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ABSTRACT
Autonomous drones represent a new breed of mobile com-
puting system. Compared to smartphones and connected
cars that only opportunistically sense or communicate, drones
allow motion control to become part of the application logic.
The efficiency of their movements is largely dictated by the
low-level control enabling their autonomous operation based
on high-level inputs. Existing implementations of such low-
level control operate in a time-triggered fashion. In contrast,
we conceive a notion of reactive control that allows drones to
execute the low-level control logic only upon recognizing the
need to, based on the influence of the environment onto the
drone operation. As a result, reactive control can dynami-
cally adapt the control rate. This brings fundamental bene-
fits, including more accurate motion control, extended life-
time, and better quality of service in end-user applications.
Based on 260+ hours of real-world experiments using three
aerial drones, three different control logic, and three hard-
ware platforms, we demonstrate, for example, up to 41%
improvements in motion accuracy and up to 22% improve-
ments in flight time.

1. INTRODUCTION
Robot vehicle platforms, often called “drones”, offer excit-

ing new opportunities for mobile computing. While many
mobile systems, such as smartphones and connected cars,
simply respond to device mobility, drones allow computer
systems to actively control device location. Such a feature
enables interactions with the physical world to happen in
new ways and with new-found scale, efficiency, or preci-
sion [4, 18, 8].

Autopilots. Fig. 1 schematically illustrates the hardware
and software components in modern drone platforms. Key
to their operation is the autopilot software implementing
the low-level motion control. The control loop processes
high-level commands coming from a ground-control station
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Figure 1: Hardware and software components in
modern drone platforms. Users configure high-level
mission parameters at the ground-control station (GCS),
whereas the autopilot software implements the low-level mo-
tion control aboard the drone.

(GCS) as well as various sensor inputs, such as accelerations
and GPS coordinates, to operate actuators such as electrical
motors that set the 3D orientation of the drone.

Together with the mechanical design, the autopilot soft-
ware is crucial to determine a drone’s performance along a
number of essential metrics. For example, the low-level con-
trol directly influences the quality of the shots when using
drones for imagery applications [17, 18]. Further, it is partly
responsible for the overall energy efficiency, as a drone’s life-
time is often a result of how streamlined is the autopilot
operation [5, 24].

Unsurprisingly, most existing autopilots employ Propor-
tional-Integral-Derivative (PID) [2] designs. Processing is
thus time-triggered: every T time units, sensors are probed,
control decisions are computed, and commands are sent to
the actuators. Such a deterministic operation simplifies im-
plementations and allows designers to directly rely on a vast
body of existing literature [2].

Reactive control. Based on a handful of key observations,
a fundamental leap of abstraction, and an unconventional
use of recent advances in programming languages, we con-
ceive a notion of reactive control that allows autopilots to
significantly improve a drone’s performance in both motion
accuracy and energy consumption. Rather than periodically
triggering the control logic, we only run the control logic
upon recognizing the need to. Depending on the influence
of the environment onto the drone operation, for example,
due to wind gusts or pressure gradients, control may run
more or less frequently, regardless of the the fixed rate of a
corresponding time-triggered implementation. As a result,
reactive control dynamically adapts the control rate.
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Figure 2: Ardupilot’s low-level control loop. The
time for a single iteration of the loop is split between fast
loop, which only includes critical motion control functional-
ity, and an application-level scheduler that runs non-critical
tasks.

Reactive control yields several advantages, including more
timely and adaptive control decisions leading to improved
motion accuracy and energy efficiency. As it exclusively
works in software, reactive control also requires no hardware
modifications. We provide concrete evidence of these bene-
fits across different aerial drone applications, based on 260+
hours of test flights in three increasingly demanding envi-
ronments, using a combination of three aerial drones, three
autopilot software, and three embedded hardware platforms.
Our results indicate, for example, that reactive control ob-
tains up to 41% improvements in the accuracy of motion,
and up to a 22% extension of flight times.

The remainder of the paper unfolds as follows. Sec. 2 pro-
vides the necessary background, elaborates on the funda-
mental intuitions behind reactive control, and outlines the
issues that are to be solved to make it happen. Sec. 3 de-
scribes the specific techniques we employ to address these
issues. Sec. 4 reports on the performance of reactive control
compared with traditional time-triggered implementations,
whereas Sec. 5 studies the impact of reactive control in a
paradigmatic end-user application. We conclude the paper
in Sec. 6 by discussing our current work towards obtaining
official certifications to fly drones running reactive control
over public ground.

2. BUILDING UP TO
REACTIVE CONTROL

Reactive control relies on concepts and techniques ger-
mane to statistics, embedded software, programming lan-
guages, control, and low-power hardware. In the following,
we try and smooth the waters for the readers by walking
them through the characteristics of target platforms, the
key observations leading to reactive control, and the issues
that are to be solved to concretely realize it.

2.1 Autopilots
Drones can be regarded as a cruder form of modern robo-

tics [9]. The high-level inputs coming from the GCS may
be a waypoint or a trajectory. Autopilots implement the
low-level control in charge of translating these inputs into
commands for the drone actuators.

Ardupilot (goo.gl/x2CHyM) is an example autopilot im-
plementation, providing reliable low-level control for aerial
drones and ground robots. The project boasts a large on-line
community and is at the basis of many commercial products.

Software. Fig. 2 shows the execution of Ardupilot’s low-
level control loop, split in two parts. The fast loop only
includes critical motion control functionality. The time left
from the execution of fast loop is given to an application-
level scheduler that distributes it among non-critical tasks
that may not always execute, such as logging. The sched-

Figure 3: Control based on raw, pitch, and yaw.

uler operates in a best-effort manner based on programmer-
provided priorities. Many autopilots share similar designs [7].

Initially, fast loop blocks waiting for a new value from
the Inertial Measurement Unit (IMU). This provides an in-
dication of the forces the drone is subject to, obtained by
combining the readings of accelerometers, gyroscopes, mag-
netometers, and barometer. Once a new value is available,
IMU information is combined with GPS readings to deter-
mine how the motors should operate to minimize the error
between the desired and actual pitch, roll, and yaw, shown
in Fig. 3. Multiple PID controllers inside fast loop are used
to this end.

In Ardupilot as well as the vast majority of autopilots, the
control rate is statically set to strike a reasonable trade-off
between motion accuracy and resource consumption, based
on a few “rules of thumbs” [25, 6]. For example, Ardupilot
runs at a fixed 400 Hz on the hardware we describe next.
This rate is not necessarily the maximum the hardware sup-
ports. The 400 Hz of Ardupilot, for example, are thought
to leave enough room—on average—to the scheduler. In
short bursts, control may run much faster than 400 Hz, as
long as some processing time is eventually allocated to the
scheduler.

Hardware. Autopilots typically run on resource-constrained
embedded hardware, for reasons of size and cost. A primary
example is the Pixhawk family of autopilot boards (goo.gl/
wU4fmk), which feature a Cortex M4 core at 168 MHz and
a full sensor array for navigation, including a 16-bit gyro-
scope, a 14-bit accelerometer/magnetometer, a 16-bit 3-axis
accelerometer/gyroscope, and a 24-bit barometer. Most of-
ten, at least a sonar and a GPS are added to provide posi-
tioning and altitude information, respectively.

Interestingly, the sensors on Pixhawk have similar capa-
bilities as those on modern mobile phones. In fact, many
argue that without the push to improve sensors due to the
rise of mobile phones, drone technology would have not
emerged [9]. Such sensors support energy-efficient high-
frequency sampling and often provide interrupt-driven modes
to generate a value upon verifying certain conditions. The
ST LSM303D mounted on the Pixhawk, for example, can
be programmed to generate an SPI interrupt based on three
thresholds. This is useful, for example, in human tracking
applications for functionality such as fall detection [15].

2.2 Intuition
Through our continuous work with drones as mobile com-

puting platforms [16, 19], we eventually noticed that the
autopilots’ PID controllers are mostly tuned so that it is
the Proportional component to dictate the actual controller
operation. The Derivative component can be kept to a mini-
mum though a careful distribution of weights [6, 11], whereas



precise sensor calibration may spare the Integral component
almost completely [6, 11, 22].

As a result of this observation, we concluded that a simple
relation exists between current inputs from the navigation
sensors and the corresponding actuator settings. With lit-
tle impact from the time-dependent Derivative and Integral
components, and with the Proportional component domi-
nating, small variations in the current sensor inputs likely
correspond to small variations in the actuator settings. As
an extreme case, as long as the sensor inputs do not change,
the actuator settings should remain almost unaltered. In
such a case, at least in principle, one may not run the con-
trol logic and simply retain the previous actuator settings.

Reactive control builds upon this intuition. We constantly
monitor the navigation sensors to understand when the con-
trol logic does need to run as a function of the instantaneous
environment conditions. These manifest as changes in the
inputs of navigation sensors. If these are sufficiently signifi-
cant to warrant a change in the physical drone behavior to
be compensated, reactive control executes the control logic
to compute new actuator settings. Otherwise, reactive con-
trol retains the existing configuration.

As we explain next, reactive control abstracts the problem
of recognizing such significant changes in a way that makes
it computationally tractable with little processing resources.
Moreover, because of the aforementioned characteristics of
sensor hardware on autopilot boards, monitoring the sensor
readings at the maximum possible rate usually bears very
little energy overhead. Reactive control, nonetheless, makes
it possible to rely on the low-power interrupt-driven modes
if available, as we explain next.

As a result, when sensor inputs change often, reactive con-
trol makes control run repeatedly, possibly at rates higher
than the static settings of a time-triggered implementation.
When sensor inputs exhibit small or no variations, the rate
of control execution reduces, freeing up processing resources
that may be needed at different times.

2.3 Challenge
Realizing reactive control is, however, non-trivial. Three

issues are to be solved, as we illustrate in Sec. 3:

1) What is a “significant” change in the sensor input de-
pends on several factors, including the accuracy of sensor
hardware, the physical characteristics of the drone, the
control logic, and the granularity of actuator output. We
opt for a probabilistic approach to tackle this problem,
which abstracts from all these aspects by employing a
form of auto-tuning of the conditions leading to running
the control logic.

2) An indication for running the control logic may origi-
nate from different sensors, at different rates, and asyn-
chronously with respect to each other. One problem is
thus how to handle the possible interleavings. Moreover,
not running the control loop for too long may negatively
affect the drone’s stability, possibly preventing to reclaim
the correct behavior. We tackle these issues by only
changing the execution of the control logic over time,
rather than the logic itself.

3) Reactive control must run on resource-constrained em-
bedded hardware. When implementing reactive control,
however, the code quickly turns into a “callback hell” [10]
as the operation becomes inherently event-driven. We
experimentally find that, using standard languages and

compilers, this negatively affects the execution speed,
thus limiting the gains [7]. We design and implement
a custom realization of reactive programming (RP) tech-
niques [3] to tackle this problem.

The context where we are to address these issues shapes
the challenge in unseen ways. For example, aerial drone
demonstrations exist showing motion control in tasks such
as throwing and catching balls [21], flying in formation [23],
and carrying large payloads [14]. In these settings, the low-
level control does not operate aboard the drone. At 100 Hz
or more, a powerful computer receives accurate localization
data from high-end motion capture systems, runs sophisti-
cated control algorithms based on drone-specific mechanical
models expressed through differential equations, and sends
actuator commands to the drones. Differently, we aim at im-
proving the performance of mainstream low-level control on
embedded hardware, targeting mobile sensing applications
that operate in the wild.

On the surface, reactive control may also resemble the no-
tion of event-based control [1]. Here, however, the control
logic is often expressly redesigned for settings different than
ours; for example, in distributed control systems to cope
with limited communication bandwidth or unpredictable la-
tency. This requires a different theoretical framework [1].
In contrast, we aim at re-using existing control logic, whose
properties are well understood, and at doing so with little
or no knowledge of its corresponding implementation and its
parameter tuning. Different than event-based control, in ad-
dition, reactive control is mainly applicable only to PID-like
controllers where the Proportional component dominates.

3. REACTIVE CONTROL
The key issues we discussed require dedicated solutions,

as we explain next.

3.1 Conditions for Reacting
Problem. It may seem intuitive that the more “signifi-
cant” is a change in a sensor reading, the more likely is the
necessity to run the control loop. Such a condition would
indicate that something just happened in the environment
that requires the drone to react. However, what is a “sig-
nificant” change in the sensor readings depends on several
factors, including the accuracy of sensor hardware, the phys-
ical characteristics of the drone, and the actual control logic.

Approach. Our solution abstracts away from these as-
pects: despite the control logic is deterministic, we consider
a change in the control output as a random phenomena. The
input to this phenomena is the difference between consecu-
tive samples of the same navigation sensor; the output is a
binary value indicating whether the actuator settings need
to change. If so, we need to run the control loop to compute
the new settings. Therefore, an accurate statistical estima-
tor of such random phenomena would allow us to take an
informed decision on whether to run the control loop.

Among estimators with a binary dependent variable, logis-
tic regression [12], shown in Fig. 4 in its general form, closely
matches this intuition. For small changes in the sensor in-
puts, the probability of changes in the actuator settings is
small. When changes in sensor inputs are large, a change in
the actuator settings becomes (almost) certain. It also turns
out it is possible estimate the parameters shaping the curve
of Fig. 4 efficiently, because logistic regression allows one to
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Figure 4: Example logistic function.

employ traditional estimators, such as least squares [12].

Operation. We employ one logistic regression model per
navigation sensor. Given a change in the sensor readings,
we compute the probability that the change corresponds to
new control decisions, according to a corresponding logistic
regression model. If this is greater than a threshold Prun ,
we execute the control logic, with all other inputs set to the
most recent value; otherwise, we maintain the earlier output
to the actuators.

This approach assumes that changes in a sensor’s inputs
at different times are statistically independent. This is jus-
tified because the time-dependent I, D components of the
PID controllers bear little influence in our setting, as dis-
cussed earlier. Moreover, maintaining the earlier output to
the actuators is possible only as long as the control set-
point does not change in the mean time. This is most often
the case when drones hover or perform waypoint navigation,
but rarely happens in applications such as aerial acrobatics,
where this approach would probably be inefficient.

Parameter Prun offers a knob to trade processing resources
with the tightness of control. Large values of Prun spare
a significant fraction of control executions. However, the
drone may require drastic corrections whenever the con-
trol loop does run; in a sense, motion becomes more “ner-
vous”. Small values of Prun limit the processing gains. How-
ever, control runs more often, ensuring the drone operates
smoothly. We demonstrate that gains over time-triggered
control are seen for many different settings of Prun [7]; there-
fore, tuning this parameter is typically no major issue.

Run-time. The question is now how to realize the func-
tionality above at run-time, and especially how to gather
the data required to tune the logistic regression models. To
that end, we initially run the control loop at fixed rate for a
predefined limited time, tracking whether the actuator set-
tings change. This gives us an initial data set to employ least
square estimators to compute the parameters of logistic re-
gression. From this point on, reactive control kicks in and
drives the execution of the control logic based on whether
the probability of new actuator settings, according to the
logistic regression models, surpasses Prun .

False positives may occur when logistic regression triggers
the execution of the control logic, yet the newly computed
actuator settings stay the same. In this case, the change in
the sensor reading is added to the data set initially used for
tuning the regression models. The least square estimation
repeats throughout the execution, as part of the best-effort
scheduler part of the autopilot control loop, shown in Fig. 2,
taking false positives into account. Such a simple form of
auto-tuning [25] progressively improves the estimation accu-

Note that this design considers the initial drone execution
as representative of the rest of the flight. Should this not
be the case, a fail-over mechanism kicks in that recomputes
the logistic regression parameters from scratch.

racy over time. We discuss the case of false negatives next.

3.2 Dealing with Time
Problem. PID controllers used in autopilots are conceived
under the assumption that sensors are sampled almost si-
multaneously and at a fixed rate. In reality, the time of
sampling, and therefore of possibly recognizing the need to
execute the control loop, is not necessarily aligned across
sensors. Drastic changes in the sensor inputs may also be
correlated. For example, when the accelerometers record a
sudden increase because of a wind gust, a gyroscope also
likely records significant changes. A traditional implemen-
tation would process these inputs together.

Approach. We take a conservative approach to address
these issues. Based on the sampling frequency of every sen-
sor in the system, we compute the system’s hyperperiod as
the smallest interval of time after which the sampling of
all sensors repeats. Upon recognizing first the conditions
requiring the execution of the control loop, we wait until
the current hyperperiod completes. This allows us to “ac-
cumulate” all inputs on different sensors, giving the most
up-to-date inputs to the control logic at once.

Moreover, we need to cater for situations where false nega-
tives happen in a row, potentially threatening dependability.
To address this issue, we run the control loop anyways at
very low frequency, typically in the range of a few Hz. If
such executions compute new actuator settings, the drone
most likely applies some significant correction to the flight
operation that causes reactive control to be triggered imme-
diately after. If logistic regression originally indicated that
the current changes in sensor readings did not demand to
run the control logic, the current iteration is considered a
false negative and feed back to the data set used for tuning
the regression parameters. The next time the least square
estimation executes, as explained above, these false nega-
tives are also taken into account.

Note that the techniques hitherto described do not require
one to alter the control logic itself; they solely drive its ex-
ecution differently over time. The single iteration remains
essentially the same as in a traditional time-triggered imple-
mentation. This means reactive control does not require to
conceive a new control logic; the existing ones can be re-used
provided an efficient implementation of such asynchronous
processing is possible, as we discuss next.

3.3 Implementation
Problem. The control logic is implemented as multiple pro-
cessing steps arranged in a complex multi-branch pipeline.
Moreover, each such processing step may—in addition to
producing an output immediately useful to take control deci-
sions—update global state used at a different iteration else-
where in the control pipeline.

Using reactive control, depending on what sensor indi-
cates the need to execute the control loop, different slices of
the code may need to run while other parts may not. The
parts of the control pipeline that do not run at a given itera-
tion, however, may need to run later because of new updates
to global state. Thus, any arbitrary processing step—not
just those directly connected to the sensors’ inputs—might
potentially need to execute upon recognizing a significant
change in given sensor inputs.

Employing standard programming techniques in these cir-
cumstances quickly turns implementations into a “callback



hell” [10]. This fragments the program’s control flow across
numerous syntactically-independent fragments of code, ham-
pering compile-time optimizations. We experimentally found
that this causes an overhead that limits the benefits of re-
active control [7].

Approach. We tackle this issue using reactive programming
(RP) [3]. RP is increasingly employed in applications where
it is generally impossible to predict when interesting events
arrive [3]. It provides abstractions to automatically manage
data dependencies in programs where updates to variables
happen unpredictably. Consider for example:

a= 2;
b= 3;
c= a + b;

In sequential programming, variable c retains the value 5
regardless of any future update to variable a or b. Updating
c requires an explicit assignment following the changes in a

or b. It becomes an issue to determine where to place such
an assignment without knowing when a or b might change.

Using RP, one declaratively describes the data dependen-
cies between variables a, b, and c. As variables a and b

change, the value of c is constantly kept up-to-date. Then,
variable c may be input to the computation of further state
variables. The data dependencies thus take the form of an
(acylic) graph, where the nodes represent individual values,
and edges represent input/output relations.

The RP run-time support traverses the data dependency
graph every time a data change occurs, stopping whenever
a variable does not change its value as a result of changes in
its inputs. Any further processing would be unnecessary be-
cause the other values in the graph would remain the same.
This is precisely what we need to efficiently implement re-
active control; however, RP is rarely employed in embedded
computing because of resource constraints.

RP-Embedded. We rely on a few key characteristics of
reactive control to realize a highly efficient RP implementa-
tion. First, the data dependency graph encodes the control
logic; therefore, its layout is known at compile-time. Second,
the sensors we wish to use as initial inputs are only a hand-
ful. Finally, the highest frequency of data changes is known;
for each sensors, we are aware or can safely approximate the
highest sampling frequency.

Based on these, we design and implement RP-Embedded:
a C++ library to support RP on embedded resource-con-
strained hardware. RP-Embedded trades generality for ef-
ficiency, both in terms of memory consumption and process-
ing speed, which are limited on our target platforms. We
achieve this by relying heavily on statically-allocated com-
pact data structures to encode the data dependency graph.
These reduce memory occupation compared with container
classes of the STD library used in many existing C++ RP
implementations, and improve processing speed by sparing
pointer dereferences and indirection operation during the
traversal. This comes at the cost of reduced flexibility: at
run-time, the data dependency graph can only change within
strict bounds determined at compile-time.

In addition, RP-Embedded provides custom time seman-
tics to handle the issues described in Sec. 3.2. The tradi-
tional RP semantics would trigger a traversal of the data
dependency graph for any change of the inputs. With re-
active control, however, the traversal caused by changes in
a high-frequency sensor may be immediately superseded by

Inertial data

3D PositionSpeed Altitude

Attitude controlDynamics

Accel Gyro Magn

Baro GPS

to the motors

Sonar

Figure 5: Ardupilot’s control loop for copters after
refactoring to use RP-Embedded. Squashed rectan-
gles indicate sensor inputs, squared rectangles indicate global
state information.

the traversal caused by changes in another sensor within
the same hyperperiod. The output that matters, however,
is only the one produced by the second traversal.

To avoid unnecessary processing, RP-Embedded allows
one to characterize the inputs to the data dependency graph
with their maximum rate of change. This information is used
to compute the system’s hyperperiod. Every time a value
is updated in the data dependency graph, RP-Embedded
waits for the completion of the current hyperperiod before
triggering the traversal, which allows all inputs in the cur-
rent hyperperiod to be considered together. To the best of
our knowledge, such a semantics is not available in any RP
implementation, regardless of the language.

Using RP-Embedded. Using RP-Embedded for imple-
menting reactive control requires to reformulate the imple-
mentation of the control logic in the form of a dependency
graph. Sensor inputs remain the same as in the original
time-triggered implementation, as well as control outputs
directed to the actuators. The key modification is in pro-
cessing changes in the sensor inputs: rather than immedi-
ately updating the inputs to the data dependency graph,
we first check whether the corresponding logistic regression
model would indicate the need to execute the control logic,
as explained in Sec. 3.1.

Other than that, turning the control logic into a data de-
pendency graph essentially boils down to a problem of code
refactoring. Software engineering offers a wide literature
on the subject [13]. Even in the absence of dedicated sup-
port, our experience indicates that the needed transforma-
tions can be implemented with little manual effort. Fig. 5
shows the data dependency graph of the Ardupilot control
loop for copters, which a single person on our team real-
ized and tested in three days of work. Ardupilot is one of
the most complex autopilot implementations. The other au-
topilots we test in Sec. 4 are simpler, and it took from one
to two work days to refactor them.

4. PERFORMANCE
We measure the performance of reactive control against

the original Ardupilot. We also apply reactive control to
two other autopilot implementations, namely OpenPilot and
Cleanflight, and repeat the same comparison.

Setup. We use two custom drones, shown in Fig. 6, and
a 3D Robotics Y6 drone. The latter is peculiar as it is

The OpenPilot project is currently discontinued. The com-
munity behind OpenPilot, however, forked a new project
called LibrePilot (goo.gl/KnZ3hG) that shares most of the
original codebase. Reactive control is thus equally appli-
cable to LibrePilot, and we expect the performance to be
similar to that we measure with OpenPilot.



(a) Quadcopter. (b) Hexacopter. (c) 3DR Y6.

Figure 6: Aerial drones for performance evaluation.
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(a) Pitch error improvement.
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Figure 7: Performance improvements with reactive control.

equipped with only three arms with two co-axial motor-
propellers assemblies at each end, requiring a drastically
different control logic.

We test three environments: i) a 20x20 m indoor lab,
termed Lab, where localization happens using visual tech-
niques; ii) a rugby field termed Rugby, using GPS; and iii)
an archaeological site in Aquileia (Italy) termed Arch [16],
again using GPS. The sites exhibit increasing environment
influence, from the mere air conditioning in Lab to average
wind speeds of 8+ knots in Arch. The variety of software,
hardware, and test environments demonstrates the general
applicability of reactive control.

We test OpenPilot and Cleanflight by replacing Ardupilot
and the Pixhawk board on either the quadcopter or the hex-
acopter of Fig. 6; however, only Ardupilot supports the Y6.
The original time-triggered implementation of OpenPilot
and Cleanflight resembles the design of Ardupilot shown in
Fig. 2, but the control logic differs substantially in both so-
phistication and tuning. Further, the autopilot hardware
for OpenPilot and Cleanflight differ in processing capabil-
ities and sensor equipment, compared with the Pixhawk.
These differences are instrumental to investigate the general
applicability of reactive control.

To study the accuracy of motion, we measure the attitude
error, that is, the difference between the desired and actual
3D orientation of the drone. The former is determined by
the autopilot as the desired setpoint, whereas the actual 3D
orientation is recorded through the on-board sensors. Their
difference is the figure the control logic aims at minimizing.
If the error was constantly zero, the control would attain
perfect performance; the larger this figure, the less effective
is the autopilot. Measuring these figures in a minimally-
invasive way requires dedicated hardware and software [7].

To understand how the accuracy of flight control impacts

the drone lifetime, we also record the flight time as the time
between the start of an experiment and the time when the
battery falls below a 20% threshold. For safety, most GCS
implementations instruct the drone to return to the launch
point upon reaching this threshold. In general, the lifetime
of aerial drones is currently extremely limited. State of the
art technology usually provides at most half an hour of op-
eration. This aspect is thus widely perceived as a major
hampering factor.

In the following, we describe an excerpt of the results we
collect based on 260+ hours of test flights performing way-
point navigation in the three environments [7].

Results. As an example, Fig. 7(a) shows the average im-
provements in pitch error; these are significant, ranging from
a 41% reduction with Cleanflight in Lab to a 27% reduc-
tion with Ardupilot in the Arch. We obtain similar re-
sults, sometimes better, for yaw and roll [7]. Comparing this
performance with earlier experiments, we confirm that it is
the ability to shift processing resources in time that enables
more accurate control decisions [7]. Not running the control
loop unnecessarily frees resources, increasing their availabil-
ity whenever there is actually the need to use them. In
these circumstances, reactive control dynamically increases
the rate of control, possibly beyond the pre-set rate.

Evidence of this is shown in Fig. 8, showing an exam-
ple trace that indicates the average control rate at second
scale using Ardupilot and the hexacopter. In Arch, reac-
tive control results in rapid adaptations of the control rate
in response to the environment influence, for example, wind
gusts. On average, the control rate starts slightly below the
400 Hz used in time-triggered control and slowly increases.
An anemometer we deploy in the middle of the field con-
firms that the average wind speed is growing during this
experiment.



 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0  100  200  300  400  500  600

R
a
te

 a
t 
s
e
c
o
n
d
 s

c
a
le

 (
H

z
)

Time (s)

Reactive - Arch
Reactive - Lab

Traditional fixed-frequency

Figure 8: Average rate of control at second scale in
two example Ardupilot runs. Reactive control adapts
the rate of control executions both in the short and long term,
and according to the perceived environment influence.

In contrast, Fig. 8 shows reactive control in Lab exhibiting
more limited short-term adaptations. The average control
rate stays below the rate of time-triggered control, with oc-
casional bursts whenever corrections are needed to respond
to environmental events, for example, when passing close to
a ventilation duct. The trends in Fig. 8 demonstrate reac-
tive control’s adaptation abilities both in the short and long
term.

Still in Fig. 7(a), the improvements of reactive control ap-
ply to the Y6 as well; in fact, these are highest in a given
environment. This cannot be attributed to its structural ro-
bustness; the Y6 is definitely the least “sturdy” of the three.
We conjecture that the different control logic of the Y6 offers
additional opportunities to reactive control. A similar rea-
soning applies to Cleanflight, as shown in Fig. 7(a). Being
the youngest of the autopilot we test, it is fair to expect the
control logic to be the least refined. Reactive control is still
able to drastically improve the pitch error, by a 32% (37%)
factor with the quadcopter (hexacopter) in Arch.

The improvements in attitude error translate into more
accurate motion control and fewer attitude corrections. As
a result, energy utilization improves. Fig. 7(b) shows the
results we obtain in this respect. Reactive control reaches
up to a 24% improvement. This means flying more than 27
min instead of 22 min with OpenPilot in Arch. This figure
is crucial for aerial drones; the improvements reactive con-
trol enables are thus extremely valuable. Most importantly,
these improvements are higher in the more demanding set-
tings. Fig. 7(b) shows that the better resource utilization of
reactive control becomes more important as the environment
is harsher. Similarly, the quadcopter shows higher improve-
ments than the hexacopter. The mechanical design of the
latter already makes it physically resilient. Differently, the
quadcopter offers more ample margin to cope with the en-
vironment influence in software.

5. END-USER APPLICATIONS
The performance improvements of reactive control reflect

in more efficient operation of end-user drone applications
ranging from 3D reconstruction to search-and-rescue [18].
The latter is a paradigmatic example of active sensing func-
tionality, whereby data gathered by application-specific sen-
sors guides the execution of the application logic, which in-
cludes here the drone movements. We build a prototype
system to investigate the impact of reactive control in this
kind of applications.

System. Professional alpine skiers are used to carry a de-
vice called“Appareil de Recherche de Victimes en Avalanche”

Figure 9: Example of ARVA-driven navigation when
using reactive (black) and time-triggered control
(yellow). Time-triggered control occasionally produces
highly inefficient paths, whereas we never observe similar
behaviors with reactive control.

(ARVA) [20] during their excursions. ARVA is nothing but
a 457 KHz radio transmitter expressly designed for finding
people under snow. The device emits a radio beacon a res-
cue team can pick up using another ARVA receiver device.
The latter essentially operates as a direction finding device,
generating a “U-turn” signal whenever it detects the person
carrying it starts moving away from the emitter. Modern
ARVA devices are able to reach a 5 m accuracy in locating
an emitter under 10 m of snow [20].

Our goal is to control the drone so that it reaches the
supposed location of an ARVA emitter. To that end, we
integrate a Pieps DSP PRO [20] ARVA receiver with the
Pixhawk board. A custom PID controller aligns the drone’s
yaw with the direction pointed by the on-board ARVA re-
ceiver. Roll and pitch, instead, are determined to fly at con-
stant speed along the direction indicated by the ARVA re-
ceiver. Navigation is thus entirely determined by the ARVA
inputs. We implement this controller both using reactive
control by probing the ARVA device as fast as possible, and
with time-triggered control at 400 Hz, that is, the same as
in the original time-triggered implementation of Ardupilot.

We place an ARVA transmitter at one end of Rugby, and
set up the quadcopter at 100 m distance facing opposite
to it. Even though GPS does not provide any inputs for
navigation, we use it to track the path until the first time
the ARVA device generates the“U-turn”signal. We compare
the duration and length of the flight when using reactive or
time-triggered control. We repeat this experiment 20 times
in comparable environmental conditions.

Results. Reactive control results in a 21% (11%) reduction
in the duration (length) of the flight, on average. Time-
triggered control also shows higher variance in the results,
occasionally producing quite inefficient paths. Fig. 9 shows
an example. The path followed by reactive control appears
fairly smooth. In contrast, time-triggered control shows a
convoluted trajectory at about one-third of the distance,
where the yaw is almost ±90◦ compared to the target.

The logs we collect during the experiment indicate that
the reason for this behavior is essentially the inability of
time-triggered control to promptly react. Probably because
of a sudden wind gust, at some point the drone gains a
lateral momentum. Time-triggered control is unable to re-
act fast enough; a higher than 400 Hz rate would probably
be needed in this case, and the drone turns almost 90◦. We
never observe this behavior with reactive control, which bet-



ter manages available processing resources against environ-
ment influences.

6. CONCLUSIONS AND OUTLOOK
Reactive control replaces the traditional time-triggered

implementation of drone autopilots by governing the execu-
tion of the control logic based on changes in the navigation
sensors. This allows the system to dynamically adapt the
control rate to varying environment dynamics. To that end,
we conceived a probabilistic approach to trigger the execu-
tion of the control logic, a way to carefully regulate the con-
trol executions over time, and an efficient implementation on
resource-constrained embedded hardware. The benefits pro-
vided by reactive control include higher accuracy in motion
control and longer flight times.

We are currently working towards obtaining official cer-
tifications from the Italian civil aviation authority to fly
drones running reactive control over public ground. Sur-
prisingly, the major hampering factor is turning out not to
be reactive control per se. The evidence we collected dur-
ing our experiments, plus i) additional fallback mechanisms
we implement to switch back to time-triggered control in
case of problems, and ii) extensive tests conducted by inde-
pendent technicians and professional pilots, were sufficient
to convince the authority on the efficient and dependable
operation of reactive control.

Rather, the authority would like to obtain a precise speci-
fication of what kind of drone, intended in its physical parts,
can support reactive control. In computing terms, this es-
sentially means a specification of the target platform. This
task represents a multi-disciplinary challenge, in that it re-
quires skills and expertise beyond the computing domain
and reaching into electronics, aeronautics, and mechanics.
We believe much of the future of computer science rests here,
at the confluence with other disciplines.
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