB stronger than the
sum of the signals from all other nodes [23]. Several protocols
exploit the capture effect, for example, to implement fast net-
work flooding [13] and efficient all-to-all communication [17].

Precisely overlapping transmissions of identical packets en-
able another phenomenon in low-power wireless: constructive
interference of IEEE 802.15.4 symbols. This allows a receiver
to correctly decode the packet also in the absence of capture
effects, significantly boosting the transmission reliability. Us-
ing resource-constrained devices, however, the required timing
accuracy of ST is difficult to achieve. One way to address this
challenge is by using hardware-generated acknowledgments, a
mechanism that has been employed to better resolve contention
in media access control (MAC) protocols [14], [24].

Glossy, instead, uses a careful software design to make ST
of the same packet precisely overlap, thus exploiting both con-
structive interference and capture effects for efficient network-
wide flooding and time synchronization with microsecond ac-
curacy [15]. Several protocols extend and improve Glossy, for
example, in dense networks [16], when distributing large data
objects [19], and for point-to-point communication [20]. LWB,
which we use to examine the impact of ST on modeling multi-
hop protocols, efficiently supports multiple traffic patterns by
globally scheduling Glossy floods in an online fashion [18].

B. Link-Based Transmissions

By contrast, a large body of work exists on understanding
the behavior of LT [25]. Srinivasan et al. [5], for example,
conduct an empirical study of IEEE 802.15.4 transmissions,
to provide guidelines for fine-grained design decisions such
as the scheduling of link-layer packet retransmissions. The β
factor [26] measures the link burstiness over time, which may
be used by a protocol to determine how long to pause after
a transmission failure to prevent unnecessary retransmissions.
Cerpa et al. [22] examine both short- and long-term temporal
aspects to improve simulation models and for enhancing point-
to-point routing. Dually, the κ factor [27] measures the degree
of correlation of packet receptions across different receivers—
hence exploring LT’s spatial diversity—possibly used to design
better opportunistic routing and network coding schemes.

Despite the knowledge of LT, obtaining full-fledged models
of LT-based multi-hop protocols is very difficult [8]. Several
attempts stop at the MAC layer, where distributed interactions
span only one hop and hence reasoning is still manageable. For
example, pTunes provides runtime tuning of MAC parameters
based on application-level performance goals, leveraging MAC
protocol models [9]. Similarly, Polastre et al. [21] present a
model of node lifetime for B-MAC, and Buettner et al. [28]
model reliability and energy in X-MAC. Gribaudo et al. [11]
use interacting Markovian agents to model a generic sender-
initiated low-power MAC protocol [9]; they also acknowledge
that the opportunistic operation of this class of protocols
greatly complicates the modeling using standard techniques.

The dynamics of the network topology render the modeling
of higher-layer functionality—where interactions typically ex-
tend across multiple hops—very complex. As a result, accurate
models to estimate a system’s performance are largely missing.
Some exceptions model the Collection Tree Protocol (CTP) [6]
to improve its performance in industrial scenarios [12], analyze
swarm intelligence algorithms for sensor networks based on
the Markovian agent model [10], apply diffusion approxima-
tion techniques to estimate the end-to-end packet travel times
assuming opportunistic packet forwarding rules [29], or model
generic multi-hop functionality through population continuous-
time Markov chains [8]. Nevertheless, the validation of these
models is limited to numerical simulations, which lack pre-
cisely those real-world dynamics of low-power wireless links
that make accurate protocol modeling so complex and difficult.

C. Outlook

Motivated by the lack of a deeper understanding of ST, in
the remainder of this paper we provide a thorough account on
the behavior of ST and its impact on the modeling of emerging
ST-based multi-hop protocols. To this end, we start by analyz-
ing in Sec. III to what extent a key, yet sometimes illegitimate
assumption in modeling low-power wireless protocols applies
to ST. We base this study upon Glossy’s specific incarnation
of ST [15], because it serves as the communication primitive
for a growing class of multi-hop protocols [16], [18]–[20]. We
then apply the corresponding findings while closely examining
LWB [18], one specific such protocol we illustrate in Sec. IV
that exceeds the performance, reliability, and versatility of prior
LT-based protocols. In doing so, we analyze end-to-end packet
reliability in Sec. V and energy consumption in Sec. VI—two
key performance indicators in low-power wireless [6].



III. BERNOULLI ASSUMPTION IN LOW-POWER WIRELESS

Because wireless networks are very complex, researchers
make simplifying assumptions about their behavior when rea-
soning about a protocol. One such assumption is the Bernoulli
assumption [5]. Let the reception of packets transmitted in a
sequence be a random event with success or failure as the only
possible outcomes: the Bernoulli assumption stipulates that the
intended packet receiver observes a sequence of independent
and identically distributed (i.i.d.) Bernoulli trials. In practical
terms, success means a packet is received (with probability p),
and failure means a packet is lost (with probability 1− p).

However, several studies have shown that the Bernoulli as-
sumption is not always valid in low-power wireless networks,
because links have temporally correlated receptions and losses
when they occur close in time (i.e., on the order of a few tens
of milliseconds) [5], [22]. In this section, we show empirically
that the Bernoulli assumption is (i) in fact highly valid for ST
in Glossy, and (ii) more appropriate in Glossy than in LT.

We first describe how we collect large sets of packet recep-
tion traces on a real-world sensor network testbed. Next, we
discuss our analysis of these traces for weak stationarity, which
is a necessary condition for further statistical analysis. We then
construct a statistical test for packet reception independence
based on the sample autocorrelation metric, and use this test
to assess the validity of the Bernoulli assumption in our traces.

A. Experimental Methodology

We perform 80 hours of packet reception measurements
on Indriya [30], a large testbed of 139 TelosB nodes deployed
across three floors in a university building. Indriya provides a
mixture of dense and sparse node clusters, as well as realistic
interference from the presence of people and co-located Wi-Fi.

We conduct two types of experiments that match the build-
ing blocks of communication in ST- and LT-based protocols:
1) ST-Type: we select 70 nodes equally distributed across the

three floors on Indriya and let them, one at a time, initiate
50,000 Glossy network floods. According to Glossy’s op-
eration, the remaining 138 nodes blindly relay the flooding
packet, eventually delivering it to all nodes in the network.

2) LT-Type: all 139 nodes, one at a time, broadcast 50,000
packets, while the remaining nodes passively listen. As LT
are bound by the transmission range of the sending node,
only its one-hop neighbors can receive the packet.

In both types of experiments, the packets are 20 bytes long
and carry a unique sequence number. The sender transmits at a
fixed inter-packet interval (IPI) of 20 ms, corresponding to the
typical minimum interval between consecutive Glossy floods
in ST-based protocols [16], [18]–[20]. All other nodes record
received and lost packets based on the sequence number. We
use IEEE 802.15.4 channel 26 to reduce the influence of Wi-Fi
interference, whose extent we cannot control and is difficult to
assess afterwards [4]. We repeat both types of experiments for
two transmit powers: 0 dBm is the maximum transmit power
of a TelosB node, and -15 dBm is the lowest transmit power at
which the network on Indriya remains connected. The resulting
network diameters are 5 and 11 hops, respectively.

We represent every collected trace as a discrete-time binary
time series {xi}ni=1, where xi is 1 if the i-th packet was
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Fig. 2. Example of a weakly stationary and a non-stationarity trace. Packet
reception rate is a moving average with a window size of 2,000 packets (40 s).

received and 0 if it was lost. This time series representation
forms the basis for our statistical analysis.

B. Weak Stationarity

A necessary condition for well-founded statistical analyses
of time series is weak stationarity [31]. A weakly stationary
time series has constant mean, constant variance, and the
autocovariance between two values depends only on the time
interval between those values. We investigate whether our
traces conform to these criteria based on the packet reception
rate (PRR), computed as a moving average of the fraction of
received packets over a window of 2,000 packets (40 s).

Visual inspection of our traces reveals obvious violations
of these criteria. For example, Fig. 2 shows the PRR for a
stationary and a non-stationary trace. The latter has several
abrupt changes and a significant trend in the mean, as evident
from the linear fit. To avoid biases in our analysis, we need to
identify and exclude such non-stationary traces.

TABLE I. TRACE STATISTICS

Type Transmit power Total Non-stationary Weakly stationary

ST-Type 0 dBm 9660 47 9613
ST-Type -15 dBm 9660 256 9404
LT-Type 0 dBm 4189 1418 2771
LT-Type -15 dBm 1777 588 1189

While there is a number of formal tests for stationarity,
they often fail in practice due to their inability to detect general
non-stationarity [32]. Thus, like [33], we apply two empirical
tests to identify non-stationary traces. To test for trends in the
mean, we compute a linear fit using ordinary least squares
and declare a trace as non-stationary if the PRR changes by
0.015 or more over the entire trace of 50,000 packets (1,000 s).
Then, we test for non-constant variance by checking whether
the PRR decreases or rises by more than 0.05 within a window
of 2,000 packets (40 s), which we interpret as an indication of
non-stationarity. Table I summarizes the sets of traces before
and after applying the two empirical tests for non-stationarity.

C. Validating the Bernoulli Assumption

To confirm or refute the Bernoulli assumption for a given
trace, we use the sample autocorrelation, which measures the
linear dependence between values of a weakly stationary time
series as a function of the interval (lag) between those values.
As we explain below, the Bernoulli assumption is valid if the
values in the time series are independent already at lag 1.
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Fig. 3. Sample autocorrelation for two of our collected packet reception
traces up to lag 20. The Bernoulli assumption holds for Trace 2, because its
sample autocorrelation falls within the confidence bounds already at lag 1.

For a discrete-time binary time series {xi}ni=1 of length n,
the sample autocorrelation ρ̂ at lag τ = 1, 2, . . . , n− 1 is

ρ̂(τ) =

{
γ̂(τ)/γ̂(0) if γ̂(0) 6= 0

0 if γ̂(0) = 0
(1)

where γ̂(τ) is the estimated autocovariance given by

γ̂(τ) =
1

n

∑n−τ

i=1
(xi+τ − x)(xi − x)

and x = 1/n
∑n
i=1 xi is the sample mean.

The sample autocorrelation in (1) ranges between -1 and 1.
Negative values indicate anti-correlation in packet reception:
as more packets are received (lost), the next packet reception is
more likely to fail (succeed). Positive values indicate positive
correlation: packet receptions (losses) tend to be followed by
more packet receptions (losses).

Values close to zero indicate independence among packet
receptions at a given lag, assuming the xi are i.i.d. Bernoulli
random variables. Let {xi}ni=1 a realization of an i.i.d. se-
quence {Xi}∞i=1 of random variables with finite variance. It
can be shown that, for a large number of samples n, about
95% of the sample autocorrelation values should lie within the
confidence bounds ±1.96/

√
n [31]. Based on this, we define

the correlation lag as the smallest lag at which the sample
autocorrelation lies within ±1.96/

√
n. Like [33], we consider

the Bernoulli assumption valid if the correlation lag is 1. For-
mally: Given a time series {xi}ni=1, the Bernoulli assumption
holds at the 0.05 significance level if |ρ̂(1)| ≤ 1.96/

√
n.

For example, Fig. 3 plots ρ̂ for two of our traces of length
n = 50, 000. The dashed lines at ±1.96/

√
50, 000 ≈ ±0.0088

represent the confidence bounds. The chart shows that Trace 1
is dependent up to lag 5, but starting from lag 6 the auto-
correlation values become insignificant except for a few stray
points. By contrast, Trace 2 has an insignificant autocorrelation
already at lag 1: there is no dependence between consecutive
packets nor between any other packets in the trace. Thus, the
Bernoulli assumption holds for Trace 2 but not for Trace 1.

D. Results

Based on the above reasoning, we analyze the validity of
the Bernoulli assumption for our weakly stationary traces (see
Table I). Fig. 4 shows the percentage of traces with correlation
lag greater than 1 (for which the Bernoulli assumption does not
hold) when examining different IPIs in our traces. We see that
the Bernoulli assumption is significantly more legitimate for
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Fig. 4. Percentage of weakly stationary traces for which the Bernoulli
assumption does not hold, for different IPIs and transmit powers.

synchronous transmissions (ST-Type) than for the link-based
transmissions (LT-Type). For example, at the highest transmit
power, the Bernoulli assumption holds for more than 99% of
the ST-Type traces irrespective of the IPI, whereas it holds only
for 60% of the LT-Type traces at the smallest IPI of 20 ms.

We also observe that at the lower transmit power there
are more ST-Type traces for which the Bernoulli assumption
does not hold. This is mostly because nodes have fewer
neighbors—at -15 dBm about 24% of the nodes have at most
four well-connected neighbors—which makes their reception
behavior approach the one of LT. This is also confirmed by
the significant negative Pearson correlation of -0.31 between
the number of well-connected neighbors and the percentage
of traces for which the Bernoulli assumption does not hold.
Finally, Fig. 4 shows that the autocorrelation decreases as the
IPI increases, and becomes negligible at IPI = 1 s also for
LT-Type traces. This observation is in line with prior studies on
low-power wireless links [5], thus validating our methodology.

In summary, our results show that the Bernoulli assumption
holds to a large extent for ST—because packet receptions in
Glossy are largely independent, a single parameter is sufficient
to precisely characterize the probability of receiving a packet.
By contrast, packet receptions in LT are often not independent,
which necessitates more complex models, such as high-order
Markov chains [33], to accurately capture their behavior.

Next, we describe LWB, a Glossy-based protocol that we
use throughout Secs. V and VI to demonstrate how the validity
of the Bernoulli assumption for ST enables simple, yet highly
accurate models of multi-hop low-power wireless protocols.

IV. LOW-POWER WIRELESS BUS

The basic idea behind LWB is to abstract a network’s multi-
hop nature by employing only ST for communication [18]. To
this end, LWB maps all communication demands onto Glossy
network floods [15]. Glossy always and blindly propagates
every message from one node to all other nodes in the network,
effectively creating the perception of a single-hop network for
higher-layer protocols and applications. The resulting protocol
operation of LWB is similar to a shared bus, where all nodes
are potential receives of all messages; delivery to the intended
recipients happens by filtering messages at the receivers.

LWB exploits Glossy’s accurate time synchronization for
a time-triggered scheme that arbitrates access to the (wireless)
bus. Nodes communicate according to a global communication
schedule. A dedicated host node computes the schedule online
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based on the current traffic demands and distributes it to the
nodes, determining when a node is allowed to initiate a flood.

As shown in Fig. 5 (A), communication occurs in rounds
that repeat with a possibly varying round period T . All nodes
keep their radios off between two rounds to save energy. Every
round consists of a possibly varying number of communication
slots, as shown in Fig. 5 (B). In every slot, at most one node
puts a message on the bus (i.e., initiates a flood), while the
remaining nodes read the message from the bus (i.e., receive
and relay the flooding packet), as illustrated in Fig. 5 (C).

contentiondata

host computes t

data

new schedule

schedule
newschedule

Ts Td Td Td Ts

Tl

Fig. 6. Communication slots within a single LWB round.

Fig. 6 shows the different communication slots within one
round of length Tl . Each round starts with a slot of length Ts
in which the host distributes the communication schedule. The
nodes use the schedule to time-synchronize with the host and
to be informed of (i) the round period T and (ii) the mapping
of source nodes to the following data slots of length Td . A
non-allocated contention slot of length Td follows; nodes may
contend in this slot to inform the host of their traffic demands.
The host uses these to compute the schedule for the next round,
which it transmits in a final slot of length Ts .

The host computes the communication schedule by deter-
mining a suitable round period T and allocating data slots to
the current streams. A stream represents a traffic demand, char-
acterized by a starting time and an inter-packet interval (IPI),
as LWB targets the periodic traffic pattern typical of many low-
power wireless applications [34]. A node can source multiple
streams and individually add or remove streams at runtime.

V. END-TO-END PACKET RELIABILITY IN LWB

End-to-end reliability refers to a protocol’s ability to deliver
packets from source to destination, perhaps over multiple hops.
It is a key performance metric in low-power wireless [6], indi-
cating the level of service provided to users. Many applications
do require probabilistic guarantees on this metric, for example,
to allow for post-processing of structural health data [35].

End-to-end reliability, however, is subject to unpredictable
packet loss [5]. LT-based protocols, therefore, rely on per-hop
retransmissions to achieve a certain end-to-end reliability, yet
the necessary number of retransmissions depends on the ever-
changing loss rates of single links. Further, LT-based protocols

constantly adapt the routes in response to such changes, which
renders reasoning about end-to-end guarantees very complex.

By contrast, ST-based protocols, such as LWB, often have
no routes to adapt. This facilitates reasoning about end-to-end
guarantees, even across multiple hops. To show this, we extend
LWB with a packet retransmission scheme and derive sufficient
conditions to meet given reliability guarantees. The key insight
is that the proven validity of the Bernoulli assumption for ST
greatly simplifies the specification of these conditions.

Packet retransmissions in LWB. We consider a typical data
collection setting where the LWB host is also the sink [34]. We
augment LWB with packet retransmissions by modifying the
scheduling algorithm used at the host to compute the schedule
for the next round. Originally, LWB allocates exactly one data
slot for each data packet, regardless of the actual reception at
the host [18]. In our modification, the host first checks whether
in the current round it received every data packet assigned a
slot. For each lost packet, it reallocates a slot in the next round,
in which the source node retransmits the lost packet, provided
that fewer than kmax slots have already been allocated for it.
Then, the host allocates data slots for new packets as before.

Consider now an application that requires a minimum end-
to-end reliability pd > 0 on data packets. We derive sufficient
conditions on the minimum kmax and overall available band-
width to provide such guarantee in a probabilistic sense.

Sufficient conditions: retransmissions. The validity of the
Bernoulli assumption for Glossy-based ST allows us to con-
sider consecutive retransmissions as independent. Thus, based
on our retransmission scheme, the probability that the host re-
ceives a packet from stream x within kx ≥ 1 (re)transmissions
is 1− (1− pd,x )kx , where pd,x is the probability that the host
receives a packet from x in one slot (i.e., during one Glossy
flood). To provide the desired guarantee pd > 0, we require

1− (1− pd,x )kx ≥ pd (2)

where 0 < pd < 1 and 0 < pd,x < 1. Then, (2) holds if

kx ≥
log(1− pd)
log(1− pd,x )

(3)

Thus, the host must allocate kx slots to each packet of stream
x to provide an end-to-end packet reliability of at least pd.

Because LWB nees to set an integer upper bound kmax on
the number of data slots allocated to each packet, the reliability
guarantee can only be provided if for all existing streams x

dkx e ≤ kmax (4)

Example. Assume one stream with pd,x = 0.9, and the host
allocates at most kmax = 2 slots for each packet. In this case,
a reliability guarantee of pd = 0.99 can be provided, because
1−(1−0.9)2 = 0.99. To guarantee pd = 0.9999, however, we
need to increase kmax to dlog(1−0.9999)/ log(1−0.9)e = 4.

Sufficient conditions: bandwidth. The bandwidth available in
LWB is a function of how often communication rounds unfold:
the shorter the round period T , the more data slots are avail-
able, yielding increased overall bandwidth. Due to platform-
specific constraints on timings and size of the schedule packet,
however, at most dmax data slots can be allocated in a round.



The original scheduling policy minimizes energy while
providing enough bandwidth to all traffic demands whenever
possible. Specifically, given N streams, the host first computes

Topt =
dmax∑N

x=1(1/IPIx)
(5)

where 1/IPIx is the number of data slots allocated to stream x
per time unit, because without retransmissions LWB allocates
exactly one slot for each packet. Then, the host obtains the new
round period using T = dmax(Tmin ,min(Topt , Tmax ))e. The
lower bound Tmin ensures that T is longer than the duration
of a round Tl , and the upper bound Tmax ensures that the
nodes stay time-synchronized with the host. If Topt < Tmin ,
the network is saturated: the maximum provided bandwidth is
insufficient to support the current traffic demands. If saturation
occurs, the host sets T = Tmin and informs the nodes.

On the other hand, if a packet must be transmitted kx ≥ 1
times to provide a guarantee on the end-to-end packet reliabil-
ity, every stream x requires kx/IPIx data slots per time unit;
and all N streams together require

∑N
x=1(kx/IPIx). Therefore,

to account for packet (re)transmissions, we modify (5) as

Topt =
dmax∑N

x=1(kx/IPIx)
(6)

As described above, Topt cannot be smaller than the minimum
round period Tmin . Therefore, the total bandwidth is sufficient
for kx packet transmissions only if∑N

x=1

kx
IPIx

≤ dmax

Tmin
(7)

Only if both conditions (4) and (7) are satisfied, it is guar-
anteed that packets are delivered with at least probability pd.

Example. Consider streams x1 and x2 that generate packets
with IPI1 = 8 s and IPI2 = 12 s, and deliver packets to the
host with probabilities pd,1 = 0.99 and pd,2 = 0.9. The host
allocates up to kmax = 16 slots per packet and up to dmax = 5
slots per round. The minimum round period is Tmin = 2 s.
Can LWB guarantee an end-to-end packet reliability of pd =
0.9999 for both streams? The condition in (4) is satisfied for
both streams, because the required numbers of slots k1 = 2
and k2 = 4 are smaller than kmax . The condition in (7) is
satisfied as well, because the optimal round period Topt =

5
2/8+4/12 ≈ 8.57 s is longer than the minimum round period
Tmin . Thus, pd = 0.9999 can be guaranteed for both streams.

VI. ENERGY CONSUMPTION IN LWB

Energy is a primary concern in low-power wireless sys-
tems, as it generally represents the key cost metric. Modeling a
protocol’s energy consumption is fundamental, for example, to
dimension a system’s power sources before deployment, or to
estimate the remaining system lifetime during operation [34].

The major factor contributing to a node’s energy consump-
tion in low-power wireless is the time spent with the radio on,
because the wireless transceiver typically draws several orders
of magnitude more power than other components. Therefore,
we use the radio on-time as a proxy for energy in the rest of
the paper. The actual energy is simply obtained by multiplying
the radio on-time with the transceivers’ power draw when on.

Deriving a model that precisely estimates the radio on-
time of a LT-based low-power wireless protocol is, however,
difficult. Nodes generally experience different radio on-times
depending on their position in the routing topology, and sudden
route changes trigger actions that need to be coordinated across
different nodes [25]. ST simplify a protocol’s operation by
sparing the need for routes, thus making modeling simpler.

We now demonstrate the above for LWB. This is because a
single event—the reception of schedule packets—drives most
of a node’s actions, as illustrated in Sec. VI-A. Also, as
shown in Sec. VI-B, we can derive precise radio on-times for
each of the protocol’s operational states. The validity of the
Bernoulli assumption for ST allows us to consider consecutive
schedule receptions as independent. This facilitates computing
the long-term frequency of visits to these states, as described
in Sec. VI-C, ultimately yielding the expected radio on-time.

A. LWB Operational States

The radio on-time of a LWB node depends only on the
reception of schedules from the host, which allows a node
to time-synchronize and to learn the mapping of nodes to
slots for the current round. Based on this, a node knows when
communication occurs and activates the radio accordingly. A
node that misses a schedule in a round refrains from commu-
nicating during that round, since communication outside of the
allocated slots (e.g., due to inaccurate time information) may
cause packet loss due to collisions with other transmissions.

Clock drift prevents a node from having perfect time infor-
mation, even when it constantly receives schedule packets [36].
The synchronization error often increases when missing several
schedules in a row, as the effects of clock drift accumulate over
time. To compensate for these, a LWB node uses predefined
guard times in order to turn the radio on shortly before a round
is bound to begin, and increases them in discrete steps as it
misses more schedules in a row. After more than m consecutive
missed schedules, a node permanently keeps the radio on until
it receives a schedule and time-synchronizes again.

This behavior is reflected in the finite state machine (FSM)
in Fig. 7, which models the behavior of a LWB node depending
on received (r) or missed (¬ r) schedule packets. Table II lists
the meaning of each state and the corresponding worst-case
radio on-time. Key to the model is whether the schedule packet
is received (or missed) at the end of the previous round or at
the beginning of the current one. To differentiate the two cases,
a node reaches a state labeled Xb following schedules sent at
the beginning of a round, and a state labeled Xe following
schedules sent at the end of a round. We now derive the radio
on-times reported in Table II for every state in the FSM.

B. Radio On-Time of LWB States

A node starts in state Be with the radio turned on until it
receives a schedule at the beginning of a round (Be → Rb) and
synchronizes with the host. As shown in Fig. 5, communication
rounds occur every T . Therefore, a node remains in Be for at
most T − Tl , where Tl is the duration of a round illustrated
in Fig. 6. If a node misses such schedule (Be → Bb), it keeps
the radio on for Tl before it tries again to receive a schedule
at the beginning of a round (Bb → Be).
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Fig. 7. FSM modeling the behavior of a LWB node depending on received
(r) and missed (¬ r) schedules. States Xb are reached after schedules sent at
the beginning of a round, and states Xe are reached after schedules sent at the
end of a round. The number of consecutive missed schedules m is updated
on every transition to Mb or Me. When m reaches a predefined threshold m,
a node returns to one of the two bootstrapping states Be or Bb.

As shown in Table II, in all non-bootstrapping states the
radio on-time includes the length of a schedule slot Ts and two
additional terms: the guard time to compensate for synchro-
nization errors and the radio on-time due to communication.

Guard times. A platform-specific guard time function Tg(m)
specifies the guard time before a schedule slot, based on the
number of consecutive missed schedules m, with 0 ≤ m ≤ m.
Tg(m) is non-decreasing in m, since the synchronization error
typically increases with more missed schedules, as discussed
before. For example, if schedules are always received, a node
alternates between states Sb and Se using the smallest guard
time Tg(0), but switches to a longer guard time Tg(1) if it
misses the schedule at the beginning of the current round
(Se → Mb) or at the end of the previous round (Sb → Me).

An exception to this processing occurs when a node has
insufficient information to compute the drift of the local clock
compared to the clock of the host. This is the case in states
Rb and Re, when a node has received only one schedule sent
at the beginning of a round since the last bootstrapping state
(see Fig. 7). As a result, it cannot estimate the drift of the local
clock, because at least two time references are required [36].
Therefore, a node prudently uses the largest possible guard
time Tg(m) in state Rb or Re, as shown in Table II.

Radio on-time due to communication. The radio on-time for
data and contention slots is Tc = (dr + dk )Td , where dr is
the expected number of data slots per round, dk is the average
number of contention slots per round, and Td is the length of
data and contention slots (see Fig. 6). As shown in Table II, Tc
is accounted for only when a node participates in a round, after
receiving the schedule at the beginning of the current round
(state Rb or Sb) or at the end of the previous round (state Mb
with m = 1; the Kronecker delta δm1 in Table II equals 1 if
m = 1 and 0 otherwise). We now derive dk and dr .

The host schedules one contention slot every Tk > T to
save energy under stable traffic conditions [18]. The average
number of contention slots per round is thus dk = T/Tk . The
average number of data slots per round dr depends on whether
the network is saturated or not. If saturated, the host allocates
all available dmax slots in every round, so dr = dmax . Without
saturation, given that each data packet can be (re)transmitted
up to kmax times, on average dx ≤ kmax data slots are
allocated to each data packet of stream x. The expected number
of data slots allocated per time unit to stream x is dx/IPIx.
The general expression for dr is thus

dr = min(dmax , T
∑N

x=1
dx/IPIx) (8)

TABLE II. MEANING AND RADIO ON-TIMES OF STATES IN FIG. 7

State Description Worst-case radio on-time

Bb Bootstrapping: not synced, radio always on Tl

Be Bootstrapping: not synced, radio always on T − Tl

Rb Received schedule, drift not estimated Tg(m)+Ts + Tc

Re Received schedule, drift not estimated Tg(m)+Ts

Sb Synced: received schedule, drift estimated Tg(0) +Ts + Tc

Se Synced: received schedule, drift estimated Tg(0) +Ts

Mb Missed schedule at beginning of current round Tg(m)+Ts + δm1Tc

Me Missed schedule at end of previous round Tg(m)+Ts
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Fig. 8. DTMC corresponding to FSM in Fig. 7 if a nodes receives schedules
with probability ps and bootstraps after more than m = 3 missed schedules.

As described in Sec. V, the host allocates data slots for
each packet of stream x across multiple rounds until either
it receives the packet or kmax slots are allocated. Thus, the
expected number of data slots dx allocated to a packet of
stream x depends on the probability pd,x that the host receives
from stream x and on the maximum number of transmissions
kmax . For 0 < pd,x ≤ 1, it can be shown that the host allocates

dx =
1− (1− pd,x )kmax

pd,x
(9)

slots on average to each packet of stream x. Note that for
pd,x = 1 the host receives the packet always at the first attempt
and dx = 1, whereas dx approaches kmax as pd,x goes to 0.

Exploiting the Bernoulli assumption validated in Sec. III,
we estimate next how frequently a LWB node is expected to
visit each operational state in the long run. This information,
together with the radio on-times we just derived for every state,
allows us to estimate the expected radio on-time per round.

C. Expected Radio On-Time of a LWB Round

According to Sec. III, packet reception with Glossy-based
ST can be modeled with high confidence as a Bernoulli trial.
We thus characterize the reception of schedules at a node
through a single parameter ps, the success probability of
Glossy-based ST from the host. As a result, the FSM in Fig. 7
translates into a discrete-time Markov chain (DTMC) where an
event r (¬ r), corresponding to a successful (failed) reception
of the schedule, occurs with probability ps (1−ps).

Our LWB implementation retains the original setting for
m, in which a node returns to bootstrapping after missing
more than m = 3 consecutive schedules. Fig. 8 shows the
corresponding DTMC. States {M1b,M2b,M3b} are equivalent
to state Mb in the original FSM for m = {1, 2, 3}; the same
applies to states {M1e,M2e,M3e} and state Me. Note that the
DTMC in Fig. 8 is periodic with period 2: the host sends
schedules at the beginning and at the end of a round, thus a
node always visits state Xe after state Xb and vice versa.
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Fig. 9. Stationary distribution π of the DTMC in Fig. 8 against the probability
of receiving a schedule ps.

Knowing the radio on-time for each LWB state as per Ta-
ble II, we can compute the expected radio-on time per round

Ton = 2(ton · π) (10)

where ton = (tonBb , tonBe , . . . , tonM3e) is a vector containing
the radio on-times of all DTMC states, · is the dot product,
and π is the DTMC’s stationary distribution. The factor 2 is
because, during a round, a node always visits two states of the
DTMC as the host transmits two schedules per round.

We can obtain π by determining the normalized left eigen-
vector with eigenvalue 1 of the DTMC’s transition matrix. For
m = 3, we have π = (πBb , πBe , . . . , πM3e), where πs denotes
the long-run frequency of visits to state s ∈ {Bb,Be, . . . ,M3e}.
Fig. 9 plots the stationary distribution π against actual values
for the probability ps. For example, we can see that when ps
approaches 1, a node visits more often states Sb and Se, as it
consistently receives schedule packets, whereas it visits more
often states Bb and Be when ps is close to 0. Typical values
of ps, however, range above 0.99 with Glossy [15], making it
very unlikely that a node ever returns to a bootstrapping state.

The DTMC in Fig. 8 and the expression in (10) confirm
our hypothesis that ST simplify the modeling of multi-hop pro-
tocols. This is due (i) the validity of the Bernoulli assumption
for Glossy-based ST, and (ii) the absence of routes in LWB. In
the following, we demonstrate that the resulting energy model
is not only simple but also highly accurate.

VII. VALIDATION

To verify accuracy and practical applicability, we compare
the output of our models with real measurements. Prior to de-
ployment, analyzing the sufficient conditions for a given end-
to-end reliability against foreseeable network conditions can,
for example, drive the node placement to increase connectivity;
moreover, exercising the energy model for different network
traffic settings can help designers dimension the power sources.
At run-time, monitoring the expected network performance
allows system operators to proactively perform maintenance
tasks (e.g., replacing nodes or batteries), and to adjust system
parameters in response to changes in the network conditions.
Our validation mimics these applications of our LWB models.

A. Settings and Metrics

We use the FlockLab testbed, which consists of 30 TelosB
nodes deployed both inside and outside a university build-
ing [37]. We use the highest transmit power of 0 dBm, yielding
a network diameter of 4 hops. To reduce sources of packet loss

we cannot control, we use IEEE 802.15.4 channel 26 to min-
imize interference from co-located Wi-Fi networks. Instead,
we artificially induce packet loss during ad-hoc experiments.
In all experiments, data packets carry a payload of 15 bytes.

We extend the original LWB implementation with packet
retransmissions, as described in Sec. V, and measure: (i) the
end-to-end reliability, the fraction of generated data packets
successfully delivered at the host; and (ii) the radio on-time
per round. We measure the former based on packet sequence
numbers received at the host and the latter using established
software-based methods [38]. Unless otherwise stated, we set
the maximum number of transmissions per packet kmax to 50.

Most of our model’s inputs are implementation constants:
the guard times Tg({0, 1, 2, 3}) = {1, 3, 5, 20}ms, the lengths
of schedule and data slots Ts = 15 ms and Td = 10 ms, the
length of a round Tl = 1 s, and the maximum number of data
slots per round dmax = 45. However, a few inputs are precisely
known only at run-time:
• The probability of receiving a schedule ps. A node n

estimates ps,n locally based on past schedule receptions,
and reports it to the host by piggybacking it on data packets.
• The round period T and the expected number of data slots

per round dr . Both are determined by the scheduling policy,
and depend on the streams’ IPIs and the probability pd,x
that the host receives a packet from stream x. The host
estimates pd,x much like a node estimates ps,n .
• The radio on-times during schedule and data slots Ts,n

and Td,n , which are generally shorter than the lengths of
schedule and data slots Ts and Td , because nodes may turn
off the radio before the end of a slot depending on their
position in the network [18]. Each node n estimates Ts,n
and Td,n locally, and reports them to the host as it does
for the probability ps of receiving a schedule.

When using our models offline, one can consider conser-
vative values for ps,n , pd,x , Ts,n , and Td,n based on coarse-
grained deployment information or data from exploratory
experiments [25]. From these and the expected streams’ IPIs
known from the application design, one can determine T and
dr based on the scheduling policy. During system operation,
one can refine the values using up-to-date run-time estimates.
Specifically, in our experiments, nodes maintain two counters
to estimate ps,n : the number of received rs and the number
of expected es schedule packets. Nodes embed rs/es into data
packets and halve both counters whenever es reaches a thresh-
old, which behaves similarly to an exponentially weighted
moving average (EWMA). The nodes estimate Ts,n and Td,n
in a similar way, and so does the host to estimate pd,x .

We run dedicated experiments on FlockLab to assess the
accuracy of our intentionally-simple parameter estimations. To
test different network conditions, three nodes at the edge of
the testbed randomly discard up to 50% of schedule packets.
Such high loss rates are extremely unlikely, as Glossy typically
delivers more than 99% of packets [15]. Nevertheless, we find
that our parameter estimates are accurate to within less than 1%
across all settings, including the case of 50% missed schedules.

B. End-to-End Packet Reliability

We study how significant network unreliability and changes
in traffic load may affect the guarantee on end-to-end packet
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(b) Varying inter-packet interval (IPI) of generated data packets at the nodes.

Fig. 10. Measured end-to-end reliability and maximum end-to-end reliability
that can be guaranteed according to the analysis of Sec. V. The gap between
the two curves indicates how worse the system may possibly perform.

reliability. To test the former, we let 29 nodes generate packets
with IPI = 7 s, while the host discards between 0% and 20% of
the received data packets to emulate network unreliability. The
round period is T = 6 s. To analyze changes in traffic load,
all nodes generate packets with an increasing IPI in different
runs: from 7 s to 15 s in steps of 2 s, while the host discards
5% of the data packets. The round period is set to T = 10 s.
Both settings mirror conditions found in real deployments [34].
The experiments take 1.5 hours, and the maximum number of
transmissions per packet is kmax = 3.

Fig. 10 shows for both experiments the measured end-to-
end reliability and the maximum end-to-end reliability that can
be guaranteed according to our analysis in Sec. V. As for the
measured values, the slight drop in Fig. 10(a) is because the
maximum number of transmissions kmax = 3 is insufficient
to deliver all packets to the host, whereas the slight drop in
Fig. 10(b) at the smallest IPI is due to insufficient bandwidth.

While the results confirm that our specific LWB executions
never provide an end-to-end packet reliability lower than the
guaranteed values, the figure also shows that the latter drop
more severely than the measured ones. This is expected, as
the analysis for guarantees on end-to-end packet reliability
entails over-provisioning the number of data slots allocated to a
packet, although often only a small fraction thereof is actually
needed to receive it. In the experiments where we emulate
network unreliability, for example, we compute from (7) that
the host can allocate at most kx = 1.81 slots for a packet of
each stream x. Based on (2), this value guarantees an end-to-
end reliability of pd = 94.57% when 20% of data packets are
discarded, as shown in Fig. 10(a). However, according to (9)
packets are actually received after dx = 1.24 slots on average.

The conclusion is that the gap between the real executions
and the guaranteed values provides information in advance
about how worse the system may possibly perform. This
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Fig. 11. Estimated and measured radio on-time per round when artificially
discarding schedule and data packets. The average model error is 0.25%.

allows system operators to take appropriate countermeasures
before the problems actually manifest in the measurements, to
effectively satisfy the application requirements at all times.

C. Energy Consumption

We evaluate the accuracy of our energy model in 5-hour
experiments: 29 nodes generate packets with IPI = 6 s, and
the round period is T = 6 s. In our model, the probabilities
of receiving schedule and data packets ps,n and pd,x are the
most critical inputs. To test the model output against different
probability values, we let three nodes at the edge of the testbed
randomly discard between 0% and 20% of schedules, while
the host also discards the same percentage of data packets.
Exercising the energy model against different IPIs and round
periods T simply scales the model output proportionally.

Fig. 11 plots the estimated and measured radio on-time
averaged over the three nodes. Overall, the results show that
our energy model is highly accurate, with an average relative
error of 0.25%. In comparison, recent work on modeling LT-
based multi-hop protocols reports relative errors in energy
consumption between 2 and 7% [9]—one order of magnitude
larger than ours. Considering also that our work spans a com-
plete multi-hop protocol rather than individual components, as
discussed in Sec. II, this confirms our initial hypothesis that
ST enable highly accurate protocol modeling.

We maintain that this is mainly due to the accuracy of the
parameter estimation, as discussed in Sec. VII-A, and to the
validity of the DTMC model. To verify the latter, we addition-
ally run a 3-hour experiment with three nodes at the edge of the
testbed discarding 50% of schedule packets. Using FlockLab’s
tracing facility [37], we precisely measure the fractions of time
these nodes spend in each of the twelve DTMC states shown
in Fig. 8. Fig. 12 shows these measurements next to what the
DTMC model predicts for ps = 0.5; for better visibility, we
merge the corresponding states at the beginning and at the
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Fig. 12. Fraction of time in FSM states when discarding 50% of schedules,
measured on three nodes and predicted by the DTMC model. For illustration
the corresponding states at the beginning and at the end of a round are merged.



end of a round into single states, leaving six instead of twelve
states in the plot. We see that expectations and measurements
indeed match very well, and would do so even better for longer
experiments as the long-term behavior of the system emerges.

VIII. CONCLUSIONS

We study whether ST enable simple yet accurate modeling
of multi-hop low-power wireless protocols. Our experimental
results show that the Bernoulli assumption is highly valid for
ST in Glossy and more legitimate for ST than LT. We exploit
these findings in the modeling of LWB’s end-to-end reliability
and long-term energy consumption. Our validation using real-
world experiments confirms that accurate models of ST-based
protocols are feasible, demonstrating a model error in energy of
0.25%. We believe our contributions represent a key stepping
stone in the development and analysis of ST-based protocols.
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