
Flying Blind with Reactive Control

of Aerial Drones

Luca Mottola∗+ and Kamin Whitehouse†
∗Politecnico di Milano (Italy), +SICS Swedish ICT,

† University of Virginia, US

Aerial drones represent a new breed of mobile computing. Compared to mo-
bile phones and connected cars that only opportunistically sense or communicate,
they offer direct control over their movements. Because of this, drones are en-
abling a range of sophisticated applications, such as photogrammetry and 3D
reconstruction [12], as well as exploration of near-inaccessible areas [6].

Aerial drones have also recently become fertile ground for challenging re-
search problems. One example is the notion of reactive control for autonomous
drones [5]. Reactive control is cast in the software design of current drone plat-
forms, shown in Fig. 1. Two components are involved. Specialized software
runs at a ground-control station (GCS) to let users configure mission parame-
ters, such as the coordinates to cover through waypoint navigation. The GCS
is typically a standard computer that communicates with the drone using a
long-range radio.

Aboard the drone, the autopilot software implements the low-level control in
charge of autonomously steering the drone. The control loop processes various
sensor inputs, such as accelerations and GPS coordinates, to operate the electri-
cal motors that set the 3D orientation of the drone, also termed as the drone’s
attitude. In doing so, the autopilot’s goal is minimize the error between the ac-
tual and desired pitch, roll, and yaw, shown in Fig. 2. Because of size, cost, and
energy concerns, autopilots run on resource-constrained embedded hardware.

Since we started working with aerial drones for mobile computing, we often
found the performance of existing autopilot implementations to be somewhat

ground-control station

autopilot

Figure 1: Software components in mainstream drone platforms.

1



Figure 2: Attitude control with raw, pitch, and yaw.

disappointing. Then, we looked more closely at how autopilots work, at how
they are implemented, and at the kind of hardware they typically run on, and
eventually realized two essential aspects:

1. Most autopilot implementations employ Proportional-Integral-Derivative
(PID) [2] designs: every T time units, sensors are probed, control decisions
are computed, and commands are sent to the motors. However, the con-
trollers are often tuned so that it is mostly the Proportional component
to bear an influence. If the weights are balanced, the Derivative compo-
nent can be kept to a minimum [4, 8]. A proper calibration of navigation
sensors may also reduce the impact of the Integral component [4, 8].

2. Autopilot software typically relies on sensing hardware that closely re-
sembles mobile phones 1. Such sensors are especially designed to enable
energy-efficient high-frequency sensing; for example, for tracking human
activity [10]. Many of them can also be programmed to return a value
only upon verifying certain conditions; for example, when a threshold is
passed, to implement functionality such as fall detection [10].

The implications of these observations are profound. The first observation
entails that the control loops unfold in ways where: i) small variations in the
sensor inputs tend to correspond to small variations in the motor settings, and
ii) as long as the sensor inputs do not change, the motor settings remain al-
most unaltered. Therefore, in principle, one may spare control executions that
start from the same or similar sensor inputs as the previous iteration, simply
maintaining the earlier motor settings. In a sense, the drone would fly without
considering the navigation inputs from sensors, that is, it would be flying blind.

In practice, detecting the conditions when the drone can fly blind, as opposed
to when it needs to promptly react to new conditions, requires algorithms,
software implementations, and underlying hardware support that together incur
smaller processing overhead and energy consumption than simply running the
control loop. The second observation above is, in fact, a stepping stone in terms
of hardware support, as modern sensors are extremely energy efficient. In the
following, we describe the necessary algorithms and software support.

1goo.gl/SPOIR

2

goo.gl/SPOIR


Reactive control provides several advantages, for example: i) it enables more
timely and adaptive control decisions, ii) it spares unnecessary processing, im-
proving the utilization of the hardware, and iii) it lessens the need to over-
provision control rates to handle extreme situations. For example, our results
indicate that reactive control obtains up to 41% improvements in the accuracy
of motion, which results in up to 22% extension of flight times [5]. Due to the
limited lifetime of current drone technology, the latter are particularly valuable.

An Example Autopilot

Ardupilot2 is a paradigmatic example of a mature open-source project that
provides reliable autopilot functionality 3. It is at the basis of many commercial
products 4 and boasts a large on-line community.

The execution of Ardupilot’s control loop is split in two parts. The so-
called fast loop only includes the implementation of PID controllers for critical
motion control. The time left from the execution of fast loop is given to an
application-level scheduler that distributes it among non-critical tasks, such as
logging. The scheduler operates in a best-effort manner. Many autopilots share
similar designs 5.

In Ardupilot, the execution rate is statically set based on a few “rules of
thumbs” [15]. The fixed 400 Hz setting on the hardware we describe next,
however, is not necessarily the maximum the hardware supports, as it is thought
to leave enough room—on average—to the scheduler. In short bursts, fast loop
may run much faster than 400 Hz, as long as some resources are eventually
allocated to the scheduler; for example, at times when control does not need to
run that frequently. By recognizing the situations when control does need to
run—or not—we enable precisely this kind of dynamic adaptation.

Ardupilot supports various embedded hardware. A primary example is the
Pixhawk board, which features a Cortex M4 core at 168 MHz and a full sen-
sor array for navigation. These sensors have similar capabilities as those on
modern mobile phones. They support energy-efficient high-frequency sampling
and often provide interrupt-driven modes to generate a value upon verifying
certain conditions. The ST LSM303D on the Pixhawk, for example, can be
programmed to generate an SPI interrupt based on three thresholds. While
useful, for example, for functionality such as fall detection [10], these features
are rarely exploited in autopilots.

2At the start of the project, Ardupilot ran on Arduino hardware. However, developers
eventually moved to more capable hardware while retaining the name.

3goo.gl/x2CHyM
4goo.gl/sBoH6
5goo.gl/uCGmr4,goo.gl/D89lkb.

3

goo.gl/x2CHyM
goo.gl/sBoH6
goo.gl/uCGmr4
goo.gl/D89lkb.


 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

no input changes large input changes

Logistic

Figure 3: Example logistic function.

Flying Blind

Reactive control requires to address three issues. First is how to recognize
whether the readings of navigation sensors require new control settings to be
computed, and hence the control loop does need to run. Second is how to handle
the possibly contradicting indications for running the control loop coming from
different navigation sensors, at different rates, and asynchronously with respect
to each other. In addition, the possibility that the control loop may not be
running for too long and eventually impact the stability of the drone. Third
is how to implement the resulting reactive processing on resource-constrained
embedded hardware. We provide next a glimpse of how we address these issues;
detailed descriptions are also available [5].

When to run control? It may seem intuitive that the more “significant” is
a change in a sensor reading, the more likely is the necessity to run the control
loop. Such a condition would indicate that something just happened in the
environment that requires the drone to react. However, what is a “significant”
change in the sensor readings depends on several factors, including the accuracy
of sensor hardware, the physical characteristics of the drone, the actual control
logic, and the granularity of the control outputs.

Our solution abstracts from these aspects: despite the control logic is deter-
ministic, we consider a change in the control settings as a random phenomena.
The input to this phenomena is the difference between consecutive samples of
the same navigation sensor; the output is a binary value indicating whether the
control settings need to change. If so, we need to run the control loop to com-
pute the new settings. An accurate estimator of such phenomena would allow
us to take an informed decision on whether to run the control loop.

Among statistical estimators with a binary dependent variable, logistic re-
gression [9], shown in Fig. 3, closely matches the intuition above. For small
changes in the sensor inputs, the probability of changes in the control settings
is small. When changes in sensor inputs are large, a change in the control set-
tings becomes (almost) certain. It also turns out it is possible estimate the
parameters shaping the curve of Fig. 3 efficiently, because logistic regression
allows one to employ traditional estimators, such as ordinary least squares.

When a drone starts, we run the control loop at fixed rate for a predefined
limited time, tracking whether the control settings change. This gives us an
initial data set to employ least square estimators to compute the parameters

4



of logistic regression6. Afterwards, for every change in the navigation sensors,
logistic regression indicates how likely is a change in the sensor inputs to require
new control settings. Comparing this probability against an adaptable threshold
dictates whether to run the control loop.

The least square estimation may possibly repeat later throughout the ex-
ecution as false positives (negatives) are identified, as part of the best-effort
scheduler of Ardupilot. Moreover, to cater for situations where false negatives
happen in a row, we run the control loop anyways at very low frequency, typi-
cally in the range of a few Hz. If such executions compute new control settings,
the drone most likely applies some significant correction to the flight operation
that causes reactive control to be triggered immediately after.

How to handle multiple sensors? PID controllers used in autopilots are
conceived under the assumption that sensor are sampled almost simultaneously
and at a fixed rate. In reality, the time of sampling and therefore of possibly
recognizing the need to execute the control loop, is not necessarily aligned across
sensors. Drastic changes in the sensor inputs may also be correlated. For exam-
ple, when the accelerometers record a sudden increase because of wind gusts, a
gyroscope also likely records significant changes. A traditional implementation
would process these inputs together.

We take a conservative approach to address these issues. Based on the
sampling frequency of every sensor in the system, we compute the system’s
hyperperiod as the smallest interval of time after which the sampling of all
sensors repeats. Upon recognizing first the conditions requiring the execution
of the control loop, we wait until the current hyperperiod completes. This allows
us to “accumulate” all inputs on different sensors, giving the most up-to-date
inputs to the control logic at once.

How to implement it efficiently? The control logic is implemented as
multiple processing steps arranged in a complex multi-branch pipeline. Depend-
ing on what sensor indicates the need to execute the control loop, different slices
of the code may need to run while other parts may not. Moreover, each such
processing step may—in addition to producing an output immediately useful—
update global state used at a different iteration elsewhere in the control pipeline.

In this setting, reactive control makes the processing event-driven also be-
cause of asynchronous updates to global state. Employing standard program-
ming techniques in these circumstances quickly turns implementations into a
“callback hell” [7]. This fragments the program’s control flow across numerous
syntactically-independent fragments of code, hampering compile-time optimiza-
tions. This causes an overhead that limits the benefits of reactive control [5].

We tackle this issue using a technique called reactive programming [3], rarely
employed in embedded computing because of resource constraints. We create
a reactive programming implementation tailored to the hardware we target,
with additional custom semantics. Using reactive programming requires to re-
factor the implementations of autopilots. In our experience, using proper code

6Note that this design considers the initial drone execution as representative of the rest of
the flight. Should this not be the case, a fail-over mechanism kicks in that recomputes the
logistic regression parameters from scratch.

5



(a) Quadcopter. (b) Hexacopter.

Figure 4: Custom aerial drones for performance evaluation.

inspection tools 7, the required effort is quite limited. Re-factoring Ardupilot
only required three days of work. Other autopilots required less time [5].

Final considerations. On the surface, reactive control may resemble the
notion of event-based control [1]. In the latter, however, the control logic is
expressly redesigned for settings different than ours; for example, in distributed
control to cope with limited bandwidth. Our work aims at re-using existing
control logic, whose properties are well understood. Different than event-based
control, however, reactive control is mainly applicable only to PID-like con-
trollers where the Proportional component dominates.

In the field of aerial drones, demonstrations exist showing motion control in
tasks such as throwing and catching balls [13] or flying in formation [14]. In
these applications, the low-level control does not operate aboard the drone. At
100 Hz or more, a powerful computer receives accurate localization data 8, runs
sophisticated control algorithms based on mechanical models expressed through
differential equations, and sends actuator commands back to the drones. Dif-
ferently, we aim at improving the performance of mainstream low-level control
running on embedded hardware.

Performance

We measured the performance of reactive control against the original imple-
mentation of Ardupilot as well as that of OpenPilot and Cleanflight. In the
following, we describe an excerpt of the results we collect [5].

We use the two custom drones of Fig. 4 plus a 3D Robotics Y6 drone. The
latter is peculiar as it is equipped with only three arms with two co-axial motor-
propellers assemblies at each end, requiring a drastically different control logic.
We test three environments: i) a 20x20 m indoor lab, termed Lab; ii) a rugby
field termed Rugby, using GPS; and iii) an archaeological site in Aquileia
(Italy) termed Arch [11]. The sites exhibit increasing environment influence,
from the mere air conditioning in Lab to average wind speeds of 8+ knots in

7goo.gl/0VZGAc
8goo.gl/Vh5Q4c

6

goo.gl/0VZGAc
goo.gl/Vh5Q4c


 0

 5

 10

 15

 20

 25

Lab Rugby Arch

Fl
ig

ht
 ti

m
e 

im
pr

ov
em

en
t (

%
)

Test environment

Quadcopter - Ardupilot
Hexacopter - Ardupilot

3DR Y6 - Ardupilot
Quadcopter - Cleanflight
Hexacopter - Cleanflight
Quadcopter - OpenPilot
Hexacopter - OpenPilot

 0

 5

 10

 15

 20

 25

Lab Rugby Arch

Fl
ig

ht
 ti

m
e 

im
pr

ov
em

en
t (

%
)

Test environment

Quadcopter - Ardupilot
Hexacopter - Ardupilot

3DR Y6 - Ardupilot
Quadcopter - Cleanflight
Hexacopter - Cleanflight
Quadcopter - OpenPilot
Hexacopter - OpenPilot

 0

 10

 20

 30

 40

 50

Lab Rugby ArchP
it
c
h

 e
rr

o
r 

im
p

ro
v
e

m
e

n
t 

(%
)

Test environment

(a) Pitch error improvement.

 0

 5

 10

 15

 20

 25

Lab Rugby ArchF
lig

h
t 

ti
m

e
 i
m

p
ro

v
e

m
e

n
t 

(%
)

Test environment

(b) Flight time improvement.

Figure 5: Performance improvements with reactive control.

Arch. The variety of software, hardware, and test environments demonstrates
the general applicability of reactive control.

Based on 260+ hours of tests, Fig. 5(a) shows the average improvements in
pitch error; these are significant, ranging from a 41% reduction with Cleanflight
in Lab to a 27% reduction with Ardupilot in the Arch. We obtain similar
results, sometimes better, for yaw and roll [5]. Comparing this performance with
earlier experiments [5], we confirm that it is the opportunity to spare iterations
of the control loop that enables more accurate control decisions. Not running the
control loop unnecessarily frees resources, increasing their availability whenever
there is actually the need to use them. In these circumstances, reactive control
dynamically increases the rate of control, possibly beyond the pre-set rate.

Still in Fig. 5(a), the improvements of reactive control apply to the Y6 as
well; in fact, these are highest in a given environment. This cannot be attributed
to its structural robustness; the Y6 is definitely the least “sturdy” of the three.
We conjecture that the different control logic of the Y6 offers additional op-
portunities to reactive control. A similar reasoning apply to Cleanflight, shown
in Fig. 5(a). Being the youngest of the autopilot we test, it is fair to expect
the control logic to be the least refined. Reactive control is still able to dras-
tically improve the pitch error, by a 32% (37%) factor with the quadcopter
(hexacopter) in Arch.

The improvements in attitude error translate into more accurate motion con-
trol and fewer attitude corrections. As a result, battery utilization improves.
Fig. 5(b) shows the results we obtain in this respect. Reactive control reaches up
to a 24% improvement. This means flying more than 27 min instead of 22 min
with OpenPilot in Arch. This figure is crucial for aerial drones; the improve-
ments reactive control enables are thus extremely valuable. Most importantly,
these improvements are higher in the more demanding settings. Fig. 5(b) shows
that the better resource utilization of reactive control becomes more important
as the environment is harsher. Similarly, the quadcopter shows higher improve-
ments than the hexacopter. The mechanical design of the latter already makes
it physically resilient. Differently, the quadcopter offers more ample margin to
cope with the environment influence in software.

7



Conclusion

Reactive control replaces traditional autopilot control by governing the exe-
cution of the control logic based on changes in the navigation sensors. This
allows the system to dynamically adapt the control rate to varying environment
dynamics. To that end, we conceived a probabilistic approach to trigger the
execution of the control logic, a way to carefully regulate the control executions
over time, and an efficient implementation on resource-constrained hardware.
The benefits provided by reactive control include higher accuracy in motion
control and longer operational times.

Acknowledgments. This work has benefited from the talents and hard work
of many students, including Endri Bregu, Daniel Cantoni, and Nicola Casamas-
sima. The work was partly supported by the Projects “Zero-energy Buildings in
Smart Urban Districts” (EEB), “ICT Solutions to Support Logistics and Trans-
port Processes” (ITS), and “Smart Living Technologies” (SHELL) of the Italian
Ministry for University and Research.

References

[1] K. J. Åström. Event based control. In Analysis and Design of Nonlinear Control
Systems. Springer Verlag, 2007.

[2] K. J. Åström and T. Hägglund. Advanced PID control. ISA - The Instrumentation,
Systems, and Automation Society, 2006.

[3] E. Bainomugisha et al. A survey on reactive programming. ACM Comput. Surv.,
45(4), 2013.

[4] S. Bouabdallah, A. Noth, and R. Siegwart. PID vs LQ control techniques applied
to an indoor micro quadrotor. In Proceedings of IROS, 2004.

[5] E. Bregu, D. Cantoni, N. Casamassima, L. Mottola, and K. Whitehouse. Reactive
control of autonomous drones. In Proceedings of ACM MOBISYS, 2016.

[6] W. Burgard et al. Collaborative multi-robot exploration. In Proceedings of ICRA,
2000.

[7] J. Edwards. Coherent reaction. In Proceedings of the ACM Conference on Object
Oriented Programming Systems Languages and Applications (OOPSLA), 2009.

[8] R. M. Faragher et al. Captain Buzz: An all-smartphone autonomous delta-wing
drone. In Workshop on Micro Aerial Vehicle Networks, Systems, and Applications
(colocated with ACM MOBISYS), 2015.

[9] D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant. Applied logistic regression,
volume 398. John Wiley & Sons, 2013.

[10] E. Miluzzo et al. Sensing meets mobile social networks: The design, implementa-
tion and evaluation of the CenceMe application. In Proceedings of ACM SENSYS,
2008.

[11] L. Mottola et al. Team-level programming of drone sensor networks. In Proceed-
ings of ACM SENSYS, 2014.

8



[12] F. Nex and F. Remondino. UAV for 3D mapping applications: A review. Applied
Geomatics, 2003.

[13] R. Ritz et al. Cooperative quadrocopter ball throwing and catching. In Proceed-
ings of IROS, 2012.

[14] M. Turpin, N. Michael, and V. Kumar. Decentralized formation control with
variable shapes for aerial robots. In Proc. of ICRA, 2012.

[15] M. Zhuang and D. Atherton. Automatic tuning of optimum PID controllers.
IEEE Proceedings on Control Theory and Applications, 140(3), 1993.

9


