
On Intermittence Bugs in the
Battery-Less Internet of Things (WIP Paper)

Andrea Maioli
Politecnico di Milano, Italy

andrea1.maioli@mail.polimi.it

Luca Mottola
Politecnico di Milano, Italy and RI.SE SICS, Sweden

luca.mottola@polimi.it

Muhammad Hamad Alizai
LUMS, Pakistan

hamad.alizai@lums.edu.pk

Junaid Haroon Siddiqui
LUMS, Pakistan

junaid.siddiqui@lums.edu.pk

Abstract
The resource-constrained devices of the battery-less Internet
of Things are powered off energy harvesting and compute
intermittently, as energy is available. Forward progress of pro-
grams is ensured by creating persistent state. Mixed-volatile
platforms are thus an asset, as they map slices of the address
space onto non-volatile memory. However, these platforms
also possibly introduce intermittence bugs, where intermit-
tent and continuous executions differ. Our ongoing work on
intermittence bugs includes (i) an analysis that demonstrates
their presence in settings that current literature overlooks;
(ii) the design of efficient testing techniques to check their
presence in arbitrary code, which would be otherwise prohibi-
tive given the sheer number of different executions to check;
(iii) the implementation of an offline tool called ScEpTIC that
implements these techniques. ScEpTIC finds the same bugs
as a brute-force approach, but is six orders of magnitude faster.

CCS Concepts • Computer systems organization →
Embedded systems.

Keywords Intermittence bugs, Intermittent computing, Tran-
siently-powered computing, Mixed-volatile systems.
ACM Reference Format:
Andrea Maioli, Luca Mottola, Muhammad Hamad Alizai, and Junaid
Haroon Siddiqui. 2019. On Intermittence Bugs in the Battery-Less
Internet of Things (WIP Paper). In Proceedings of the 20th ACM
SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools
for Embedded Systems (LCTES ’19), June 23, 2019, Phoenix, AZ, USA.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3316482.
3326346

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
LCTES ’19, June 23, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6724-0/19/06. . . $15.00
https://doi.org/10.1145/3316482.3326346

1. a = 0;
<CHECKPOINT>
2. b = a;
3. b = b+ 1;
4. a = b;

Shutdown

5. ...

a: 0

During
Checkpoint

a: 1

After
Shutdown

1. a = 0;
<CHECKPOINT>
2. b = a;
3. b = b+ 1;
4. a = b;
5. ...

a: 1

After
Restore

a: 2

Figure 1. Example of a data access bug.

1 Introduction
Energy harvesting is enabling a battery-less Internet of Thin-
gs (IoT) [10, 13, 19, 22, 23, 26]. Energy provisioning from
the environment, however, is generally erratic. Resource-
constrained IoT devices consequently experience frequent
shutdowns. Executions become intermittent, namely, they
consist of intervals of active computation interleaved by
periods of recharging energy buffers, such as capacitors, and
no computation. Shutdowns normally make devices lose
their state, to later restart from scratch when energy is back.
Existing systems rely on persistent state to ensure for-

ward progress of programs [1–3, 12, 14, 21, 25]. Recent solu-
tions target mixed-volatile platforms, such as the MSP430-
FRxxxx [11] series, which facilitate handling persistent state
as they map slices of the address space to non-volatile mem-
ory (NVM), such as FRAM. While data structures allocated
on NVM require no additional handling to survive power
failures, explicit checkpoints create persistent duplicates of
volatile data, including registers and program counter.

Existing solutions differ in when to take a checkpoint [1–
3, 12, 14, 21, 25]. Systems based on voltage monitoring may,
in principle, preempt the execution to take a checkpoint
anywhere in the code [1, 2]. The execution then continues
until either another checkpoint takes place or power fails.
Intermittence bugs. Intermittent execution introduces the
possibility of intermittence bugs [4, 14, 20, 25], where pro-
grams reach a state unattainable in a continous execution.

Fig. 1 shows an example. Variable a is allocated on NVM. A
checkpoint occurs after line 1. Lines 2 to 4 eventually modify
the value of a. The execution continues until power fails.
When energy is back, the execution resumes with the state
of volatile data from the checkpoint, that is, it restarts from
line 2. However, a being on NVM, its value is the one written

https://doi.org/10.1145/3316482.3326346
https://doi.org/10.1145/3316482.3326346
https://doi.org/10.1145/3316482.3326346

LCTES ’19, June 23, 2019, Phoenix, AZ, USA A. Maioli, L. Mottola, M. H. Alizai, J. H. Siddiqui

at line 4 before the power failure, that is, the value produced
by a later instruction compared to where execution resumes
after the power failure [20]. Lines 2 to 4 increment a again,
producing a different result than a continous execution.
In this work, we aim to (i) comprehensively understand

the conditions possibly leading to an intermittence bug, and
(ii) given certain program inputs, exhaustively test arbitrary
code to identify their presence. Identifying intermittence
bugs allows programmers to take informed decisions on tar-
get platforms, software configurations, and system support.
For example, if given data structures or checkpoint place-
ments appear to introduce intermittence bugs, programmers
may opt for a different design or system support.
Related work.We call the kind of bug in Fig. 1 data access
bug. We demonstrate in Sec. 2, however, that intermittence
bugs may appear in other settings as well, overlooked by
prior work. Existing literature addresses intermittence bugs
at compile time by placing checkpoints to avoid their occur-
rence [16, 25] or with custom programming abstractions that
encourage programmers to write bug-free code [5, 14, 15].

For example, Ratchet [25] is a compile-time solution that
instruments source code to prevent data access bugs, but
remains largely oblivious to other types of intermittence
bugs. Ratchet energy overhead is significant; system perfor-
mance is arguably practical only where all data but registers
and program counter are on NVM. Custom programming
abstractions [5, 14, 15] force programmers to learn new con-
cepts and possibly to refactor existing codebases, hampering
adoption. They also incur in significant run-time overhead.

A few tools exist to perform general testing of intermittent
programs. For example, Ekho [9] allows developers to recre-
ate a given environments by recording and replyaing energy
harvesting traces. EDB [4] offers an interactive debugging
environment that reduces interference with the energy state
of the target device. Siren [7] introduces NVM and energy
simulation capabilities in the MSPSim [6] emulator. These
tools may somehow be adapted to manually check for data
access bugs, if one knows what to look for.
Testing intermittence bugs.Given certain program inputs,
exhaustively checking for intermittence bugs is, in principle,
a challenge. One should check any possible combination
of checkpoint placement and number of instructions until
power failure, which may happen at any point in the code.
A static analysis of the program would not provide run-
time information required for analyzing the NVM, such as
accessed addresses and memory content. Performing this
check on target hardware is plainly impractical.
We call execution depth (ED) the maximum number of

instructions possibly re-executed when resuming after a
power failure. One of the simplest benchmark in intermittent
computing is CRC computation, which accounts for 5 · 104
machine-code instructions. Checking all possible combina-
tions for reasonable values of ED as explained above results

Addr. Content
0xFFF0 ...

0xFFF1
f1 return
address

0xFFF2 ...S
t
a
c
k

G
r
o
w
t
h

Stack after f1() call

Addr. Content
0xFFF0 ...

0xFFF1
f2 return
address

0xFFF2 ...S
t
a
c
k

G
r
o
w
t
h

Stack after f2() call

6. f1();
1. ...

<CHECKPOINT>
2. ...

3. return x;

7. f2();
1. ...

Shutdown

2. return y;

8. ...

6. f1();
1. ...

<CHECKPOINT>
2. ...

3. return x;

7. f2();
1. ...

2. return y;

8. ...

Addr. Content
0xFFF0 ...

0xFFF1
f2 return
address

0xFFF2

Stack after restore

Jump due to a
wrong return ad-
dress in the stack.

R
eb

o
ot

Figure 2. Example of activation record bug.

in analyzing 2.34 · 1013 machine-code instructions. Our pro-
totype emulator reaches a speed of 1.8 · 104 instructions per
second, which means 41 years for testing CRC computation.
We present in Sec. 3 techniques that reduce the process-

ing times to identify intermittence bugs. Sec. 4 reports early
results using ScEpTIC: a prototype tool we design that im-
plements these techniques. ScEpTIC yields a speedup of six
orders of magnitude compared to a brute-force approach,
which makes testing for intermittence bugs feasible in a
matter of hours in the worst case.

Our ongoing work, discussed in Sec. 5, includes analysing
interactions with the external environment through sensors
and actuators, as well studying as intermittence bugs inten-
tionally left occurring to implement intermittence-aware
programs. Both features are not discussed in the literature.

2 Understanding Intermittence Bugs
We recognize the occurrence of intermittence bugs in set-
tings other than Fig. 1. Key to these insights is reasoning at
the level of machine code and raw memory accesses, rather
than source code [4, 14, 20]. We identify three kinds of inter-
mittence bug. They all share the same underling write/read
pattern, but the consequences are different for each of them.

2.1 Data Access Bug
The example of Fig. 1 is a case of data access bug. In essence,
it is caused by a write-after-read hazard on a NVM address.
We say a data access bug exists whenever x is a memory
address in NVM and an ordered sequence of machine-code
instructions I1, ..., In exists such that:

• I1 loads a value from an address x ,
• In modifies the value stored at address x ,
• no checkpoint exists in the sequence I1, ..., In .

These conditions entail that if a power failure occurs after
In , the system resumes before I1 which is then re-executed; I1
then reads the value produced by In before the power failure,
that is, from a later instruction.

This type of intermittence bug is the only one recognized
in the literature [4, 14, 20, 25]. A possible fix for this bug is
placing a checkpoint between I1 and In to avoid re-executing
the load operation when resuming [25].

2.2 Activation Record Bug
An activation record bug is a program state where a function
reads non-volatile information from the activation record of

On Intermittence Bugs in the Battery-Less Internet of Things (WIP Paper) LCTES ’19, June 23, 2019, Phoenix, AZ, USA

p:
0xF3B16260

Heap content:

Address Content

0xF3B16260 5

0xF3B16264 Free

Initial
State

1. int ∗p;
2. p = malloc(sizeof(int));
3. ∗p = 5;

<CHECKPOINT>
4. c = ∗p+ 7;
5. free(p);

Shutdown

7. ...

p:
0xF3B16260

Heap content:

Address Content

0xF3B16260 Free

0xF3B16264 Free

State
After

Restore

2. ...
3. ∗p = 5;
<CHECKPOINT>
4. c = ∗a+ 7;

?

Figure 3. Example of memory map bug.
a function to be executed in the future. This bug may lead to
wrong results or unwanted jumps.

Fig. 2 shows an example. A call to function f1 executes first
and its activation record is placed on the stack. A checkpoint
takes place after line 2 inside f1. When f1 returns, its acti-
vation record pops from the stack and execution continues
from line 7. The stack content, which is stored on NVM, is
not deleted when returning from f1; merely the stack pointer
register changes. A call to f2 executes next. When placing its
activation record on the stack, the one of f1 is overwritten.
If a shutdown happens during the execution of f2, the exe-
cution resumes inside f1 according to the checkpoint data,
but the activation record is that of f2.
The consequences depend on a number of factors. Fig. 2

shows the case where the return address from f2 is read as
the one of f1 when execution resumes. In the general case,
the sequence of pop instruction belonging to the epilogue
of f1 may read the values produced by push instructions
belonging to the prologue of f2. This applies to saved regis-
ters, parameters, and local variables. Also, note that f2 may
equally be a programmer-defined interrupt handler that asyn-
chronously fires at unpredictable times, making the issue
even more difficult to track down.

We say an activation record bug exists whenever the stack
is allocated on NVM and an ordered sequence of machine-
code instructions I1, ..., In exists such that:

• I1 is a call instruction for function fx ,
• the execution of fx includes at least one checkpoint,
• In is a call instruction,
• no checkpoint exists in the sequence I1, ..., In .

Note that the sequence I1, ..., In does not include the code
of fx . The bug exists because a checkpoint is saved inside
the context of a function f1, f1 returns, and a subsequent
call to f2 may overwrite part or the whole activation record
of f1. For example, placing a checkpoint between the return
of f1 and the call to f2 addresses the issue, as it prevents the
execution from resuming inside f1.
Ratchet [25] identifies a specific instance of the problem

arising with interrupts. The general case above is overlooked
in existing literature, and may be recognized only by reason-
ing at the level of machine code rather than source code.

2.3 Memory Map Bug
A memory map bug occurs when a dynamic memory opera-
tion observes a future state of memory due to heap alloca-
tions and deallocations on NVM.

Fig. 3 shows an example. Line 2 allocates a heap block
and saves its address in pointer p. A checkpoint occurs be-
fore line 5 de-allocates the same memory block. If a shut-
down happens after line 5, the execution resumes from line
4, whose memory access fails because the memory cell was
de-allocated by the previous execution of line 5.

One may construct arbitrary combinations of heap opera-
tions before and after a checkpoint, leading to this kind of
bug. If pointer information are not updated, the re-execution
targets the memory address before the shutdown, whereas
the re-allocated block is now somewhere else.
We say a memory map bug exists whenever the heap is

allocated on NVM and an ordered sequence of machine-code
instructions I1, ..., In exists such that:

1. I1 is a load or store instruction targeting the heap
block pointed by x ,

2. In is a free or realloc instruction that modifies the
heap block pointed by x ,

3. no checkpoint exists in the sequence I1, ..., In .

The bug exists because pointer information are not consis-
tent with the state of the heap. Properly placing checkpoints
to avoid re-executing instructions based on possibly incon-
sistent pointer information solves the issue.
Note how allocating the heap on NVM without a trans-

actional memory controller [24] does not ensure atomicity
for heap modifications. Power failures happening during
the execution of any such instructions leave the heap state
partially changed. Similarly, the re-execution of instructions
that perform destructive changes to the heap, such as free
or realloc, is a source of bugs, whereas re-executing mem-
ory allocation operations, such as malloc, does not affect
correctness but may yield memory leaks.

Existing literature overlooks the existence of this kind of
bugs too, which may only be recognized by reasoning at the
level of machine code and raw memory accesses.

3 Hunting For Intermittence Bugs
Given certain program inputs, exhaustively testing intermit-
tence bugs requires, in principle, to pretend a checkpoint
occurs after every instruction and to check the aforemen-
tioned conditions for the execution of following execution
depth instructions, that is, n = ED in Sec. 2. This bears huge
processing times as discussed before.

We seek to recognize the minimal amount of information
necessary for the identification of intermittence bugs. Our
techniques differ based on whether programmers are solely
interested in locating bugs without appreciating their effects
on program behavior, or rather wish to investigate how the
occurrence of bugs alters the behavior. In the following, we
use the case of data access bug as a running example and
refer to an extended report for the other bugs [17].
Locating intermittence bugs. To determine where inter-
mittence bugs are possibly placed, we execute the code while

LCTES ’19, June 23, 2019, Phoenix, AZ, USA A. Maioli, L. Mottola, M. H. Alizai, J. H. Siddiqui

Table 1. Relevant checkpoint and power failure locations.
Data Access Activation Record Memory Map

Checkpoint
load ret/pop load, store, realloc, freebefore

Bug occurs
store call/push malloc, realloc, freeafter

tracking every operation in NVM and the execution of check-
points. We find that the obtained execution trace suffices to
locate intermittence bugs. Despite checkpoints might occur
at any point in the execution, complete information for the
identification of intermittence bugs only requires to test a
subset of possible checkpoint locations.

In the case of data access bugs, for example, it is sufficient
to verify situationswhere a checkpoint takes pace right before
a load instruction. Since there, we check the execution trace
for the following ED instructions looking for store instruc-
tions. If a power failure happens after executing a store on
the same memory address, a data access bug may occur if the
store writes a different value than the one loaded earlier.
Cases where non-load instructions are executed multiple
instructions after a checkpoint reduce the coverage since
the load; thus, they cannot provide more information on
intermittence bugs. Cases where a checkpoint occurs after a
load do not meet the conditions in Sec. 2.1.
Tab. 1 summarizes how we determine the checkpoint lo-

cations and the instructions to look for within the following
ED instructions to locate the bugs in Sec. 2.
Evaluating the effects. The processing above does not suf-
fice to examine how a bug alters the program behavior, for
example, by causing a crash. To that end, we need to emulate
the re-execution. We use a per-instruction logical clock that
we save/restore with checkpoints and a lookup table to keep
track of events on the NVM. The latter serves to recognize
how continuous and intermittent executions differ.
For data access bugs, for example, we emulate the exe-

cution since a checkpoint and until we encounter the first
store within the next ED instructions. At this point, we
restore the checkpoint state and re-execute the instructions
until the store. The lookup table now contains the state
of the (resumed) execution since the checkpoint, which is
potentially different than in a continuous execution.
This processing may repeat for every store instruction

within ED instructions since the checkpoint. This ensures
that all bugs since the load are eventually recognized and
their effect on program behavior emulated.

4 Early Results
We prototype a tool called ScEpTIC that implements the tech-
niques in Sec. 3. ScEpTIC emulates the execution of LLVM
intermediate-representation (IR) instructions. SCEpTIC takes
as inputs what slices of the address space are allocated to
NVM, the LLVM IR of the program, and the value for ED.
We conduct an early assessment of the techniques that

also evaluate the effects of intermittence bugs. We select a

Table 2. Comparison of processing times.
Benchmark Instructions Brute-force ScEpTIC Speedup

CRC 5.2 · 104 1.3 · 109s 451s 2.88 · 106
FFT 3.82 · 105 5.16 · 1011s 2.31 · 104s 2.23 · 107
AES 6.7 · 105 2.74 · 1012s 7.05 · 104s 3.89 · 107

set of common benchmarks in intermittent computing [1–
3, 21]: CRC computation, FFT for signal analysis, and AES for
encryption. The benchmarks are taken from MiBench2 [18],
that is, MiBench [8] ported to IoT devices [25]. We determine
that the MSP430 in Hibernus [2] executes from 1457 up to
4600 instructions after a checkpoint, depending on capacitor
size. We thus use an average of ED = 3000 instructions.

We compare ScEpTIC against a brute-force approach that
examines all possible combinations of checkpoints and power
failures. We consider a worst-case scenario for ScEpTIC by
placing the entire address space on NVM, which yields the
maximum number of checkpoints and power failures to test.
We use input data provided with the MiBench2 suite [18]. As
the time required by the brute-force approach is not practical,
we analytically calculate it based on the maximum number
of instructions ScEpTIC can emulate per unit of time.
Tab. 2 shows our analytical calculations against the mea-

sures obtained by running ScEpTIC while employing the
techniques of Sec. 3. The minimum speedup is 2.88 · 106
and it grows with the number of instructions. These results
demonstrate the effectiveness of our techniques, which grant
a significant speedup over a brute-force approach.

5 Ongoing Work and Outlook
In addition to a full-fledged evaluation, our ongoing work
includes an analysis of two additional un-explored facets.
One facet deals with environment interactions. Re-execu-

ting operations that read from the environment through sen-
sors or affect it through actuators may lead to unexpected
behaviors or unintended external effects. We understand
some of the latter may be unavoidable, as output actions
may not be undone. Our aim is to act cautiously, that is,
understand the conditions in the execution flow that lead to
these situations, develop techniques to identify these condi-
tions efficiently, and give programmers hints to defend.
There also exists the possibility that intermittence bugs

are intentionally left occurring to make programs aware of
intermittence. The data access bug in Fig. 1, for example, may
implement a counter of the number of power failures. The
problem here is flipped: programmers must know whether
their intermittence-aware programs do behave as expected.
We seek to understand where and how programmers rely
on this feature and to conceive techniques to verify their
correspondence to the programmers’ intentions.

As the techniques we develop are progressively integrated
in ScEpTIC, we increase the reliability of intermittent pro-
grams and therefore the dependability of resource-constrained
embedded systems powered off energy harvesting, ultimately
providing a solid basis for the upcoming battery-less IoT.

On Intermittence Bugs in the Battery-Less Internet of Things (WIP Paper) LCTES ’19, June 23, 2019, Phoenix, AZ, USA

References
[1] D. Balsamo, A. S. Weddell, A. Das, A. R. Arreola, D. Brunelli, B. M.

Al-Hashimi, G. V. Merrett, and L. Benini. 2016. Hibernus++: A Self-
Calibrating and Adaptive System for Transiently-Powered Embedded
Devices. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 35, 12 (2016), 1968–1980. https://doi.org/10.1109/
TCAD.2016.2547919

[2] D. Balsamo, A. S. Weddell, G. V. Merrett, B. M. Al-Hashimi, D. Brunelli,
and L. Benini. 2015. Hibernus: Sustaining Computation During In-
termittent Supply for Energy-Harvesting Systems. IEEE Embedded
Systems Letters 7, 1 (March 2015), 15–18. https://doi.org/10.1109/LES.
2014.2371494

[3] Naveed Anwar Bhatti and Luca Mottola. 2017. HarvOS: Efficient
Code Instrumentation for Transiently-powered Embedded Sensing.
In Proceedings of the 16th ACM/IEEE International Conference on
Information Processing in Sensor Networks (IPSN ’17). ACM, New
York, NY, USA, 209–219. https://doi.org/10.1145/3055031.3055082

[4] Alexei Colin, Graham Harvey, Brandon Lucia, and Alanson P. Sample.
2016. An Energy-interference-free Hardware-Software Debugger for
Intermittent Energy-harvesting Systems. SIGOPS Oper. Syst. Rev. 50,
2 (March 2016), 577–589. https://doi.org/10.1145/2954680.2872409

[5] Alexei Colin and Brandon Lucia. 2016. Chain: Tasks and Channels
for Reliable Intermittent Programs. SIGPLAN Not. 51, 10 (Oct. 2016),
514–530. https://doi.org/10.1145/3022671.2983995

[6] Joakim Eriksson, Adam Dunkels, Niclas Finne, Fredrik Österlind, and
Thiemo Voigt. 2007. MSPsim - an Extensible Simulator for MSP430-
equipped Sensor Boards. In Proceedings of the European Conference
on Wireless Sensor Networks (EWSN), Poster/Demo session.

[7] Matthew Furlong, Josiah Hester, Kevin Storer, and Jacob Sor-
ber. 2016. Realistic Simulation for Tiny Batteryless Sensors. In
Proceedings of the 4th InternationalWorkshop on Energy Harvesting
and Energy-Neutral Sensing Systems (ENSsys’16). ACM, New York,
NY, USA, 23–26. https://doi.org/10.1145/2996884.2996889

[8] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown. 2001. MiBench: A Free, Commercially Represen-
tative Embedded Benchmark Suite. In Proceedings of the Workload
Characterization, 2001. WWC-4. 2001 IEEE International Workshop
(WWC ’01). IEEE Computer Society, Washington, DC, USA, 3–14.
https://doi.org/10.1109/WWC.2001.15

[9] Josiah Hester, Timothy Scott, and Jacob Sorber. 2014. Ekho: Realistic
and Repeatable Experimentation for Tiny Energy-harvesting Sensors.
In Proceedings of the 12th ACM Conference on Embedded Network
Sensor Systems (SenSys ’14). ACM, New York, NY, USA, 1–15. https:
//doi.org/10.1145/2668332.2668336

[10] Josiah Hester and Jacob Sorber. 2017. The Future of Sensing is
Batteryless, Intermittent, and Awesome. In Proceedings of the 15th
ACMConference on EmbeddedNetwork Sensor Systems (SenSys ’17).
ACM, New York, NY, USA, Article 21, 6 pages. https://doi.org/10.1145/
3131672.3131699

[11] Texas Instruments. [n. d.]. MSP430FRxxxx datasheet. http://www.ti.
com/lit/ds/symlink/msp430fr5737.pdf.

[12] Hrishikesh Jayakumar, Arnab Raha, Woo Suk Lee, and Vijay Raghu-
nathan. 2015. QuickRecall: A HW/SW Approach for Computing

Across Power Cycles in Transiently Powered Computers. J. Emerg.
Technol. Comput. Syst. 12, 1, Article 8 (Aug. 2015), 19 pages. https:
//doi.org/10.1145/2700249

[13] Y. Lee, G. Kim, S. Bang, Y. Kim, I. Lee, P. Dutta, D. Sylvester, and D.
Blaauw. 2012. A modular 1mm3die-stacked sensing platform with
optical communication and multi-modal energy harvesting. In 2012
IEEE International Solid-State Circuits Conference. 402–404. https:
//doi.org/10.1109/ISSCC.2012.6177065

[14] Brandon Lucia and Benjamin Ransford. 2015. A Simpler, Safer Program-
ming and Execution Model for Intermittent Systems. SIGPLAN Not.
50, 6 (June 2015), 575–585. https://doi.org/10.1145/2813885.2737978

[15] Kiwan Maeng, Alexei Colin, and Brandon Lucia. 2017. Alpaca: Inter-
mittent Execution Without Checkpoints. Proc. ACM Program. Lang.
1, OOPSLA, Article 96 (Oct. 2017), 30 pages. https://doi.org/10.1145/
3133920

[16] Kiwan Maeng and Brandon Lucia. 2018. Adaptive dynamic check-
pointing for safe efficient intermittent computing. In 13th {USENIX}
Symposium on Operating Systems Design and Implementation
({OSDI} 18).

[17] Andrea Maioli. 2019. Understanding and Testing Intermittence Bugs
in Transiently-powered Computers. Technical Report n 37/2019. Po-
litecnico di Milano (Italy).

[18] mibench2 [n. d.]. MiBench2 porting to IoT devices. https://github.
com/impedimentToProgress/MiBench2.

[19] Proteus 2015. Proteus Digital Health. https://www.proteus.com/.
[20] Benjamin Ransford and Brandon Lucia. 2014. Nonvolatile Memory is

a Broken Time Machine. In Proceedings of the Workshop on Memory
Systems Performance and Correctness (MSPC ’14). ACM, New York,
NY, USA, Article 5, 3 pages. https://doi.org/10.1145/2618128.2618136

[21] Benjamin Ransford, Jacob Sorber, and Kevin Fu. 2011. Mementos:
System Support for Long-running Computation on RFID-scale Devices.
SIGARCH Comput. Archit. News 39, 1 (March 2011), 159–170. https:
//doi.org/10.1145/1961295.1950386

[22] E. Sardini and M. Serpelloni. 2011. Self-Powered Wireless Sensor for
Air Temperature and Velocity Measurements With Energy Harvesting
Capability. IEEE Transactions on Instrumentation and Measurement
60, 5 (May 2011), 1838–1844. https://doi.org/10.1109/TIM.2010.2089090

[23] E. Sazonov, H. Li, D. Curry, and P. Pillay. 2009. Self-Powered Sensors
for Monitoring of Highway Bridges. IEEE Sensors Journal 9, 11 (Nov
2009), 1422–1429. https://doi.org/10.1109/JSEN.2009.2019333

[24] Michal Spivak and Sivan Toledo. 2006. Storing a Persistent Trans-
actional Object Heap on Flash Memory. In Proceedings of the ACM
Conference on Language, Compilers, and Tool Support for Embedded
Systems (LCTES).

[25] Joel Van Der Woude and Matthew Hicks. 2016. Intermittent Compu-
tation Without Hardware Support or Programmer Intervention. In
Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation (OSDI’16). USENIX Association, Berkeley,
CA, USA, 17–32. http://dl.acm.org/citation.cfm?id=3026877.3026880

[26] K. Vijayaraghavan and R. Rajamani. 2010. Novel Batteryless Wireless
Sensor for Traffic-FlowMeasurement. IEEE Transactions on Vehicular
Technology 59, 7 (Sep. 2010), 3249–3260. https://doi.org/10.1109/TVT.
2010.2050013

https://doi.org/10.1109/TCAD.2016.2547919
https://doi.org/10.1109/TCAD.2016.2547919
https://doi.org/10.1109/LES.2014.2371494
https://doi.org/10.1109/LES.2014.2371494
https://doi.org/10.1145/3055031.3055082
https://doi.org/10.1145/2954680.2872409
https://doi.org/10.1145/3022671.2983995
https://doi.org/10.1145/2996884.2996889
https://doi.org/10.1109/WWC.2001.15
https://doi.org/10.1145/2668332.2668336
https://doi.org/10.1145/2668332.2668336
https://doi.org/10.1145/3131672.3131699
https://doi.org/10.1145/3131672.3131699
http://www.ti.com/lit/ds/symlink/msp430fr5737.pdf
http://www.ti.com/lit/ds/symlink/msp430fr5737.pdf
https://doi.org/10.1145/2700249
https://doi.org/10.1145/2700249
https://doi.org/10.1109/ISSCC.2012.6177065
https://doi.org/10.1109/ISSCC.2012.6177065
https://doi.org/10.1145/2813885.2737978
https://doi.org/10.1145/3133920
https://doi.org/10.1145/3133920
https://github.com/impedimentToProgress/MiBench2
https://github.com/impedimentToProgress/MiBench2
https://www.proteus.com/
https://doi.org/10.1145/2618128.2618136
https://doi.org/10.1145/1961295.1950386
https://doi.org/10.1145/1961295.1950386
https://doi.org/10.1109/TIM.2010.2089090
https://doi.org/10.1109/JSEN.2009.2019333
http://dl.acm.org/citation.cfm?id=3026877.3026880
https://doi.org/10.1109/TVT.2010.2050013
https://doi.org/10.1109/TVT.2010.2050013

	Abstract
	1 Introduction
	2 Understanding Intermittence Bugs
	2.1 Data Access Bug
	2.2 Activation Record Bug
	2.3 Memory Map Bug

	3 Hunting For Intermittence Bugs
	4 Early Results
	5 Ongoing Work and Outlook
	References

