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THE FlyZone TESTBED 
ARCHITECTURE 
FOR AERIAL DRONE 
APPLICATIONS

The current practice of experimenting with 
autonomous aerial drone applications is, 
however, resembling the early times of com-
puter programming, as it involves significant 
and time-consuming trial-and-error. The one 
difference is that drones crashing or failing 
potentially represent a physical threat to  
objects and persons. Moreover, gaining access  
to the target deployment for testing early 
implementations is and will be difficult,  
as regulations worldwide are increasingly 
stricter on the formal and technical guaran-
tees that one has to provide.

Motivation. We have first-hand experience 
on the issues arising when experimenting 
with autonomous aerial drone applications. 
Representatives of an oil company eventually 
asked us to prototype a drone system to 
perform automatic visual inspections of oil 
tanks [11], using low-cost drones. These are 
hostile environments, as gases originating 
from chemical residuals abound. 

Using drones is thus a viable alternative, 
but the necessary functionality is anything 
but trivial. Oil tanks are GPS-denied environ- 
ments and cannot be instrumented before- 
hand. Autonomous navigation is to be 
achieved using visual or dead-reckoning 
techniques. The former tends to be more 
precise, but their performance is sensitive  
to the environment’s visual features. 

We started from an existing implementa-
tion of simultaneous localization and map-
ping (SLAM) for the AR.Drone 2.0 [5,18]. 
This was much more mature than many 
existing implementations of autonomous 

navigation functionality: it was extensively 
tested using real drones [5] and offered  
optimized parameters for the target drones.  
We created mock-ups of oil tanks and started 
experimenting. Initial tests were disastrous; 
the existing implementation turned out to  
be very inaccurate in navigating the environ-
ment. In total, we broke seven drones crash-
ing against walls and ceilings, not to count 
damages to objects. 

The reason is qualitatively shown in 
Fig. 1 and Fig. 2: the parameters driving 
the recognition of visual features in the 
environment were tuned for objects of 
shape, color, and size different from the 
inside of an oil tank. The implementation 
we used offers several knobs to tune SLAM. 
Experimenting with different parameter 
values, however, was extremely laborious  
as every inaccurate setting eventually resulted 
in a crash. This required fixing broken parts, 
checking the system sanity, and rebooting the 
application with different parameters. After 
2+ months of experimentation with no 
dedicated support, the system was still not 
even remotely working in an accurate way. 

Challenge. Developers of aerial drone 
applications are confronted with similar 
issues in a range of diverse domains, 
including ambient intelligence [7] and 
search-and-rescue missions [9]. Existing 
techniques enabling autonomous behaviors 
rarely work out of the box, as they are 
typically tested only in simulation or require 
significant application- and/or hardware-
specific customization. As a result, well-

erial drones represent a new breed of mobile computing. 
Compared to mobile phones and connected cars that only 
opportunistically sense or communicate, aerial drones offer 
direct control over their movements. They can thus implement 

functionality that were previously beyond reach, such as collecting  
high-resolution imagery, exploring near-inaccessible areas, or inspecting 
remote areas to gather fine-grain environmental data.
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tested and reliable system implementations 
are largely lacking. Many drone applications 
may also benefit from multiple collaborating 
drones. Investigating distributed interactions 
further complicates matters. 

Drone simulators exist (e.g., SITL [3]), 
which are, however, simplified compared 
to reality, unable to model application-
specific sensors, and are often limited to 
waypoint GPS-driven navigation. Robot 
simulators often focus on aspects, such as 
swarm behaviors, targeting scenarios with 
thousands of unsophisticated resource-
constrained devices. In comparison, drones 
are much more powerful platforms, able to 
operate in a stand-alone fashion.

Few attempts exist at providing system 
support for experimenting with drone 
applications [16] in a real-world setting, 
as most existing facilities are designed 
for different purposes, for example, to 
study low-level mechanical control using 
highly engineered drones backed by 
computing clusters and expensive motion 
capture systems. The objective is not to 
test application implementations, but to 
investigate fine-grained flight regulators 
that enable demonstrations, such as drones 
throwing and catching balls. 

Because of these reasons, experimenting 
with drone applications tends to take place 
right in the target settings, if and when 
that is at all possible or allowed. This is 
often a recipe for disaster. Ensuring the 
safety of objects and people when running 
prototype implementations is extremely 

difficult, while the consequences of bugs 
may be catastrophic [17]. The ever-changing 
regulations on the use of civil drones 
compound the problem [6]. 

FlyZone. Developers of drone applications 
require a means to run high-level application 
functionality by emulating the features 
of the target deployment setting, using 
commercially available drones. 

FlyZone fills this gap. It provides drone 
developers with three key features: i) an 
application-level API that allows them to 
write code as close as possible to the one to 
be deployed, ii) ways to emulate environment 
influences, such as wind or pressure gradients, 
and iii) the ability to specify safety constraints, 
which are automatically monitored to mimic 
the presence of physical obstacles. 

For example, using FlyZone, a developer 
may test an application’s reaction to lateral 
forces on the drone, or express constraints 
on what trajectories a drone is allowed to fly 
based on a virtual representation of oil tanks. 
Any violation to these constraints prompts 
FlyZone to reclaim control of the drone and 
execute developer-provided fail-over actions. 
The drone is safe, the objects nearby are as 
well, while developers will not need to collect 
the pieces of whatever they broke before 
being able to investigate the problem. 

Achieving this functionality requires 
addressing conceptual as well as technical 
challenges. These include i) decoupling the 
testbed infrastructure from the application, 
to ease the transition from testbed to 

deployments; ii) realistically emulating the 
environment influence, and iii) tackling the 
drone localization problem in the testbed 
as opposed to robot localization in a target 
application. In the following, we provide 
a brief account on how we address these 
challenges. 

Unlike simulators, with FlyZone, the 
experimentation occurs using the same 
application code and drone platforms to be 
deployed in the target setting. Our testbed 
design also facilitates replicating the testbed 
infrastructure at different sites in a fully 
customized fashion. To that end, we offer a 
well-defined set of procedures and scripts 
to automate this effort [2]. FlyZone is 
entirely built with off-the-shelf commercial 
hardware, which facilitates obtaining the 
equipment and reduces costs. 

Three working installations of FlyZone 
currently exist, located at Politecnico di 
Milano (Italy), University of Virginia 
(US), and Warwick University (UK). They 
are actively used by researchers at either 
institution and are also instrumental to 
evaluate the performance of FlyZone. 
We demonstrate, for example, that we 
realistically emulate the environment 
influence with a positioning error bound 
by the size of the smallest drone we test. In 
the following, we also succinctly report on 
our experience using FlyZone for developing 
prototype drone applications that reached 
real deployments. Further details about the 
design, implementation, performance, and 
use of FlyZone are available [2]. 

FlyZone IN A NUTSHELL 
Three aspects concur to the design of FlyZone:  
its architecture design, how we emulate the 
environment influence, and how we perform 
drone localization in the testbed.

Architecture 
The FlyZone architecture seeks to decouple 
the testbed infrastructure from the main 
application. Fig. 3 shows how we achieve these 
objectives in the case where the application 
runs on a Ground Control Station (GCS); 
minimal variations apply if the application is 
deployed on a companion computer aboard 
the drone. 

We deploy an additional single-board 
computer on every drone, termed as drone 
controller. This is responsible for executing 
the testbed commands to emulate the 
influence of the environment; for example, by 
steering the drone in arbitrary directions and 
for checking violations to safety constraints. 
It runs a minimal Linux installation and a 
custom FlyZone software that exchanges 
flight commands and telemetry data with the 
autopilot, using the MAVLink [14] protocol 
though a UART interface. The controller 
also serves part of the localization system, 
as described next, so it is informed of  
the location. 

The controller receives commands from 
and forwards telemetry data to an experiment 
script. This specifies the actions that developers 
are interested in; for example, to create 
given environment situations, what kind of 
environment influence that developers want 
to emulate, as well as the safety constraints 
for the experiment. The experiment script 
accesses FlyZone through an API currently 
available in Java, Python, and C++ [2]. 

Environment Emulation 
Intuitively, to emulate the environment 
influence on a drone, we reverse-engineer 
the physical behavior of the drone. External 
forces are normally applied to the drone 
by the environment. In response to that, 
the drone moves in certain ways. We need 
to do the opposite: we want to proactively 
move the drone in a way that reproduces its 
physical response to external forces. 

To do so, we make the drone controller 
issue commands to the autopilot to steer 
the drone as if it were subject to the cor-
responding forces [1]. Applications cannot 
distinguish these from actual environment 

influence, as both are detected as changes 
in the readings of navigation sensors. This 
functionality is enabled by a model of the 
physical drone dynamics that determines 
how the drone would move when subject to 
given external forces. 

We rely on the vast literature on aircraft 
dynamics and adapt existing detailed models 
to FlyZone. Note that we need a model for 
general navigation, unlike task-specific 
models. Our models require some, (still 
reasonable) effort in parameter estimation. 
This is needed only once and solely in case 
FlyZone does not integrate a given type 
of drone already. We currently support 28 
different drones, ranging from custom quad-,  
hexa-, and octocopters to commercial ones, 
such as DJI Spark, Mavic Pro, and the whole 
Phantom and Inspire series. 

Model structure. Aerial drones are 6-degree 
of freedom (DOF) rigid bodies. We use the 
Newton-Euler method, where two frames of 
reference are used: one is fixed to the Earth 
and termed as navigation reference; the other 
is fixed with the body of the drone. Let pn 
and vn be the drone position and velocity 
vectors in navigation coordinates (denoted 
with n), and wb be its angular rate in body 
coordinates (denoted with b). A drone’s 
dynamics are described as the instantaneous 
change in position and velocity of its center 
of mass in the navigation frame, plus the 
instantaneous change in angular rate in the 
body frame. By applying fundamental laws of 
kinematic, we write 

pn = vn  (1)

vn = m-1Cn
bF (2)

wb= J-1M (3)

where F and M are forces and torques onto 
the drone, m and J are its mass and inertia, 
and Cn

b transforms body coordinates into 
navigation coordinates. 

A solution to eq. (1)-(3) represents 
the necessary and sufficient information 
to steer the drone as if it were subject to 
given external forces. We translate the 
solution to MAVLink commands that the 
drone controller issues to the autopilot. We 
describe next how to obtain the necessary 
drone-specific inputs and parameters.

Model inputs. We apply existing methods 
to compute the torque vector M in eq. (3) 
[4]. The force vector F in equation (2) is a 
combination of drag forces Fd, motor thrust 
Fm, and gravity Fg. We compute Fm based 
on the relation between input current and 
output thrust for brushless DC motors, 
which typically equip aerial drones. The 
gravity vector Fg is straightforward. 

The remaining force vector representing 
drag forces Fd is a function of drag coefficients 
and of the velocity vector of external forces 
applied to the drone. Using FlyZone, the 
latter is input to a given experiment and 
represents the knob that developers use to 
set the environment influence. They may 
provide this information as a constant velocity 
vector that applies throughout the field, using 
meteorological software [13] to generate 
detailed three-dimensional wind maps, like 
in Fig. 4, or by synthetically creating wind 
patterns modeling specific situations, such as 
narrow passages or airflows around objects.

Parameter estimation. The unknown 
quantities to use the model are the drone 
mass, inertia, and drag coefficients. Estimating 

FIGURE 3. FlyZone architecture. Components in grey are FlyZone-specific.

FIGURE 2. Oil tanks lack the visual features of Fig. 1, and require a 
new set of parameters to efficiently operate SLAM.

FIGURE 1. The parameters of the existing implementation are 
optimized for a domestic environment [5].
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a drone mass is straightforward. We use a 
three-dimensional drone model in Blender 
combined with the BGE Advanced Physics 
Library and custom scripts that we develop 
to estimate the latter two. Blender is a state-
of-the art open-source 3D editing software, 
often used to create 3D models of drones 
for optimizing their aerodynamics. The 
BGE Advanced Physics Library is included 
in the Blender distribution and is used 
to understand the physical properties of 
Blender models. 

Throughout this process, some approxi- 
mations are inevitable to keep the problem 
tractable. For example, we use 3D models 
as exemplified in Fig. 5, which omit the 
presence of smaller components such as 
ESCs, antennas, and the like. Further, our 
scripts compute propeller drag only based 
on length and maximum rotation speed, 
similar to existing literature, rather than 
considering the specific propeller shape. 

Localization 
Drone localization must happen with 
accuracy, speed, and limited processing 
overhead. We are expecting FlyZone 
installations to be located indoors, so GPS 
is generally not applicable. Motion capture 
systems are expensive and laborious to 
install. Techniques in traditional robotics also 
generally target different requirements and 
settings. For example, the deployment of tags 
in a testbed is dense and uniform in a known 

environment, unlike the sparse and uneven 
deployment seen whenever visual tags are 
attached to objects to help ground robots 
roam unknown environments. Moreover, 
we aim at optimizing not only accuracy, but 
also processing speed to ensure FlyZone can 
promptly react to safety violations and to 
scale in the presence of multiple drones.

Based on these considerations, we opt 
to design a custom visual localization 
technique that is entirely based on off-
the-shelf technology. Our technique uses 
visual tags like the one in Fig. 6, deployed 
on the ground at known positions, as 
shown in Fig. 7. The tags are dynamically 
recognized through a camera connected 
to the drone controller and attached to 
the bottom of the drone, pointing to the 
ground. The tags provide localization 
and orientation information in the plane. 
Note that such a technique is solely meant 
for testbed operation, whereas the main 
application relies on its own separate 
localization system, for example, using GPS 
for outdoor operation or SLAM in GPS-
denied environments [5]. We obtain altitude 
information from the autopilot software, 
based on the readings of ultrasound sensors, 
part of a drone’s IMU. 

We use Java to implement the entire 
localization pipeline, using OpenCV. The 
pipeline may run on a central computer 
that simply receives the video feed from the 
drone controller, or entirely on the latter. 

Using a central computer, we may leverage 
GPU acceleration, whereas using the drone 
controller we can provide positioning infor- 
mation locally to the drone, thus emulating 
the presence of an on-board GPS sensor. 

The tags are generated and placed on 
the ground in ways that maximize both 
accuracy of detection and processing speed.  
We achieve this by formulating both tag 
generation and placement as a multi-
objective optimization problem [2]. The 
scripts and solving tools are provided as part 
FlyZone, and can automatically generate a 
customized tag space depending on input 
information, such as camera accuracy and 
physical constraints of the space. This way, 
we facilitate replicating the testbed at places 
other than the existing installations.

FlyZone IN ACTION 
To provide quantitative evidence, we 
discuss next the accuracy in emulating the 
environment influence. This integrates the 
functioning of the FlyZone architecture,  
the models used for environment emulation, 
and the localization technique. It is thus 
representative of the testbed performance as 
a whole. We also discuss our experience in 
using FlyZone to develop real-world drone 
applications. 

Environment Emulation 
Quantifying how realistically FlyZone 
emulates the environment influence is a 
challenge per se. The key problem is how  
to gain some ground truth.

Setting. Fig. 8 graphically describes the setup 
we design to this end. We rent eight 17” wind 
machines of the type used in professional 
movie making. They offer accurate power 
and orientation settings, which we use to 
create repeatable wind patterns in the three 
dimensions. To measure the effect before any 
drone is deployed, we uniformly install 48 
portable anemometers measuring flow speed 
and direction. We linearly interpolate their 
measurements to create a three-dimensional 
wind map, as in Fig. 4. 

As a form of ground truth, we run test 
applications against the actual influence of 
the wind machines, using the same settings 
for creating the wind maps, but without the 
anemometers. For comparison, we input 
the windmaps to FlyZone to recreate the 
environment effect. We develop a single-
drone application called trajectory, which 
directs the drone along regular three-
dimensional paths. The application may run 
in two modes: in compensation mode, it tries 
to counteract the effect of wind machines to 
maintain the trajectory; in simple mode, it 
does nothing to that end. We also emulate 
a search-and-rescue application using five 
drones [10] and call it search. 

We track the drones using an OptiTrack 
motion capture system [19]. We compute the 
Root Mean Square Error (RMSE) of drone 
positions and orientations between the 
path flown in the ground truth setting and 
when using FlyZone. We consider this as a 
measure of FlyZone realism. We experiment 
with a total of 62 different wind machines 
configurations, creating a variety of air flow 
patterns. We repeat the same experimental 
setting ten times to factor out inaccuracies in 
the setup, using either the AR.Drone 2.0 or 
our custom PixHawk-based hexacopter. We 
total 400+ hours of tests. 

Results. Fig. 9 plots the RMSE results 
in drone positions; we obtain similar 
trends for orientation. The absolute RMSE 
are constantly lower than the physical 
dimensions of the smallest drone we 
use. The trajectory-simple case shows 
the lowest average RMSE because the 
application does nothing to counteract the 

environment influence, so the interplay 
between drone controller and application 
creates no discrepancies compared to 
reality. Conversely, search uses a complex 
application logic that constantly tries to 
correct the trajectory; this creates slight 
differences between the emulated behavior 
in the testbed and the real behavior one 
would expect in the field.

Experience 
Oil tanks. The application outlined earlier 
was the original motivation for designing 
FlyZone. We used safety constrains to 
indicate where the drone was allowed to fly 
inside our mock-up oil tank. Every violation 
to these constraints was detected by FlyZone 
before we had lost control of the drone. 
The experiment script stopped the main 
processing, moved the drone back to the 
initial position, changed relevant parameters, 
and restarted the test. These experiments 
could run in a semi-automatic fashion. 

FIGURE 4. Wind map generated using QGis software.

FIGURE 6. Visual tag.

FIGURE 8. Evaluating realism in emulating environment influence: testbed setup.

FIGURE 7. Tag space.

FIGURE 5. Quadcopter Blender model.
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Once we could rely on this functionality, 
it took five days of work to find efficient 
SLAM parameters. This is very little time 
compared to the two months we spent 
hopelessly trying to identify suitable values 
without being able to prevent mishaps. Our 
final prototype was eventually demonstrated 
in public, autonomously navigating mock-up 
oil tanks of arbitrary shapes and colors [8]. 

Search and rescue. We ran a student 
challenge comparing the use of FlyZone 
with the SITL [3] simulator, the de-facto 
standard for simulating MAVLink-based 
drone platforms. The students worked in 
pairs to create a prototype search-and-rescue 
application using a custom hexacopter 
with a Raspberry PI companion computer 
and an ARVA radio receiver for finding 
people under snow [12]. The objective was 
to minimize search times. We recruited 20 
MSc graduate students with multi-course 
expertise in software engineering and 
embedded systems. Half of the students  
used FlyZone, the other half used SITL. 

The students started from a textbook 
description of a gradient descent algorithm 
[15]. They were also required to extend the 
system to multiple collaborating drones to 
reduce search times [10]. This functionality 
had to be developed from scratch. Develop- 
ment times were generally in favor of the 
groups using SITL, who invested about 33% 
fewer hours. Admittedly, no testbed may 
ever match the ease of use of a simulator. 
Looking at the actual system performance, 
however, turned things in favor of the 
groups using FlyZone. 

We measured the search times in the final 
challenge trials based on four individual 
runs of the prototypes in a rugby field. This 
site was unknown to the students until they 
turned in the final implementations. We 
again used digital anemometers to ensure 
comparable conditions. 

All groups were using FlyZone but 
one showed better performance than the 
groups who used SITL, resulting in about 
37% shorter search times. The application 
logic was very similar among the different 
groups, as it was based on the same search 
algorithm. The parameter tuning made the 
difference. Using FlyZone to emulate the 
environment influence led the groups to 
eventually obtain more efficient parameters 
able to withstand the environment effects. 

Training pilots. The FlyZone installation 
at Politecnico di Milano (Italy) is also 
helping a local piloting school train pilots 
working toward the official license for flying 
professionally. 

Although this was never among our 
goals, FlyZone’s features are useful in this 
case too. We are running no application; 
the drone is manually controlled. We wrote 
an experiment script that specifies safety 
constraints to make sure that even the most 
novice pilot can do no harm. The same 
script triggers different “trials” to check 
whether the pilot can deal with environment 
influences, for example, due to wind gusts. 
FlyZone is currently the only indoor 
infrastructure that pilots can use to learn 
how to fly in realistic conditions. 

CONCLUSION 
FlyZone is a testbed architecture to support 
developing aerial drone applications. 
Its unique features include the ability to 
emulate the environment influence, which 
we achieve with a positioning error bound 
by the size of the smallest drone we test, 
and the automatic monitoring of safety 
constraints that mimic obstacles. A custom 
visual localization technique enables this 
performance, while a lightweight testbed 
architecture that maximizes decoupling from 
the main application facilitates transitioning 
from testbed to real deployments. We are 
currently engaged in using FlyZone to test 
the performance of autonomous navigation 
algorithms, whose performance was hitherto 
only measured in simulation, against the 
emulated environment influence. We argue 
this is a fundamental step towards the 
concrete real-world use of this technology. n
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