
Intermittent Asynchronous Peripheral Operations

Adriano Branco˚, Luca Mottola˚:, Muhammad Hamad Alizai`, and Junaid Haroon Siddiqui`
˚Politecnico di Milano (Italy), :RI.Se SICS Sweden, `LUMS (Pakistan)

ABSTRACT

Energy harvesting enables battery-less sensing applications, but
causes executions to become intermittent as a result of erratic
energy provisioning. Intermittent executions pose challenges to
peripheral consistency that threaten to leave peripheral-bound work-
loads in failed states or to impede forward progress of programs.
Intermittent synchronous peripheral operations are supported in
existing literature for specific kinds of peripherals. Asynchronous
peripheral operations enable reactive concurrency in application
implementations, which increases reactivity and improves energy
consumption, but lack dedicated support in intermittent settings.
We present Karma, the first general abstraction and system design
to support both synchronous and asynchronous operations in an
intermittent setting. Karma employs a novel combination of pe-
ripheral roll-forward and computation roll-back to a rendezvous
point guaranteeing consistency. It remains transparent to applica-
tion programmers and peripheral driver, which favours portability.
Our evaluation, based on three applications running on prototype
hardware and using diverse energy sources, indicates that intermit-
tent asynchronous peripheral support provided by Karma boosts
data throughput by 83% compared to existing literature.

CCS CONCEPTS

• Computer systems organization → Sensor networks; Embed-

ded software.

KEYWORDS

asynchronous operations, peripherals, intermittent computing, en-
ergy harvesting

ACM Reference Format:

Adriano Branco˚, Luca Mottola˚:, Muhammad Hamad Alizai`, and Ju-
naid Haroon Siddiqui` ˚Politecnico di Milano (Italy), :RI.Se SICS Sweden,
`LUMS (Pakistan). 2019. Intermittent Asynchronous Peripheral Operations.
In The 17th ACM Conference on Embedded Networked Sensor Systems (SenSys

’19), November 10–13, 2019, New York, NY, USA. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3356250.3360033

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SenSys ’19, November 10–13, 2019, New York, NY, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6950-3/19/11. . . $15.00
https://doi.org/10.1145/3356250.3360033

1 INTRODUCTION

Ambient energy harvesting is enabling battery-less embedded sens-
ing. Devices powered off energy harvesting operate by intermit-
tently executing the software, as energy is available in a small buffer
such as a capacitor. System support exists to enable intermittent
executions [5, 6, 9, 12, 13, 20, 22, 23, 27, 28, 34, 37], which employs
forms of persistence to preserve the state of the computing unit
across power failures. Such persistent state is used to resume the
execution once energy returns.
Problem. Embedded sensing workloads are most often peripheral-
bound. Applications acquire data from the environment through
sensors, process the information, and perform actions on the en-
vironment or communicate results back to the user, for example,
through radio communications. The ability to interact with the
external world is at the very essence of embedded sensing [32],
and yet necessarily requires the computing unit to interact with
peripherals providing the interface with the physical world [21].

Peripherals execute asynchronously with respect to the comput-
ing unit. Their functioning is characterized by own states, which
are frequently updated due to the execution of I/O instructions or
the occurrence of external events, such as the reception of a packet.
Information on peripheral states is not automatically reflected in
main memory, neither it may be simply queried or restored as it
is often the result of non-trivial sequences of commands issued to
peripherals and their answers. For example, peripherals operating
over I2C are driven through a specialized protocol where the com-
puting unit acts as a master issuing commands, and peripherals act
as slaves returning answers.

The majority of existing solutions for intermittent computing
only provide support for the computing unit and expect devel-
opers to take care of peripherals [12, 27]. Such a manual one-off
effort is anyways necessary because if peripheral states are not
restored when resuming executions after a power failure, or this
happens without ensuring consistency with respect to the state of
the computing unit, applications may fail or forward progress be
compromised. These issues represent a threat for program safety [1]:
executions reach a fail state that is unreachable in a continuous
execution, or for program liveness [1]: executions fail to reach valid
states that would eventually be attained in a continuous execution.

Fig. 1(a) shows an example demonstrating how not preserving
peripheral state information leads to a violation of program safety.
Say at startup, the radio is automatically initialized in receive state.
Later in the execution, the computing unit changes the radio state
to transmit, in preparation of a packet send. The system now takes
a checkpoint, that is, it dumps the state of the computing unit on
non-volatile memory [29, 34]. Following a power failure, the system
resumes from checkpoint data when energy is back. The program
attempts a send operation, yet the radio is in receive state as no
peripheral state information is part of the checkpoint.

https://doi.org/10.1145/3356250.3360033
https://doi.org/10.1145/3356250.3360033

SenSys ’19, November 10–13, 2019, New York, NY, USA A. Branco, L. Mottola, M.H. Alizai, and J.H. Siddiqui

send(packet)

MCU Radio
Startup Receive

Transmit

state(transmit)

power loss

fails

Restore (A) Receive

Checkpoint (A)

(a) Program safety violation.

MCU Radio
Receive

Transmit

state(transmit)

power loss

send(pck)

se
nd

in
g

Restore (A)

Waiting

Startup

Waiting
Checkpoint (A)

Receive

(b) Program liveness violation.

Figure 1: Intermittent peripheral operations cause safety

and liveness violations. In (a), the send operation is unsafe be-

cause the radio reboots in a default receive state. In (b), liveness is

compromised as the program forever waits for an asynchronous call-

back from the radio.

Violations to program liveness emerge if checkpoints and power
failures occur during peripheral operations. Such a situation is
likely to manifest with asynchronous peripheral operations. These
are typically structured as separate non-blocking commands and
asynchronous callbacks that signal operation completion or relay
results [16]. Asynchronous peripheral operations enable reactive
concurrency [3, 10, 18]: applications are structured as independent
code fragments that concurrently execute by sampling sensors,
operating actuators, computing, and communicating. Albeit re-
quiring additional development effort, reactive concurrency yields
increased reactivity and better energy efficiency [16, 26].

Fig. 1(b) shows an example. The application uses an asynchro-
nous packet send. A callback should be later triggered by the radio to
signal the completion of the packet transmission. Say a checkpoint
is taken after issuing the packet send and power fails before the
completion of the packet transmission.When energy is back and the
system resumes from checkpoint data, the execution restarts from
a point where the packet send is considered as executed. However,
the radio is again re-initialized to the receive state as no peripheral
state information is part of the checkpoint. The program is now
expecting a callback that signals the completion of an operation
the system has no recollection of. Part of the application logic is
now stuck awaiting a callback that never arrives.

In both cases, the state of the computing unit and that of periph-
erals are not consistent, that is, the overall system state obtained
from combining them does not correspond to any system state
reachable in a continuous execution.
Challenges. Designing a general, yet efficient solution to support
both (blocking) synchronous1 and asynchronous intermittent pe-
ripheral operations requires to address three challenges:

1Although non-blocking synchronous peripheral operations are feasible, for example,
using select/poll loops as in BSD Unix, these are very rarely supported in low-power
embedded operating systems. The discussion that follows only considers a blocking
semantics for synchronous peripheral operations.

C1: how to represent the evolution of peripheral states in main
memory, so it may be used at the time of resuming computation
to form a consistent system state;

C2: how to update this information as the computing unit pro-
gresses asynchronously with respect to peripheral operations;

C3: how to schedule peripheral operations whenever they are is-
sued or when resuming after a power failure.

Addressing the three challenges must reconcile generality and
efficiency with the resource constraints of target platforms. In in-
termittent computing, for example, the main computing unit is
normally a low-power microcontroller unit (MCU) with little main
memory. The energy overhead to support intermittent peripheral
operations is ultimately subtracted from the budget for useful com-
putation and communication. Excessive energy overheads may
even prevent a program to make eventual progress. On the other
hand, peripherals such as sensors or low-power transceivers as
used in intermittent computing are generally less sophisticated
than peripherals used in mainstream computing.

A few systems enable intermittent executions while preserving
peripheral states [4, 7]. As further discussed in Sec. 2, these are often
limited in generality with respect to peripheral types, for example,
depending on their interface with the computing unit, and most
importantly lack support for asynchronous peripheral operations,
which enable reactive concurrency in application implementations.
Contribution. To tackle challenge C1 to C3, our contribution
spans system design and concrete implementations.
1) We explore the design options available to tackle three chal-

lenges above in a way that is both generic and efficient, as
discussed in Sec. 3. Such an effort leads us to a reasoned set of
coherent design decisions. These include dedicated abstractions
to capture the evolution of peripheral states and techniques to
roll-forward peripheral states when resuming, while rolling-
back the state of the computing unit to a rendezvous point that
guarantees consistency.

2) We implement our design in Karma, as illustrated in Sec. 4
Karma is the first peripheral-independent abstraction and sys-
tem design to cater for both synchronous and asynchronous
operations in an intermittent setting. Unlike existing solutions,
it resides as an intermediate layer between application and pe-
ripheral drivers, and remains transparent to both. This yields
increased portability across applications and peripheral types.

We evaluate a working prototype of Karma on real hardware,
using diverse applications and energy profiles to show that Karma
supports intermittent asynchronous peripheral operations effec-
tively and efficiently. The results we report in Sec. 5 indicate that,
for example, Karma increases data throughput by 83% compared
with the state of the art. Nonetheless, we provide evidence that
such performance gains originate from the specific design decisions
at the basis of Karma.

2 BACKGROUND

We survey works related to our efforts first. Next, we offer quanti-
tative evidence that the benefits of reactive concurrency extend to
applications and platforms germane to intermittent computing.

Intermittent Asynchronous Peripheral Operations SenSys ’19, November 10–13, 2019, New York, NY, USA

2.1 Related Work

We provide background on system support for intermittent com-
puting and survey approaches that preserve peripheral states.
Computing unit: system support. Using a variety of techniques,
existing system support creates persistent state in anticipation of
power failures. Two flavours exist.

Solutions exist that employ a form checkpointing to let the pro-
gram cross periods of energy unavailability [5, 9, 29, 34]. This con-
sists in replicating the application state on non-volatile memory,
where it is retrieved back once the system resumes with sufficient
energy. Systems such as Hibernus [5, 6] operate in a reactive man-
ner: an interrupt is fired from a hardware device that prompts the
application to take a checkpoint, for example, whenever the en-
ergy buffer falls below a threshold. Differently, systems exist that
place explicit function calls in application code to proactively check-
point [9, 29, 34, 37]. The specific placement may be a function of
program structure and energy provisioning patterns.

Differently, some approaches offer abstractions that program-
mers use to define and manage persistent state [12, 27, 28] and time
profiles [20]. These approaches particularly target mixed-volatile
platforms, while taking care of data consistency issues due to re-
peated executions of non-idempotent code [33]. For example, Al-
paca [28] defines tasks as individual execution units that run with
transactional semantics against power failures and subsequent re-
boots, and channels to exchange data across tasks.
Peripherals: recovery approaches. Sytare [7] requires develop-
ers to write ad-hoc routines for saving and restoring peripheral
states. The complete device state, called “device context”, is saved
on non-volatile memory before and after every peripheral opera-
tion. The state is accrued from device registers at every peripheral
request, which potentially hurts performance. Further, Sytare lacks
support for peripherals with write-only registers, which is the com-
mon case and whose state cannot be simply queried. Asynchronous
operations are not supported as Sytare cannot represent the ongo-
ing operation while the computing unit performs other actions.

RESTOP [4] attempts to address these deficiencies by maintain-
ing an explicit operation log, which is updated based on a static
labeling of operations to indicate whether they need to be re-played
when the device resumes after a power failure. Asynchronous oper-
ations are again not supported because of the inability to represent
the state of an ongoing peripheral operations. In addition, the oper-
ation log may only grow as executions unfold, eventually causing
significant memory and energy overhead during executions and
when resuming after a power failure.

Samoyed [30] allows programmers to define atomic peripheral
functions, wherein the system selectively captures checkpoints
and maintains memory consistency. If the work in an atomic func-
tion requires more energy than a device can provide, Samoyed
iteratively sub-divides the function into multiple smaller function
invocations, each containing a subsequence of the original func-
tion’s work. Unlike Karma, Samoyed also does not support parallel
or asynchronous operations.

Our work seeks to overcome these limitations. The design op-
tions we explore in Sec. 3 eventually lead us to a specific periph-
eral state representation that efficiently supports asynchronous

SynchronousAsynchronous

Reactive

Proactive and
abstractions

Sytare
RESTOP

<Liveness>

Peripheral interaction

Sy
st

em

 s

u
p

p
o

rt

<Safety>

<Liveness>

<Safety>

<Liveness>

Figure 2: Consolidated view on existing literature, depend-

ing on mode of peripheral interaction and system support.

Existing literature only addresses the top-right quadrant. Program

liveness is not guaranteed when using synchronous peripheral oper-

ations with reactive system support. With asynchronous peripheral

operations, neither program safety nor program liveness are ensured,

regardless of the system support.

operations. This improves energy efficiency and keeps memory
occupation under control.
Peripherals: preventive approaches. Systems exist that prevent
intermittent peripheral operations by not issuing peripheral com-
mands until it is guaranteed that the request can run to completion,
based on the current energy budget. eM-map [23] and Capybara [13]
are examples. The underlying assumption is that the energy require-
ments of peripheral operations are quantifiable and predictable.
In some cases, such as radios, even worst-case assumptions may
go totally astray, as the energy cost may vary significantly due
to unpredictable factors, for example, random backoffs to handle
contention. Platforms that employ separate energy buffers for pe-
ripheral operations would suffer from the same problem [19].

Our design is independent of the availability of energy estimates
for peripheral operations. If and when available, these information
may serve as input for more efficient scheduling of peripheral op-
erations, as we describe in Sec. 3. Differently, Karma still provides
efficient support to intermittent peripheral operations by guaran-
teeing that peripherals and computing unit are synchronized to a
consistent state when resuming.
A consolidated literature view. Fig. 2 summarizes our analysis
of existing literature. The top-right quadrant maps to the only case
that existing literature supports [4, 7]. This holds provided sys-
tems calls to checkpoint are placed around peripheral operations
or, equivalently, peripheral operations only appear inside computa-
tional units with transactional semantics, such as Alpaca tasks.

Differently, synchronous peripheral operations remain a threat
to program liveness when using reactive system support, as indi-
cated in the bottom-right quadrant. For example, if a checkpoint is
triggered while polling for completion of a synchronous operation,
no existing solution may recover the ongoing peripheral operation
when resuming. However, the main computing unit re-enters the
same polling loop when resuming, this time waiting for a condition
to end polling that never occurs.

Asynchronous peripheral operations, on the other hand, are
virgin territory. Using available solutions, neither program safety
nor program liveness are guaranteed, irrespective of the kind of
system support employed. The issue essentially stems from the
inability of existing solutions to represent the state of ongoing

SenSys ’19, November 10–13, 2019, New York, NY, USA A. Branco, L. Mottola, M.H. Alizai, and J.H. Siddiqui

Application version Data throughput Energy consumption

Busy-wait 11 samples/min 1.08 mJ
Polling 11 samples/min 0.3 mJ

Asynchronous 12 samples/min 0.04 mJ

Figure 3: Performance of an activity recognition application

in a one minute execution, depending on peripheral APIs

and their implementations. Using reactive concurrency in appli-

cation implementations, enabled by asynchronous peripheral opera-

tions, allows the system to retain the intended throughput while being

energy-efficient.

peripheral operations while the computing unit executes other
actions. In turn, this boils down to the choice of an appropriate
abstraction for representing peripheral states, which is at the center
of our design discussion in Sec. 3.

2.2 Reactive Concurrency

We argue that the ability to rely on reactive concurrency to write
embedded sensing applications using asynchronous peripheral op-
erations is fundamental in an intermittent setting as well. To that
end, we provide quantitative evidence here using applications and
hardware platforms common in intermittent computing.
Setup. We build a wearable activity recognition application, based
on existing detection logic and used as a staple benchmark in inter-
mittent computing [27, 28, 37].

We use anMSP430FR2433MCU, common in intermittent comput-
ing because of the mixed-volatile memory configuration, hooked to
a LIS3MDL 3-axis magnetometer via SPI and to a LSM6DSL 3-axis
accelerometer/gyroscope via I2C. Sensors are queried at 100 Hz
and their readings combined in batches of 500 samples to infer the
current activity of a person among running, walking, sitting, and
standing. The result is sent out through a Microchip RN42 BT radio
connected via UART; this should happen every 5 sec.

We develop three versions of the application running without
dedicated operating system support, that is, on bare hardware,
and based on different peripheral interactions: either synchronous—
implementedwith Busy-wait or Polling—orAsynchronous. These
kinds of interactions are generally supported by existing operat-
ing systems, including low-power ones. For example, Mbed [31]
often employs Busy-wait due to its simplicity. Contiki [14] favors
Polling as it blends with protothreads [15]. TinyOS [26] offers
a split-phase abstraction for Asynchronous operations. The en-
coding of the application logic also changes from Busy-wait and
Polling to Asynchronous. In the former cases, the data processing
is expressed as a single sequential flow. With Asynchronous, data
processing is broken down in elementary parts to handle periph-
eral commands separately from the corresponding answers, which
trigger callbacks in the application code.
Results. Fig. 3 shows the measures we gather in a one minute
execution. Processing being strictly periodic, the same performance
figures remain the same also in the longer term. We draw two
fundamental observations.

First, as programmers are unaware of the time taken by periph-
eral operations, they express application timings regardless of them.
This is common practice in embedded programming [24] and bears
noticeable effects when the application logic is expressed as a sin-
gle sequential flow and synchronous calls are used for peripheral

operations. In both Busy-wait and Polling, the time spent waiting
for synchronous calls to complete progressively shifts the applica-
tion processing in time. A single minute of execution is sufficient
to loose one output sample of the twelve the application should
produce. Asynchronous operations allow developers to maintain
the expected data throughput despite the application timings being
quantified exactly as in Busy-wait and Polling.

Second, despite the energy efficiency of modern MSP430 MCUs,
Busy-wait takes a toll on energy consumption. Its energy consump-
tion is more than three times that of Polling, despite the two ver-
sions present the same peripheral APIs to programmers. Nonethe-
less, the additional programming effort due to using asynchronous
peripheral operations pays back in terms of reduced energy con-
sumption, which is one order of magnitude lower in Asynchronous
than in Polling. For a system that runs on harvested energy, such
a reduction may prove essential.

The specific application and experimental setting we use are a
single instance in a potentially vast landscape, and yet we argue
they properly motivate the efforts we describe next.

3 DESIGN

Each of the following sections discusses design options we consider
to address the three challenges C1 to C3 outlined in the Introduc-
tion, along with the rationale for the specific decisions we make.

3.1 C1: State Representation

Existing solutions adopt different approaches, as described in Sec. 2.1.
Sytare asks developers to create a peripheral-specific “device con-
text” and to implement specialized routines for saving and restoring.
As mentioned, this requires significant developer effort because of
the necessary intimate knowledge of, and tight integration with the
peripheral driver. RESTOP avoids any explicit state representation;
the log implicitly represents the current state of a peripheral as the
result of re-applying the entire sequence of commands at boot.

In Karma, we seek to operate at a higher-level of abstraction
where the representation of peripheral states and their evolution
is easier to define, yet without incurring in performance penalties
because of such a design choice.

3.1.1 States. We observe that the behavior of the vast majority of
peripherals such as sensors and low-power transceivers is normally
described as a state machine. State machines appear in sensors and
low-power transceivers datasheets. The corresponding drivers often
mimic this description, as they are implemented as state machines
of sorts. It appears natural to opt for such state representation.

Relying on a state machine to keep track of peripheral states
may not be sufficient in general. Depending on what information
individual states represent, knowing the state that the peripheral
was in at the time of checkpoint may not necessarily allow the
system to restore that state after a power failure. For example, this
is the case whenever a state is a function of parameters input to
peripheral commands, which are not encoded in the state represen-
tation. Input parameters may be values taken from arbitrarily large
domains, such as a parameter given to an sensor that indicates the
warm-up time. It would be overkill to encode input parameters as
part of the state representation.

Intermittent Asynchronous Peripheral Operations SenSys ’19, November 10–13, 2019, New York, NY, USA

Not
initialized Receive

TransmitSend in
progress

init

state(transmit)state(receive)

send(packet)

send_done

init
→ Receive

state(transmit)
→ Transmit

send(packet)
→ Send in progress

send_done
→ Transmit

send(packet)
→ Send in progress

send_done
→ Transmit

[command]

[answer]

[command]

[command]

[command]

[answer]

State machine Support queue

Figure 4: Abstract example of state machine and support

queue. The state machine represents the current peripheral state

and next transitions. The support queue stores input parameters and

the sequence of peripheral commands and answers, used when resum-

ing to recover the peripheral state. The combination of the two data

structures allows the system to keep track of evolving peripheral states

while keeping memory occupation under control.

We couple the state machine representation with a queue storing
the sequence of peripheral commands and corresponding answers.
Fig. 4 shows an abstract example. Whenever a command is issued
to a peripheral, we update its state machine and push the complete
command data to the queue, including parameters and the state the
commands leads to. When the peripheral returns an answer, we
push the same information to the queue.

The combined use of the two data structures allows the size
of peripheral state representation not to grow indefinitely, as it
happens in RESTOP. Every time the state machine is updated, we
inspect the queue looking for the first entry storing the same target
state. If one is found, every entry appearing in the queue after that
may be removed. This effectively corresponds to realizing that the
execution traversed a loop in the state machine, as in Fig. 4.

Both state machine and support queue are stored in main mem-
ory and become part of checkpoint data. The information in these
data structures suffices to restore the correct peripheral state after
a power failure. Re-issuing the sequence of commands found in
the queue, while checking that the peripherals’ answers remain
the same, takes the peripheral to the same condition it was in after
executing the last command before the last checkpoint. Checking
answers allows us to identify peripheral failures and signal them
to the application; programmers may then handle the situation
depending on application requirements.

Adopting this design raises the question of what exactly is a
peripheral command or answer, that is, what is the appropriate
granularity for state machine transitions.

3.1.2 Transitions. Embedded sensing applications are often logi-
cally architected as shown in Fig. 5 [25]. The high-level application
logic is split in multiple peripheral-specific application tasks. At
this level, an end-to-end functionality describes an application’s
complete operation with respect to a peripheral, from initialization
to tear down. Each peripheral-specific application task interacts
with one or more peripheral APIs, which provide an abstraction
layer over the peripheral driver. Each operation appearing in the

High-level application logic

End-to-end
functionality

Peripheral
APIs

Single
interactions

re
qu

es
t

co
mp

le
te

in
it

Peripheral-specific application tasks

in
it

_d
on

e

re
ad

re
ad

_d
on

e

Peripheral driver

Peripheral hardware

SP
I

Figure 5: Abstract architecture of embedded sensing applica-

tions. End-to-end functionality describes an application’s complete

operation with respect to a peripheral, from initialization to tear down.

The peripheral APIs expose the functionality of the peripheral driver

to the application. Single interactions are single instructions issued to

the peripheral, which is how the device driver communicates with the

peripheral hardware.

peripheral API is implemented by multiple individual interactions
with the peripheral hardware, which is how the driver implements
the low-level operation.

Based on this abstract architecture, there exist three options for
considering state transitions, which we discuss next with their pros
(
À

) and cons (
Á

).
Single interactions.We may consider a peripheral command or
answer as the smallest unit of operation of the computing unit with
respect to a peripheral, as shown at the bottom of Fig. 5. This is
whatever happens as a result of a single instruction issued to a
peripheral in case of commands and any single piece of information
returned to the computing unit in case of answers. When consider-
ing single interactions, the state machine and support queue are
updated after every instruction that possibly affects a peripheral
and after every interrupt from the peripheral is received.
À

Unlike other options discussed next, this option preserves com-
patibility with asynchronous operations. Commands issued
to peripherals and their answers are represented as separate
operations. Therefore, a checkpoint occurring after issuing a
command, but before executing the callback, yields state infor-
mation that correctly resume the device.

Á

As single interactions with peripherals happen inside drivers,
the state machine and support queue must be integrated there.
This requires intimate knowledge of low-level interfaces and
significant development effort. Further, both become larger
because of the fine granularity to represent evolving periph-
eral states, and must accordingly be updated more frequently.
Processing and memory overhead increase.

End-to-end functionality.We may consider a complete end-to-
end sequence of multiple commands and answers as one state
machine transition, as shown at the top of Fig. 5. For example, the

SenSys ’19, November 10–13, 2019, New York, NY, USA A. Branco, L. Mottola, M.H. Alizai, and J.H. Siddiqui

sequence of commands required to turn a transceiver in transmit
mode, sending a packet, and waiting for a signal that the transmis-
sion finished may be considered as a singe “send packet” operation.
À

The state machine representing evolving peripheral states is
likely to become very compact, while the support queue does
not grow excessively. The overhead of state maintenance is
therefore reduced compared to other options discussed here.
Further, keeping track of the sequence of commands and an-
swers does not require knowledge of the inner operation of
peripheral drivers, reducing development efforts.

Á

Compatibility with asynchronous operations is lost, as asyn-
chronous commands and their answers are merged in single
state transitions. Power failures occurring halfway in a se-
quence of operations require the re-execution of a possibly
long succession of commands, increasing energy and time over-
head when resuming. Moreover, as we discuss next, ensuring
atomic executions of peripheral operations and state updates
may require to roll back arbitrary code, which is hard in gen-
eral. Devices also need to be equipped with a sufficiently large
energy buffer to complete the entire end-to-end sequence, or
forward progress may be compromised if a device never has
enough energy for a complete end-to-end functionality at once.

Peripheral APIs. We may consider the operations appearing in
the API of peripheral drivers as the individual state transitions in
the corresponding state machine, as shown in the middle of Fig. 5.
For example, the operation to trigger a sensor read is considered
as a state transition as opposed to the corresponding callback that
relays the result.
À

This option as well preserves the ability to use asynchronous
operations. Commands issued to peripherals and their answers
are represented precisely at the granularity that developers rely
on when adopting a reactive concurrent program design [3, 10,
18]. The necessary run-time support may be implemented as
an intermediate layer between application code and peripheral
drivers, by simply wrapping the latter and re-exposing the
same API, as show in Fig. 6. An understanding of the driver
API is sufficient to this end, with no need to comprehend the
low-level intricacies of drivers’ internals.

Á

The overhead of state maintenance is higher than when con-
sidering end-to-end functionality as the individual state transi-
tions. Conversely, the energy budget to be available at once for
completing individual state transitions is greater than when
considering single interactions.

We weigh our options and eventually choose to consider API
operations as individual state transitions. Lack of support to asyn-
chronous operations when considering end-to-end functionality
defeats the very motivation of this work. The increase in peak
energy demands compared to individual interactions proves not
to be a hampering factor. We quantitatively assess this aspect in
Sec. 5 and demonstrate that considering API operations strikes an
efficient trade-off between opposing performance objectives.

3.2 C2: Atomicity

As the computing unit executes asynchronously with respect to
peripherals, it may happen that a checkpoint takes place after a

ADC driver

Peripheral-specific application tasks

Peripheral
APIs

Karma(ADC)

Radio driver

Single
interactions

p
o
w
e
r
_
o
n

i
n
i
t

s
e
t
_
w
i
d
t
h

c
o
n
v
e
r
t

r
e
a
d

s
e
t
_
c
l
k

R
E
S

i
n
i
t

s
e
t
_
c
h
a
n

s
e
t
_
o
p
s

s
e
n
d

s
e
t
_
p
o
w
e
r

s
e
n
d
_
d
o
n
e

p
r
e
p
a
r
e

O
S
C

E
N
D

r
e
a
d
_
d
o
n
e

G
P
I
O

S
P
I

Peripheral
APIs

Karma(radio)

p
o
w
e
r
_
o
n

i
n
i
t

s
e
t
_
w
i
d
t
h

c
o
n
v
e
r
t

r
e
a
d

s
e
t
_
c
l
k

r
e
a
d
_
d
o
n
e

i
n
i
t

s
e
t
_
c
h
a
n

s
e
t
_
o
p
s

s
e
n
d

s
e
t
_
p
o
w
e
r

s
e
n
d
_
d
o
n
e

p
r
e
p
a
r
e

Figure 6: Karma is placed as an intermediate layer between

application implementation and peripheral driver. The pic-

ture shows the choice of peripheral APIs for state transitions as opposed

to single interactions or end-to-end functionality.

peripheral operation started but before the corresponding state
information are updated. In such a case, we have no way to restore
a consistent system state, as we lack information on the peripheral
operation being executed at the time of a checkpoint. The opposite,
that is, updating state information first and then performing the
peripheral operation is not an option, as it may lead to situations
where the system thinks a peripheral operation was performed,
when it actually did not. We need the change in peripheral state
and the update in state information to appear as atomic.

Based on Sec. 3.1, the issue is simply addressed whenever employ-
ing system support that inserts explicit system calls that possibly
trigger a checkpoint [9, 12, 13, 20, 27, 28, 34, 37]. In such a case,
it is sufficient to ensure that such calls are inserted in application

code, that is, in one of the two topmost layers in Fig. 5, and either
before or after peripheral operations. As Karma operates as an
intermediate layer between application code and peripheral driver,
as shown in Fig. 6, checkpoints would occur before peripheral op-
erations and corresponding state updates are performed, or once
calls to peripheral APIs return and state update already occurred.

The case of system support that reactively triggers checkpoints,
for example, based onmonitoring of a voltage threshold [5, 6, 22, 23],
is more complex. In principle, checkpoints may happen at any time,
even while executing the low-level peripheral driver code. Two
options exist to integrate Karma with such a system support: i)
changing the conditions that make checkpoints take place in a way
to prevent executions lacking the required atomicity, or ii) rolling
back executions to recover the non-atomic cases.

3.2.1 Changing conditions for checkpoints. Say a checkpoint would
normally happen while executing the peripheral driver, but before
updating peripheral state information in main memory. In this case,
we want the checkpoint to happen before the peripheral operation
starts, that is, right before the execution enters the implementation
of the peripheral API. Doing so is only possible if the threshold
voltage is increased so that the most energy-consuming peripheral
operation is not even entered if a checkpoint would normally occur
near its very end. This is because we must make sure never to run
into cases where a peripheral operation starts without being able to

Intermittent Asynchronous Peripheral Operations SenSys ’19, November 10–13, 2019, New York, NY, USA

complete and the corresponding state information in main memory
are updated. As a further safety measure, we may also opt to disable
interrupts all together while executing peripheral drivers.

Such an option, however, is likely detrimental to performance
because outside these peculiar cases, checkpoints would occur more
frequently than necessary or not occur at all. In the favourable cases,
checkpoints take place even though energy is still available to run
many more instructions, unnecessarily subtracting resources from
useful computation and communication. If the estimates are off, we
may enter the implementation of a peripheral API, thereby disabling
interrupts, and continue the execution until either the device shuts
down without a checkpoint, or interrupts are re-enabled but there
is no sufficient energy to perform a checkpoint. For these reasons,
we choose to roll back executions.

3.2.2 Rolling back executions. Rolling back arbitrary code is gen-
erally a complex problem. The problem we tackle is, however, ad-
mittedly simpler that the general case as we only need to roll back
specific code fragments, that is, the implementation of peripheral
APIs. Moreover, we only need to do so in case a peripheral operation
starts but does not reach the point of updating state information.

Our approach is to let the checkpoint happen at an arbitrary
point, but to resume only from the start of a peripheral operation in
case of a later power failure. This point is the latest time in the exe-
cution where a peripheral actual state and the corresponding state
information in main memory are consistent. To this end, we need
to roll back the execution to the start of the peripheral operation
rather to the point where the checkpoint occurs. The instructions
between the start of peripheral operation and the checkpoint may,
however, alter the overall system state. We describe next how we
can undo such changes.
Program counter. Two options exist. In Karma, we adopt a simple
solution by storing the value of program counter in a global variable
right before accessing the peripheral-specific driver. The value stays
there for the duration of the peripheral operation and is invalidated
once the latter completes and state information is updated. When
resuming, if the global variable is valid, the program counter is
restored to its value. This effectively makes the execution resume
from right before the start of the peripheral operation if it does not
complete before the power failure.

A more complex design may remove the overhead of saving
and restoring values to/from the global variable. We may rely on a
map of program memory addresses to recognize if we are currently
executing a peripheral operation. If so, the address where to resume
execution after a power failure may be recovered using the return
address in the stack and the CALL instruction at the preceding
address. In Karma, however, we choose the former design as the
overhead of two store operations is small and spares the need of a
more complicated resume procedure.
Registers and stack. A benefit of opting to work at the level of pe-
ripheral APIs is that peripheral operations have well-defined entry
and exit points. The corresponding functions create their own stack
frame, later removed when the previous stack pointer is restored.
To this end, using a technique similar to the program counter as
described above, we also save the current stack pointer in a global
variable right before accessing the peripheral APIs. Modifications

to subsequent stack frames need not be rolled back if we simply
restore the previous stack pointer.

We extend this technique to handle registers. We save their
values before entering the implementation of a peripheral API,
using a set of global variables. The values stay there for the duration
of the peripheral operation and are invalidated once the operation
completes. This is performed as part of the Karma intermediate
layer that wraps the peripheral APIs, as shown in Fig. 6.

A more efficient, peripheral-specific approach might only save
the registers used in a particular call. The corresponding perfor-
mance gain would come at the cost of increased effort for every
peripheral API to be supported, which we mantain is not worth
it. Since most functions save registers on the stack, yet another
approach may be to invoke Karma inside the peripheral API im-
plementation right after saving registers on the stack. We opt not
to adopt this approach, as it would require to change the internals
of peripheral API implementations.
Mainmemory. Peripheral operationsmay changememory outside
the stack either through pointer arguments or by accessing global
variables. As these changes would be captured by a checkpoint
that occurs during the execution of a peripheral operation, that
is, inside the peripheral API implementation, we need to roll back
these changes to align the state of main memory with the restored
program counter, as per the earlier description.

Regardless of whether memory accesses happen through point-
ers or by accessing global variables, read operations do not cause
an issue as they do not change the state; nothing is to be rolled
back in this case. Pointer arguments of peripheral operations are
often designated to be read-only or write-only. For example, read-
only arguments are provided for configuration parameters, whereas
write-only arguments are often encountered to provide memory
buffers to store results, for example, a packet just received. Even
the latter do not cause an issue because they are written out again
when the a peripheral operation (re-)starts. This leaves read-write
pointer arguments and writes to global variables as the remaining
cases to deal with. Multiple design options exist.

One option is to perform some form of static analysis, which
would necessarily include pointer aliasing [39], to understand if
and where the checkpoint may include a different memory state
compared to the one at the time we save the program counter. For
example, a write to a global variable is a problem only if it is possible
that the program may read this value after resuming and before
over-writing it again. In addition to the complexity of the required
analysis, changes to the peripheral API implementation would be
needed to avoid such situations.

Another option is to instrument the peripheral API implementa-
tion to track all changes in main memory. Incremental checkpoint
techniques exist [2, 8, 17] that may be adapted to support the roll-
back procedures we require. In essence, we would need to rely
on the differential information to keep the previous values of all
memory locations changed by the device driver outside its stack
frame. When resuming after a power failure, we replace the values
in main memory included in the checkpoint with those that we
saved before the checkpoint.

A close analysis of the peripheral API implementation of a total of
52 diverse peripherals, as found in the codebases of the TinyOS [26],

SenSys ’19, November 10–13, 2019, New York, NY, USA A. Branco, L. Mottola, M.H. Alizai, and J.H. Siddiqui

Contiki [14], and Mbed [31] operating systems, reveals that this is a
non-problem. None of these peripheral drivers include any write to
global variables. This is not surprising, as relying on global variables
would potentially create problems when linking the codebase with
applications. Similarly, only one of the 52 peripherals we examine,
that is, the ATMG76 CO gas sensor, include read-write pointer
parameters in its Contiki API. The same peripheral is supported
in TinyOS without that. Based on this, we opt not to include any
run-time support to roll-back main memory in Karma, and rather
provide a code analysis script that warns programmers of this
potential issue whenever a driver is found with either writes to
global variables or read-write pointer arguments.

Note that this variety of design choices is possible because atom-
icity is only required at the level of peripheral API implementation
and not in application code. Placing restrictions or performing any
form of sophisticated code analysis on the latter would be impracti-
cal. However, peripheral drivers are smaller self-standing software
components that can be possibly verified, adapted, and certified to
work correctly with interruption.

3.3 C3: Scheduling

The problem is two-pronged, as Karma needs to take two sched-
uling decisions. One is scheduling of a peripheral operations to
bring it back to a consistent state compared to the main computing
unit when resuming after a power failure. The other is scheduling
of asynchronous calls after they are issued from the application
code. Karma has control on the latter as well, as it intercepts calls
directed to the peripheral APIs.

Unlike the previous discussion, we adopt both design options
described next. Developers get to choose what to employ at run-
time, based on peripheral features and application requirements.

3.3.1 Eager scheduling. Eager scheduling is the obvious choice.
Under eager scheduling, the operations in the support queue are
scheduled right after the main computing unit resumes execution.
Similarly, asynchronous calls are scheduled as soon as they are
issued by application code.

For some peripherals, eager scheduling may not be optimal. If a
particular peripheral is costly to initialize, for example, in terms of
energy or time, and that peripheral is not used during a particular
burst of intermittent execution, the energy spent on its initialization
is wasted. Such a situation is not unlikely to happen. A single
iteration of simple code may require up to 17 checkpoints [34],
each corresponding to a single burst of execution.

Similarly, in a situation of energy scarcity, the application may
request to start an asynchronous operation on an energy-hungry
peripheral that is unlikely to complete. Karma is going to re-issue
the operation when resuming after the imminent power failure;
meanwhile, the energy spent on the earlier incomplete operation is
wasted. As the application is composed of asynchronous code frag-
ments, chances are high that the wasted energy could be invested
somewhere else in useful computation or communication.

3.3.2 Lazy scheduling. Lazy scheduling works in a complementary
manner compared to eager scheduling.

Under lazy scheduling, we postpone recovering a peripheral state
until the first use of the peripheral. This ensures that the energy and

Peripheral-specific
Karma layer

Peripheral
state machine

Roll back

Scheduling

Recovery

Karma run-time support

Operation
stack

Ap
pl

ic
at

io
n

Pe
rip

he
ra

l d
riv

er
s

Figure 7: High-level architecture of Karma. Peripheral-specific

Karma layers include the definition of the corresponding state ma-

chine. Generic run-time support is in charge of rolling back executions,

scheduling peripheral operations, and recovering the peripheral state

when the system resumes. The operation stack maintains the list of

operations still to be performed.

time overhead of state recovery for a peripheral are only invested
when necessary. The disadvantage, however, is that the execution
time for that first peripheral operation is unpredictable from the
application point of view. This is because Karma transparently
recovers the peripheral state before issuing the actual operation.

The only exception to this processing is when the state informa-
tion for a certain peripheral indicate the start of an asynchronous
operation. In this case, lazy scheduling is not applicable. We must
recover the peripheral state immediately as the application is ex-
pecting a callback from that operation.

Asynchronous operations may be similarly postponed. This al-
lows the system not to waste energy and time in situations of
energy scarcity, as discussed above, and is particularly useful when
partially-executed peripheral operations may cause undesirable
side effects, for example, on the external environment. Consider for
example a radio packet only partially transmitted, or an actuator
that only performs a part of the intended action.

Lazy scheduling of asynchronous operations is realized in Kar-
ma as a “guard condition” that prevents a state transition until the
condition becomes true. For example, a guard condition based on
energy can compare the energy estimate for an operation to the
remaining energy. When resuming, Karma re-evaluates the guard
conditions of all pending peripheral operations. In the presence of
multiple such pending operations, we adopt a simple scheduling
technique [11] that avoids starvation of the most energy-hungry
operations, which may be deferred indefinitely otherwise.

4 IMPLEMENTATION

We provide a few implementation highlights and directions for
adopting Karma. Fig. 7 shows the high-level architecture.

As a result of the design choices described in Sec. 3 and our
implementation strategy, the application-level consequences of
employing Karma are minimal. Programmers keep relying on the
same peripheral APIs without being aware of when or how Kar-
ma transparently intervenes to ensure that intermittence does not
cause incorrect program behaviors.
Peripheral-specific Karma layer. A peripheral-specific Karma
intermediate layer includes the definition of the corresponding state

Intermittent Asynchronous Peripheral Operations SenSys ’19, November 10–13, 2019, New York, NY, USA

machine. Ideally, driver developers should provide this definition,
to make the peripheral generally compatible with intermittent exe-
cutions. We maintain this should not represent a hampering factor,
because state machines are often the formalism of choice to de-
scribe hardware operations and represent a common programming
abstraction of hardware description languages.

When creating a peripheral-specific Karma layer, a few guide-
lines are worth considering. For example, when defining transitions
in a state machine, synchronous calls need not create new states
unless they change the peripheral configuration. To resume the
peripheral state, in fact, a synchronous call that performs a one-shot
operation becomes transparent. For example, a sensor that performs
a synchronous read from a “calibrated” state returns to the same
state once the operation completes. Resuming the peripheral state
is not affected by the possible completion of the former operation.

Asynchronous operations require at least one additional state to
represent the situation where the operation is running and the ap-
plication code is waiting for the callback. Moreover, peripherals that
allow multiple concurrent asynchronous operations require explicit
states for all combinations of such operations such that, no matter
the order that operations are issued, the state machine converges
to the same state once all asynchronous operations complete.
Run-time support.We provide generic run-time support that cou-
ples with the peripheral-specific Karma layers, including roll-back
procedures as per Sec. 3.2 and scheduling policies as per Sec. 3.3.

A dedicated recovery module brings peripherals back in a con-
sistent state when resuming after a power failure. An operation
stack maintains a list of calls to peripheral APIs that, because of
lazy scheduling, are to be performed at a later stage or whenever
their guard conditions become true. In addition to re-evaluating
the guard conditions when resuming, we set up a periodic timer
to check whether any guard recently changed to true, for example,
because of a partial recharge while executing.

The decoupling between the peripheral-specific Karma support
and the generic run-time allows the system to preserve complete
independence across different peripherals. Parallel peripheral oper-
ations are therefore supported by design.

5 EVALUATION

We quantify the performance of Karma using real hardware. In
the following, Sec. 5.1 describes the experimental setting, whereas
Sec. 5.2 to Sec. 5.4 report the results. We conclude that
1) energy overhead of Karma is limited when checkpointing or

resuming as well as when the program executes, and markedly
lower than the baselines we consider;

2) energy overhead performance and support to asynchronous op-
erations ultimately yield a 83.3% data throughput improvement
compared to baselines;

3) in the benchmarks we consider, memory overhead of Karma
in static RAM data and code never reaches anywhere close to
the limits of the target platforms.

5.1 Settings

We design our experimental setting to be both realistic and repeat-
able, as described next.

Time (ms) #10
4

0 1 2

V
o
lt
a
g
e
 (

V
)

0

2

4

6

RF

Solar Indoor Rest (SIR)

Solar Outdoor Moving (SOM)

Solar Outdoor Rest (SOR)

Solar Indoor Moving (SIM)

Figure 8: Energy traces. The SOM trace is the most stable and has

highest energy content. The RF trace is the most variable and with

least energy content. The other traces provide different intermediate

degrees of variability and energy content.

Applications. We build three real-world applications on top of
a TI development board equipped with an MSP430-FR2433 MCU.
We develop two versions of each application. One version only
uses synchronous peripheral operations, indicated with the -synch
suffix. Synchronous peripheral operations are implemented with
high-frequency polling whenever possible or with busy-wait other-
wise. The other version uses asynchronous peripheral operations,
indicated with the -asynch suffix. The implementation of the appli-
cation logic is refactored from -synch to -asynch to take advantage
of reactive concurrency, as discussed in Sec. 2.2.

The first application, called MIC, uses a Silicon SPW2430HR5H
analogmicrophone to implement voice-activated environmentmon-
itoring. Whenever the microphone hears a verbal command “tem-
perature” or “humidity”, the program queries an attached SHT11
sensor via I2C to read the corresponding quantity. For energy effi-
ciency, we use a TI TLV voltage comparator that fires an interrupt to
the MCU whenever the microphone hears anything above a certain
threshold, which we experimentally determine as representative of
background noise. The sensor reading is then communicated via a
Microchip RN42 Bluetooth radio connected via UART.

The second application is a staple environmental monitoring
application, called ENV. Once per minute, the device reads temper-
ature and relative humidity using an SHT11 sensor and ambient
light using an array of four ISL29004 sensors facing different direc-
tions. Sensors are connected to the MCU via I2C. Upon acquiring
a new sample, a moving window of the last ten readings of each
quantity is averaged and the result is transmitted using a TI CC1101
sub-GHz radio connected via SPI.

The third application, termed AR, is the activity recognition ap-
plication described in Sec. 2.2, running on the hardware we already
employed for our motivating example.
Energy. We consider five energy traces, obtained from diverse
sources and in different settings. Fig. 8 shows an excerpt, plotting
the instantaneous voltage reading over time.

One of the traces is the RF trace from MementOS [34], recorded
using the WISP 4.1 [35]. We collect four additional traces using a
mono-crystalline solar panel [36] and an Arduino Nano to measure
the voltage output. We attach the device to the wrist of a student
to simulate a fitness tracker. The student roams in the university
campus for outdoor measurements (SOM) and in a research lab for
indoor measurements (SIM). Alternatively, we keep the device on
the ground right outside the lab for outdoor measurements (SOR)
and at desk level in our research lab for the indoor measurements

SenSys ’19, November 10–13, 2019, New York, NY, USA A. Branco, L. Mottola, M.H. Alizai, and J.H. Siddiqui

Application Checkpoint/resume energy Karma KarmaLow Sytare RESTOP

(no peripheral support)

MIC-ssynch 314µJ/135µJ +3.1%/+9.3% +6.2%/+9.2% +5.1%/+9.3% +15.1%/+29.1%
MIC-asynch 321µJ/132µJ +3.3%/+9.2% +5.9%/+9.4% N/A N/A
ENV-ssynch 409µJ/121µJ +2.8%/+10.3% +5.8%/+10.4% +5.7%/+9.8% +17.3%/+27.3%
ENV-asynch 421µJ/119µJ +3.2%/+11.1% +6.1%/+11.0% N/A N/A
AR-ssynch 327µJ/122µJ +2.9%/+11.3% +5.0%/+11.4% +4.9%/+10.1% +19.3%/+28.3%
AR-asynch 312µJ/102µJ +3.8%/+10.9% +5.9%/+11.1% N/A N/A

Figure 9: Energy overhead when checkpointing and resuming. Karma has the lowest overhead overall, due to the abstractions used for

state representation and the roll-back techniques for the MCU. Sytare and KarmaLow perform worse when checkpointing, whereas RESTOP

shows worst performance because of the ever-growing operation log.

Application Base cost Karma KarmaLow Sytare RESTOP

MIC-ssynch 52µJ +2.9% +5.9% +4.3% +22.7%
MIC-asynch 9µJ +7.3% +11.2% N/A N/A
ENV-ssynch 43µJ +2.3% +5.3% +5.1% +38.6%
ENV-asynch 5µJ +8.3% +13.2% N/A N/A
AR-ssynch 27µJ +1.8% +5.1% +4.9% +22.7%
AR-asynch 3µJ +7.9% +12.1% N/A N/A

Figure 10: Energy overhead compared to continuous execu-

tions. The energy overhead of Karma is smallest across the board.

Sytare’s performance comes at the cost of significant developer effort

to integrate with peripheral drivers. KarmaLow and RESTOP suffer

from an inappropriate choice of state representation.

(SIR). Fig. 8 visually demonstrates the extreme variability and con-
siderable differences among the traces we consider.

The energy traces are fed to the device using a Renesas digital
power supply driven by an RL78/I1A controller. Similar to Ekho [38],
such a setup allows us to replicate the exact V-I curve the device
would experience if attached to the actual energy harvester while
considering the equivalent resistance offered by the device, and yet
retain repeatability across applications and experimental settings.
By virtue of this setup, we also quantitatively assess the amount
of peripheral-related intermittence that our device experiences
during the experiments. Depending on the energy trace, this ranges
from about one out of three (ten) peripheral operation that are
interrupted because of a power failure in the RF (SOR) trace.

Checkpoints occur by dumping the entire device state, including
registers and program counter, on the on-board FRAM, similar to
Hibernus [5, 6]. We experimentally determine the voltage threshold
to trigger the checkpoint and use a secondary TI TLV voltage com-
parator to fire a corresponding interrupt to the MCU. The device is
attached to a 802µF capacitor, which we find to be sufficient for all
applications we consider to make eventual progress.
Metrics and baselines.We compare the performance of Karma
against Sytare [7] and RESTOP [4], which we apply to all peripheral
drivers we use in the applications above. Neither of these supports
asynchronous peripheral operations, so -asynch versions of the
three applications are only measured with Karma.

When using Karma, the implementation of the peripheral-specific
Karma layers, including the definition of the state machines, re-
quired from half a day to an entire day of work by a M.Sc. student;
the development effort is thus reasonable. In addition, we con-
sider a different version of Karma that works at the level of single
interactions with peripherals, as described in Sec. 3.1, and call it
KarmaLow. This is instrumental to obtain quantitative evidence
that the trade-offs discussed in Sec. 3.1 play in favour of our design

decisions.We do not carry out the same exercise by considering end-
to-end functionality, as they loose compatibility with asynchronous
operations and thus defeat the motivation for this work.

Based on real executions lasting for at least 10 hours2 in every
configuration and the information obtained from an attached Saleae
FTG456 logic analyzer, we compute staple performance metrics in
intermittent systems [5, 9, 29, 34, 37]

Energy overhead, that is, the additional energy cost due to
supporting intermittent peripheral operations, either when
checkpointing and resuming or during program execution;

Data throughput, that is, the net amount of application data
produced by the considered application over time, as trans-
mitted by the on-board radio and including charging times;

Memory overhead, that is, the amount of additional static
RAM data and program memory required when using a
specific support for intermittent peripheral operations.

Energy overhead represents the actual cost for employing a given
peripheral support for intermittent computation. Such an energy
cost is subtracted from the budget to perform useful computations
or to operate peripherals for application-level tasks, and must there-
fore be minimized. The impact of energy overhead on end-user
performance shows as a reduction in data throughput, which is the
performance figure that ultimately represents a system’s overall
efficiency. Memory overhead, on the other hand, provides an indi-
cation of the feasibility of a given peripheral support against the
constraints of target platforms.

We run application MIC by providing the exact same voice input
every 30s, so that executions are comparable when using different
configurations. Processing in the other two applications is the same
regardless of the sensor inputs.

5.2 Results Ñ Energy Overhead

We perform two kinds of measurements. First, we assess the ad-
ditional energy cost of including peripheral state information in
a checkpoint, either at the time of taking the checkpoint or when
resuming. Next, we investigate the additional energy consumption
during program execution, due to the different bookkeeping that
either peripheral support system requires.
Checkpointing and resuming.The energy overheadwhen check-
pointing and resuming stems from i) additional processing depend-
ing on the chosen abstraction to capture the evolving peripheral
states, and ii) additional data to write on non-volatile memory
together with checkpoint data.
2Whenever the available energy traces do not span such a time, we simply replicate
them as needed.

Intermittent Asynchronous Peripheral Operations SenSys ’19, November 10–13, 2019, New York, NY, USA

 0.1

 1

 10

 100

MIC ENV AR

T
h

ro
u

g
h

p
u

t
(s

a
m

p
le

s/
m

in
)

Application

Continous
Karma-asynch
Karma-synch

KarmaLow-asynch
KarmaLow-synch

Sytare
RESTOP

 0.1

 1

 10

 100

MIC ENV AR

T
h
ro

u
g
h
p
u
t
(s

a
m

p
le

s/
m

in
)

Application

Continous
Karma-asynch
Karma-synch

KarmaLow-asynch
KarmaLow-synch

Sytare
RESTOP

 0.1

 1

 10

MIC ENV AR

T
h
ro

u
g
h
p
u
t
(s

a
m

p
le

s
/m

in
)

Application

(a) SOR trace.

 0.1

 1

 10

MIC ENV AR

T
h
ro

u
g
h
p
u
t
(s

a
m

p
le

s
/m

in
)

Application

(b) SOM trace.

 0.1

 1

 10

MIC ENV AR

T
h
ro

u
g
h
p
u
t
(s

a
m

p
le

s
/m

in
)

Application

(c) SIM trace.

 0.1

 1

 10

MIC ENV AR

T
h
ro

u
g
h
p
u
t
(s

a
m

p
le

s
/m

in
)

Application

(d) SIR trace.

 0.1

 1

 10

MIC ENV AR

T
h
ro

u
g
h
p
u
t
(s

a
m

p
le

s
/m

in
)

Application

(e) RF trace.

Figure 11: Data throughput. Karma provides best performance

because of reduced overhead when checkpointing and resuming, plus

limited energy overhead while executing. Sytare and RESTOP offer

lower throughput because of higher energy overhead. The major gain

comes from asynchronous operations, which enable reactive concur-

rency. This improves data throughput up to 83.3% compared with the

baselines that only run -synch versions.

Fig. 9 shows average results over the 10-hour executions. The
energy overhead figures are remarkably consistent for the same

peripheral support system. Karma has the lowest overhead both
when checkpointing and when resuming, due to the abstraction we
choose to capture the evolution of peripheral states as well as the
roll-back technique we employ for the MCU.

KarmaLow and Sytare have comparable performance than Kar-
ma when resuming, as the two systems essentially perform the
same sequence of operations to bring peripherals back to the re-
quired state. Both operate at a lower level of abstraction when
checkpointing, which is detrimental to their energy performance
at that stage. RESTOP shows worst performance as the operation
log grows as the system continues to run, so the energy required
to checkpoint the log increases as a result.

Among applications, ENV has most sensors to deal with, thus
the energy cost of checkpointing and resuming are higher. The
energy cost of checkpointing is generally higher than resuming due
to the need to write on non-volatile memory, whereas only reading
is needed when resuming.
Program execution. Exclusively for understanding the net addi-
tional overhead during program executions, we run the applications
over a continuous stable power supply: they are not intermittent.
Such an overhead is due to keeping track of the evolution of pe-
ripheral states so that they can be brought back to the correct state.

Fig. 10 shows our energy measurements in a single application
run. Karma’s overhead is remarkably limited, as it reaches a 2.9%
(8.3%) worst case for -synch (-asynch) versions. We maintain that
this performance is enabled by the design choices we make, de-
scribed in Sec. 3, including the abstraction we choose and the oper-
ation granularity we opt to consider. The resulting design allows
us to place Karma as an intermediate layer between application
and peripheral drivers. This induces reduced energy overhead even
when supporting -asynch versions, which makes it a viable option
to develop programs that take advantage of reactive concurrency.

The results of KarmaLow provide quantitative evidence for
this observation. The energy overhead is markedly higher for both
-asynch and -synch versions. As discussed in Sec. 3.1, a finer gran-
ularity in capturing evolving peripheral states causes higher over-
head as state information are to be updated more frequently. This
corresponds to no other benefit compared to Karma, as both equally
support asynchronous operations.

When considering -synch versions, the energy overhead of
Sytare is generally twice that of Karma, whereas RESTOP shows
one order of magnitude higher energy overhead. Sytare requires
significant developer effort because of the tight integration with pe-
ripheral drivers. We argue that the performance of RESTOP stems
from the the abstraction chosen to keep track of evolving peripheral
states, which imposes significant processing for every interaction
with the peripheral. This is particularly evident for ENV, because
of the non-trivial control logic necessary to drive the CC1101 radio.

5.3 Results Ñ Data Throughput

Fig. 11 shows the data throughput in intermittent executions de-
pending on application and energy trace. The plot is in log scale.

Whenever programmers are limited to synchronous operations,
Karma improves data throughput by a minimum 32% compared
to the baselines, while remaining within a 36% bound from the
performance of a continuous execution. This is the combined ef-
fect of reduced information to be included in the checkpoint data,

SenSys ’19, November 10–13, 2019, New York, NY, USA A. Branco, L. Mottola, M.H. Alizai, and J.H. Siddiqui

Application Static RAM data/code Karma KarmaLow Sytare RESTOP

(no peripheral support)

MIC-ssynch 7.67KB/42.6KB +10.3%/+3.2% +10.4%/+3.2% +9.3%/+2.9% +4.2%/+2.7%
MIC-asynch 9.12KB/43.2KB +9.9%/+3.1% +9.8%/+3.2% N/A N/A
ENV-ssynch 5.89KB/31.53KB +12.3%/+3.8% +12.4%/+3.9% +10.1%/+2.8% +4.4%/+2.2%
ENV-asynch 8.19KB/32.87KB +12.1%/+3.6% +12.2%/+3.7% N/A N/A
AR-ssynch 6.23KB/33.63KB +11.1%/+3.3% +11.2%/+3.4% +10.8%/+3.5% +3.8%/+2.8%
AR-asynch 8.31KB/35.92KB +11.8%/+3.2% +11.9%/+3.1% N/A N/A

Figure 12: Memory overhead for static RAM data and code. Karma has slightly higher memory overhead than the baselines, which comes

as the cost not to integrate with the peripheral driver. The overall memory consumption remains within the limits of target platforms, with plenty

of room still available for additional functionality.

more efficient recovery after a power failure, and a limited energy
overhead when executing, as discussed in Sec. 5.2.

These observations are confirmed by the performance of Sytare
and RESTOP. Sytare is the second-best performing solution, and
yet it often only delivers about 50% of the throughput attainable
in a continuous execution and requires a tight integration with
peripheral drivers. RESTOP, on the other hand, greatly suffers as
the log to be included in checkpoint data grows with time and thus
energy performance progressively deteriorates. RESTOP often only
delivers a fraction of the throughput of a continuous execution.

The major performance gain shows when using asynchronous
operations, which neither Sytare nor RESTOP support. In the ap-
plications we consider, data throughput of the -asynch versions
improves by 83.3% compared with the baselines that can only run
-synch versions. In addition to the beneficial effects of reduced en-
ergy overhead, the ability to leverage reactive concurrency unlocks
great performance gains. This requires accordingly restructuring
implementations, which we demonstrate to be worth doing.

Interestingly, the same ratio of performance improvement when
using asynchronous operations applies to KarmaLow as well, but
the absolute values are lower. Opting for a finer granularity in
capturing evolving peripheral states thwarts the advantages of
the specific state representation we employ. The performance of
KarmaLow ends up being comparable to Sytare, thus showing
no advantages over the existing state of the art. What we learn
from this is that performance improvements are unlocked only by
a reasoned set of coherent design decisions, as we discuss in Sec. 3.

Comparing the plots in Fig. 11 with each other, we also note how
Karma’s higher energy efficiency yields better resilience against
variable energy provisioning patterns. The performance with the
SOR trace, shown in Fig. 11(a), is the best in absolute terms, as the
trace is the least variable and supplies the highest energy content.
Karma is the least affect by the increased variability and reduced
energy content of the SOM, SIM, and RF traces, shown in Fig. 11(b),
Fig. 11(c), and Fig. 11(e) respectively. Conversely, RESTOP is down
to less than one sample per minute in all applications using the
RF trace, because of the significant energy overhead of storing the
entire log as part of the checkpoint data. This subtracts significant
energy from an already thin budget.

5.4 Results Ñ Memory Overhead

Fig. 12 reports our measurements. Adding peripheral support for in-
termittent computing, regardless of what solution is adopted, never
exceeds the memory budget of the target platform: the additional
memory consumption in either static RAM data or code is gener-
ally limited. Memory overhead for intermittent peripheral support

generally stems from a fixed cost due to the necessary run-time
support, plus a variable cost that is a function of the number of
peripherals and the complexity of interacting with them.

RESTOP has the least memory overhead of all considered sys-
tems. The log data structure requires little run-time support and a
small amount of static RAM data. Sytare, Karma, and KarmaLow
trade more general peripheral support for an increase in memory
overhead for both figures. Karma’s and KarmaLow’s memory over-
head are generally comparable as the occupation of static RAM and
code only partly depends on the granularity to capture evolving
peripheral states. Karma’s figures are slightly greater than Sytare’s
mainly because of the decision not to integrate with the peripheral
driver as Sytare, which requires additional bookkeeping.

These observations apply particularly to the worst-case setting
of ENV, which employs a total of six peripherals, demonstrating
overall scalability against the number of peripherals. Note how the
static RAM data for the -asynch versions is generally higher than
the -synch versions. This is due to the increased use of global data
to make it accessible across asynchronously-executed segments
of code. Despite the increase in static RAM data, the percentage
overhead of Karma remains comparable to the -synch versions.
The overall memory consumption never reaches anywhere close
to the limits of the target platform and plenty of room remains
available for additional functionality.

6 CONCLUSION

Peripheral operations present fundamental unsolved challenges to
developers of intermittent computing systems. Support to asyn-
chronous peripheral operation is, in particular, lacking in the state
of the art. This prevents developers from employing reactive con-
currency in application implementations, which potentially leads
to higher reactivity and better energy efficiency.

We addressed these challenges through a reasoned set of co-
herent design decisions and concrete implementations, leading to
efficient system support for intermittent peripheral operations. Our
system Karma is based on dedicated abstractions to capture the
evolution of peripheral states and techniques to roll-forward pe-
ripheral states when resuming, while rolling-back the state of the
computing unit to a rendezvous point that guarantees consistency.
Our evaluation using prototype hardware and diverse real energy
traces indicates that the energy overhead of Karma is significantly
lower than the considered baselines, data throughput improves by
83.3%, and memory overhead leaves plenty of room available on
the target platforms for additional functionality.

Intermittent Asynchronous Peripheral Operations SenSys ’19, November 10–13, 2019, New York, NY, USA

REFERENCES

[1] Bowen Alpern and Fred B Schneider. 1987. Recognizing safety and liveness.
Distributed computing 2, 3 (1987), 117–126.

[2] Faycal Ait Aouda, Kevin Marquet, and Guillaume Salagnac. 2014. Incremental
checkpointing of program state to NVRAM for transiently-powered systems.
In 9th International Symposium on Reconfigurable and Communication-Centric

Systems-on-Chip.
[3] Joe Armstrong. 2013. Programming Erlang: software for a concurrent world. Prag-

matic Bookshelf.
[4] Alberto Rodriguez Arreola, Domenico Balsamo, Geoff V. Merrett, and Alex S.

Weddell. 2018. RESTOP: Retaining External Peripheral State in Intermittently-
Powered Sensor Systems. Sensors 18, 1 (2018), 172. https://doi.org/10.3390/
s18010172

[5] D. Balsamo, A. S. Weddell, A. Das, A. R. Arreola, D. Brunelli, B. M. Al-Hashimi,
G. V. Merrett, and L. Benini. 2016. Hibernus ++: A Self-Calibrating and Adap-
tive System for Transiently-Powered Embedded Devices. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems 35, 12 (2016), 1968–1980.
https://doi.org/10.1109/TCAD.2016.2547919

[6] D. Balsamo, A. S. Weddell, G. V. Merrett, B. M. Al-Hashimi, D. Brunelli, and L.
Benini. 2015. Hibernus: Sustaining Computation During Intermittent Supply for
Energy-Harvesting Systems. IEEE Embedded Systems Letters 7, 1 (March 2015),
15–18. https://doi.org/10.1109/LES.2014.2371494

[7] Gautier Berthou, Tristan Delizy, Kevin Marquet, Tanguy Risset, and Guillaume
Salagnac. 2018. Sytare: a Lightweight Kernel for NVRAM-Based Transiently-
Powered Systems. IEEE Trans. Comput. (12 2018).

[8] Naveed Bhatti and Luca Mottola. 2016. Efficient state retention for transiently-
powered embedded sensing. In Proceedings of the International Conference on

Embedded Wireless Systems and Networks.
[9] Naveed Anwar Bhatti and Luca Mottola. 2017. HarvOS: Efficient Code Instru-

mentation for Transiently-powered Embedded Sensing. In Proceedings of the 16th

ACM/IEEE International Conference on Information Processing in Sensor Networks

(IPSN ’17). ACM, New York, NY, USA, 209–219. https://doi.org/10.1145/3055031.
3055082

[10] Frédéric Boussinot and Robert De Simone. 1991. The ESTEREL language. Proc.
IEEE 79, 9 (1991), 1293–1304.

[11] Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. 2014. Efficient coflow sched-
uling with varys. In ACM SIGCOMM Computer Communication Review, Vol. 44.
ACM, 443–454.

[12] Alexei Colin and Brandon Lucia. 2016. Chain: Tasks and Channels for Reliable
Intermittent Programs. SIGPLAN Not. 51, 10 (Oct. 2016), 514–530. https://doi.
org/10.1145/3022671.2983995

[13] Alexei Colin, Emily Ruppel, and Brandon Lucia. 2018. A Reconfigurable En-
ergy Storage Architecture for Energy-harvesting Devices. In Proceedings of the

Twenty-Third International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS ’18). ACM, New York, NY, USA, 767–
781. https://doi.org/10.1145/3173162.3173210

[14] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. 2004. Contiki - A Lightweight
and Flexible Operating System for Tiny Networked Sensors. In Proceedings of

the 29th Annual IEEE International Conference on Local Computer Networks (LCN

’04). IEEE Computer Society, Washington, DC, USA, 455–462. https://doi.org/10.
1109/LCN.2004.38

[15] Adam Dunkels, Oliver Schmidt, Thiemo Voigt, and Muneeb Ali. 2006. Pro-
tothreads: Simplifying Event-driven Programming of Memory-constrained Em-
bedded Systems. In Proceedings of the 4th International Conference on Embed-

ded Networked Sensor Systems (SenSys ’06). ACM, New York, NY, USA, 29–42.
https://doi.org/10.1145/1182807.1182811

[16] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer, and David
Culler. 2014. The nesC Language: A Holistic Approach to Networked Embedded
Systems. SIGPLAN Not. 49, 4 (July 2014), 41–51. https://doi.org/10.1145/2641638.
2641652

[17] Saad Hamed, Naveed Bhatti, Junaid Siddiqui, Hamad Alizai, and Luca Mottola.
2019. Efficient Intermittent Computing with Differential Checkpointing. In
Proceedings of the International Conference on Languages, Compilers, and Tools for

Embedded Systems (LCTES).
[18] Maurice Herlihy. 1993. A methodology for implementing highly concurrent data

objects. ACM Transactions on Programming Languages and Systems (TOPLAS) 15,
5 (1993), 745–770.

[19] Josiah Hester, Lanny Sitanayah, and Jacob Sorber. 2015. Tragedy of the Coulombs:
Federating Energy Storage for Tiny, Intermittently-Powered Sensors. In Proceed-

ings of the 13th ACM Conference on Embedded Networked Sensor Systems (SenSys

’15). ACM, New York, NY, USA, 5–16. https://doi.org/10.1145/2809695.2809707
[20] Josiah Hester, Kevin Storer, , and Jacob Sorber. 2017. Timely Execution on

Intermittently Powered Batteryless Sensors. Sensys’17 (2017), 13. https://doi.
org/10.1145/3131672.3131673

[21] Michael Jackson. 1995. The world and the machine. In International Conference

on Software Engineering. IEEE, 283–283.
[22] H. Jayakumar, A. Raha, and V. Raghunathan. 2014. QUICKRECALL: A Low

Overhead HW/SW Approach for Enabling Computations across Power Cycles in
Transiently Powered Computers. In 2014 27th International Conference on VLSI

Design and 2014 13th International Conference on Embedded Systems. 330–335.
https://doi.org/10.1109/VLSID.2014.63

[23] Hrishikesh Jayakumar, Arnab Raha, Jacob R. Stevens, and Vijay Raghunathan.
2017. Energy-Aware Memory Mapping for Hybrid FRAM-SRAM MCUs in
Intermittently-Powered IoT Devices. ACM Trans. Embed. Comput. Syst. 16, 3,
Article 65 (April 2017), 23 pages. https://doi.org/10.1145/2983628

[24] P. Koopman. 2010. Better Embedded System Software. Carnagie Mellon Press.
[25] Philip Levis, Samuel Madden, David Gay, Joseph Polastre, Robert Szewczyk, Alec

Woo, Eric A Brewer, and David E Culler. 2004. The Emergence of Networking
Abstractions and Techniques in TinyOS.. In NSDI.

[26] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay, J.
Hill, M. Welsh, E. Brewer, and D. Culler. 2004. TinyOS: An operating system for
sensor networks. In Ambient Intelligence. Springer Verlag.

[27] Brandon Lucia and Benjamin Ransford. 2015. A Simpler, Safer Programming
and Execution Model for Intermittent Systems. SIGPLAN Not. 50, 6 (June 2015),
575–585. https://doi.org/10.1145/2813885.2737978

[28] Kiwan Maeng, Alexei Colin, and Brandon Lucia. 2017. Alpaca: Intermittent
Execution Without Checkpoints. Proc. ACM Program. Lang. 1, OOPSLA, Article
96 (Oct. 2017), 30 pages. https://doi.org/10.1145/3133920

[29] Kiwan Maeng and Brandon Lucia. 2018. Adaptive Dynamic Checkpointing for
Safe Efficient Intermittent Computing. In 13th USENIX Symposium on Operating

Systems Design and Implementation, OSDI 2018, Carlsbad, CA, USA, October 8-10,

2018. 129–144.
[30] Kiwan Maeng and Brandon Lucia. 2019. Supporting Peripherals in Intermittent

Systems with Just-in-time Checkpoints. In Proceedings of the 40th ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI 2019).
ACM, New York, NY, USA, 1101–1116. https://doi.org/10.1145/3314221.3314613

[31] mbed. 2017. IoT OS. goo.gl/u918jX.
[32] Ragunathan Rajkumar, Insup Lee, Lui Sha, and John Stankovic. 2010. Cyber-

physical systems: the next computing revolution. In Design Automation Confer-

ence. IEEE, 731–736.
[33] Benjamin Ransford and Brandon Lucia. 2014. Nonvolatile memory is a broken

time machine. In Proceedings of the workshop on Memory Systems Performance

and Correctness. ACM, 5.
[34] Benjamin Ransford, Jacob Sorber, and Kevin Fu. 2011. Mementos: System Support

for Long-running Computation on RFID-scale Devices. SIGARCH Comput. Archit.

News 39, 1 (March 2011), 159–170. https://doi.org/10.1145/1961295.1950386
[35] A. P. Sample, D. J. Yeager, P. S. Powledge, A. V. Mamishev, and J. R. Smith. 2008.

Design of an RFID-Based Battery-Free Programmable Sensing Platform. IEEE
Transactions on Instrumentation and Measurement 57, 11 (Nov 2008), 2608–2615.
https://doi.org/10.1109/TIM.2008.925019

[36] IXYS SolarMD. 2018. SLMD481H08L. http://ixapps.ixys.com/ (accessed 2018-02-
28).

[37] Joel Van Der Woude and Matthew Hicks. 2016. Intermittent Computation With-
out Hardware Support or Programmer Intervention. In Proceedings of the 12th

USENIX Conference on Operating Systems Design and Implementation (OSDI’16).
USENIX Association, Berkeley, CA, USA, 17–32. http://dl.acm.org/citation.cfm?
id=3026877.3026880

[38] Hong Zhang, Mastooreh Salajegheh, Kevin Fu, and Jacob Sorber. 2011. Ekho:
Bridging the Gap Between Simulation and Reality in Tiny Energy-harvesting
Sensors. In Proceedings of the 4th Workshop on Power-Aware Computing and

Systems (HotPower ’11). ACM, New York, NY, USA, Article 9, 5 pages. https:
//doi.org/10.1145/2039252.2039261

[39] Sean Zhang, Barbara G Ryder, and William Landi. 1996. Program decomposition
for pointer aliasing: A step toward practical analyses. ACM SIGSOFT Software

Engineering Notes 21, 6 (1996), 81–92.

https://doi.org/10.3390/s18010172
https://doi.org/10.3390/s18010172
https://doi.org/10.1109/TCAD.2016.2547919
https://doi.org/10.1109/LES.2014.2371494
https://doi.org/10.1145/3055031.3055082
https://doi.org/10.1145/3055031.3055082
https://doi.org/10.1145/3022671.2983995
https://doi.org/10.1145/3022671.2983995
https://doi.org/10.1145/3173162.3173210
https://doi.org/10.1109/LCN.2004.38
https://doi.org/10.1109/LCN.2004.38
https://doi.org/10.1145/1182807.1182811
https://doi.org/10.1145/2641638.2641652
https://doi.org/10.1145/2641638.2641652
https://doi.org/10.1145/2809695.2809707
https://doi.org/10.1145/3131672.3131673
https://doi.org/10.1145/3131672.3131673
https://doi.org/10.1109/VLSID.2014.63
https://doi.org/10.1145/2983628
https://doi.org/10.1145/2813885.2737978
https://doi.org/10.1145/3133920
https://doi.org/10.1145/3314221.3314613
goo.gl/u918jX
https://doi.org/10.1145/1961295.1950386
https://doi.org/10.1109/TIM.2008.925019
http://ixapps.ixys.com/
http://dl.acm.org/citation.cfm?id=3026877.3026880
http://dl.acm.org/citation.cfm?id=3026877.3026880
https://doi.org/10.1145/2039252.2039261
https://doi.org/10.1145/2039252.2039261

	Abstract
	1 Introduction
	2 Background
	2.1 Related Work
	2.2 Reactive Concurrency

	3 Design
	3.1 C1: State Representation
	3.2 C2: Atomicity
	3.3 C3: Scheduling

	4 Implementation
	5 Evaluation
	5.1 Settings
	5.2 Results Energy Overhead
	5.3 Results Data Throughput
	5.4 Results Memory Overhead

	6 Conclusion
	References

