
On Securing Persistent State in Intermittent Computing
Hafiz Areeb Asad
Uppsala University

Sweden
areebasad95@gmail.com

Erik Henricus Wouters
KTH Royal Institute of Technology

Sweden
ehwo@kth.se

Naveed Anwar Bhatti
Air University

Pakistan
naveed.bhatti@mail.au.edu.pk

Luca Mottola
Uppsala University, Sweden and RISE

Sweden
luca.mottola@polimi.it

Thiemo Voigt
Uppsala University, Sweden and RISE

Sweden
thiemo.voigt.@it.uu.se

ABSTRACT
We present the experimental evaluation of different security mech-
anisms applied to persistent state in intermittent computing. When-
ever executions become intermittent because of energy scarcity,
systems employ persistent state on non-volatile memories (NVMs)
to ensure forward progress of applications. Persistent state spans
operating system and network stack, as well as applications. While
a device is off recharging energy buffers, persistent state on NVMs
may be subject to security threats such as stealing sensitive infor-
mation or tampering with configuration data, which may ultimately
corrupt the device state and render the system unusable. Based on
modern platforms of the Cortex M* series, we experimentally in-
vestigate the impact on typical intermittent computing workloads
of different means to protect persistent state, including software
and hardware implementations of staple encryption algorithms
and the use of ARM TrustZone protection mechanisms. Our results
indicate that i) software implementations bear a significant over-
head in energy and time, sometimes harming forward progress, but
also retaining the advantage of modularity and easier updates; ii)
hardware implementations offer much lower overhead compared
to their software counterparts, but require a deeper understanding
of their internals to gauge their applicability in given application
scenarios; and iii) TrustZone shows almost negligible overhead, yet
it requires a different memory management and is only effective as
long as attackers cannot directly access the NVMs.

CCS CONCEPTS
• Security and privacy→ Embedded systems security; •Com-
puter systems organization→ Embedded software.

KEYWORDS
intermittent computing, transiently-powered embedded system,
embedded security

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ENSsys ’20, November 16–19, 2020, Virtual Event, Japan
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8129-1/20/11. . . $15.00
https://doi.org/10.1145/3417308.3430267

ACM Reference Format:
Hafiz Areeb Asad, Erik Henricus Wouters, Naveed Anwar Bhatti, Luca
Mottola, and Thiemo Voigt. 2020. On Securing Persistent State in Inter-
mittent Computing. In The 8th International Workshop on Energy Har-
vesting and Energy-Neutral Sensing Systems (ENSsys ’20), November 16–
19, 2020, Virtual Event, Japan. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3417308.3430267

1 INTRODUCTION
Energy harvesting allows embedded sensing devices to mitigate, if
not to eliminate, their dependency on traditional batteries. How-
ever, because of erratic energy patterns [6], unanticipated system
shutdowns are difficult to avoid. Computing then becomes inter-
mittent [11]; periods of normal computation and periods of energy
harvesting come to be unpredictably interleaved.
Problem. System support exists to enable intermittent computing,
employing either a form of checkpointing or task-based program-
ming abstractions [9, 12, 15, 21] to let the program cross periods of
energy unavailability [4, 16]. Both approaches rely on some form
of persistent state stored onto non-volatile memory (NVM) in an-
ticipation of power failures. Persistent state is then retrieved back
from NVM once the system resumes with sufficient energy.

Persistent state may include critical information on operating
system and network stack configurations, as well as application
data. Crucially, while the device is off recharging energy buffers,
persistent state may be subject to a variety of security threats. For
example, depending on NVM technology, an attacker may steal
precious information from persistent state or corrupt the data in
ways that prevent the application to operate correctly ever after.

To address these issues, we experimentally investigate the use
of staple encryption mechanisms and system-level features offered
by modern architectures to protect persistent state. Using micro-
controller units (MCUs) of the Cortex M* series, we measure the
energy and time overhead of software- and hardware-based encryp-
tion algorithms, such as the Advanced Encryption Standard (AES)
and ARM TrustZone system-level protection. We assess the impact
of the corresponding overhead on typical intermittent computing
workloads against the provided level of protection.

The conclusions we draw are that i) despite the advantages due
to increased modularity and easier updates, software implemen-
tations impose a significant overhead in energy and time, which
may result in preventing forward progress of applications; ii) hard-
ware implementations yield much lower overhead, but require a
deeper understanding of their internals to gauge their applicability,

https://doi.org/10.1145/3417308.3430267
https://doi.org/10.1145/3417308.3430267
https://doi.org/10.1145/3417308.3430267

ENSsys ’20, November 16–19, 2020, Virtual Event, Japan Hafiz Areeb Asad, Erik Henricus Wouters, Naveed Anwar Bhatti, Luca Mottola, and Thiemo Voigt

as for example when protecting against side-channel attacks; and
iii) TrustZone shows almost negligible overhead, yet it requires a
different memory management that complicates implementations
and is only effective as long as the threat model does not include the
attacker’s ability to directly access the NVM bypassing the MCU.

The remainder of the paper unfolds as follows. After a brief
account of the state of the art in intermittent computing and related
security solutions, reported in Sec. 2, we describe the experimental
setup in Sec. 3. Based on this, Sec. 4 discusses the results we gather
and the conclusions we can draw. We end the paper in Sec. 5 with
an outlook on follow-up directions and brief concluding remarks.

2 BACKGROUND AND RELATEDWORK
In this section, we provide necessary background information and
a brief account of related work.
Intermittent computing. Frequent unanticipated power failures
hinder continuous operation as the device loses the progress achieved,
restarting from scratch when energy is back.

Several solutions exist to ensure forward progress efficiently.
Many of these are based on some form of checkpoint [3, 4, 7, 13,
16, 20] and apply techniques such as periodic or dynamic check-
pointing [3, 4, 13, 16], differential checkpointing [2], and compiler-
based analysis [7, 20] In contrast to checkpoint mechanisms that
apply to unmodified sources, task-based programming abstrac-
tions [9, 12, 15, 21] require programmers to split the application in
separate tasks executing with transactional semantics. The under-
lying runtime takes care of ensuring the results of a completed task
are made persistent before transitioning to the next task.

In available solutions, the system state is persisted on NVM fully
or partially. The confidentiality and integrity of the persisted data is
questionable and to date, only a few solutions address these issues.
Security persistent state. Persistent state on NVM includes sys-
tem configurations and application data present in main memory
at run-time, and is thus sensitive.

A foundation to reason on the related security problems is offered
by S. Krishnan et al. [17], who present an attackmodel for unsecured
and cryptographically secured checkpoints for both knowledgeable
and blind attackers with hardware access, that is, the ability to read
and write NVM. They show how persistent state is vulnerable to
sniffing, spoofing, or replay attacks [17]. An attacker may simply
sniff persistent state by reading the contents of the NVM using
debug ports. Sniffing may be prevented by encrypting data on NVM,
thus ensuring confidentiality, but does not prevent an attacker
from spoofing, that is, tampering encrypted data, which threats the
checkpoint integrity. By collecting several checkpoints, attackers
may execute the previous checkpoints to repeat the execution order.

A few solutions are available to secure persistent state. Ghodsi
et al. [10] use lightweight algorithms [8] for securing checkpoints,
ensuring confidentiality. Valea et al. [19] propose a SECure Context
Saving (SECCS) hardware module inside the MCU, using Trivium
stream cipher to encrypt data and SHA-256 as MAC module to pro-
vide data integrity, thus providing both confidentiality and integrity,
at the cost of hardware modifications. Khrishnan et al. [14] present
a generic secure protocol and apply Authenticated Encryption with
Associated Data (AEAD) to protect checkpointing data. AEAD pro-
vides both confidentiality and integrity simultaneously. To secure

checkpoints, they use EAX [5] by accelerating the algorithm using
the on-chip AES module on TI MSP 430 MCUs.

Complementing these early works, our goal is to provide a quan-
titative assessment and comparison of the overheads imposed by
software- or hardware-based implementations of AES and using
ARM TrustZone, as available on recent Cortex M* MCUs.

3 EXPERIMENTAL SETUP
We implement benchmarks that run directly on bare-metal without
operating system support. They emulate the occurrence of check-
point and restore operations, while measuring the overhead of
given security mechanisms.

We describe next the security mechanisms we test, the corre-
sponding threat models, and the target hardware. Note that the
threat models we assume for software- or hardware-based encryp-
tion as opposed to TrustZone are inherently different, thus the
quantitative data we provide in Sec. 4 are not directly comparable.

3.1 Security Mechanisms
We experimentally investigate the use of AES and ARM TrustZone
to protect persistent state in intermittent computing.
AES. The AES symmetric cipher represents an industry standard.
We assume that the attacker has physical access to the device and
may snoop (read) or spoof (tamper) persistent data on NVM. We
also assume that keys and tags are stored in a secure key area
instead of plain NVM. An attacker may also execute replay attacks
by collecting sequences of encrypted checkpoints. We use three
block cipher variants of AES: Electronic Cipher Mode (ECB), Chain
Block Cipher (CBC) and Galois Counter Mode (GCM).
Encryption. The basic AES mode is ECB, which supports both
ways parallel encryption and decryption. The attacker may, how-
ever, rearrange the ciphertext blocks in an arbitrary order, and re-
peat or omit blocks to construct a different valid ciphertext, which
makes it insecure [18]. The CBC mode circumvents this by using
an initialization vector as an input in addition to the plaintext, en-
suring that distinct ciphertexts are produced even when the same
plaintext is encrypted multiple times with the same key. Both the
ECB and CBC variants ensure confidentiality. GCM is one of the
AEAD-based schemes that ensure confidentiality and integrity. En-
suring integrity is required to avoid spoofing, that is, to prevent
that the attacker tampers with the encrypted checkpoint and drives
the system into an unstable state.

The most primitive attacks to break encryption algorithms are
brute force attacks. AES is generally considered secure against
these. However, more fierce attacks against encryption algorithms
are side-channel attacks, where the adversary exploits the phys-
ical characteristics of a running system, such as electromagnetic
radiations and power usage during encryption operations, to gain
information useful to retrieve the keys. In intermittent computing,
such an attack may become more viable, as the adversary can re-
execute the same encrypted checkpoint multiple times to acquire
information for side-channel attacks. It is therefore necessary to
employ countermeasures to prevent information leakage.

AESmay be implemented in software orwith dedicated hardware
support. We experiment with both. To check software-based AES
implementations, we select two existing well-known cryptographic

On Securing Persistent State in Intermittent Computing ENSsys ’20, November 16–19, 2020, Virtual Event, Japan

libraries: the mbedTLS 1 and WolfCrypt2 cryptographic libraries.
In contrast, special-purpose hardware modules implementing AES
exist to reduce the load on the main computing unit. Both hardware
platforms we consider, described next, are equipped with such
hardware support, albeit with different features and performance.
TrustZone. ARM describes a collection of hardware security ex-
tensions to the Cortex family of 32-bit processors in the TrustZone
specifications. Similar to Intel’s Software Guard Extensions, it pro-
vides a Trusted Execution Environment (TEE) intended to be more
secure than the user-facing operating system. Accordingly, the
TrustZone architecture exposes a secure world processor context
besides the normal world context. The separation between the
secure and normal world is achieved by extending the memory
management to split the physical memory into secure and normal
regions. We use the secure region for checkpoint data.

In the case of TrustZone, we assume that the adversary has the
ability to run malicious code on the device, either by installing it
remotely or through physical access to the device. We also assume
that attackers may read the normal world memory. Data sections
are not executable and code sections are not writable, but they
are readable. Note that checkpoints are not encrypted when using
TrustZone, which only protects the persistent data from malicious
software accesses. We therefore assume that the debug port is not
vulnerable, or attackers may read and tamper checkpoint data.

We place the subroutine to perform a checkpoint in the secure
world. The checkpoint is triggered from the non-secure world and
copies the contents of the main memory, program counter, and reg-
ister file to a secure region in the non-volatile memory directly. The
checkpoint is restored directly from the secure region of the flash
to the non-secure memory. We configure the Secure Attribution
Unit (SAU) of our target MCU, described next, to protect the region
of the non-volatile memory where we store persistent state from
reads and writes originating in the normal world. We implement a
test application to confirm that reading or writing to this address
range does trigger a specific exception.

3.2 Hardware
We perform our experiments on ultra-low power ARM MCUs from
Microchip, namely the the ATSAML21J18B Cortex-M0+3 and AT-
SAML11E16ACortex-M234. Due to their energy figures, bothMCUs
are credible targets for energy harvesting [20].

We consider the ATSAML21J18B Cortex-M0+ since it supports
several AES and performance modes. The Cortex-M0+ core is based
on the ARMv6-M instruction set and can operate at up-to 48 MHz
within the same voltage range as the Cortex-M23, with a current
consumption below 35`𝐴/𝑀𝐻𝑧 in active mode. The MCU has an
internal flash memory of 256 Kbytes and 40 Kbytes of SRAM, split
in 32 KBytes of main memory and 8 Kbytes of low-power mem-
ory. It includes a separate AES module that incorporates advanced
AES modes such as CBC, CTR, and GCM, along with basic AES-
ECB mode. The MCU offers two performance levels: the default
performance level 0 (P0) and performance level 2 (P2). P0 enables

1https://tls.mbed.org/
2https://www.wolfssl.com/products/wolfcrypt-2/
3https://developer.arm.com/ip-products/processors/cortex-m/cortex-m0-plus
4https://developer.arm.com/ip-products/processors/cortex-m/cortex-m23

maximum energy efficiency, while P2 allows the MCU to run at
maximum operating frequency.

We select the ATSAML11E16A specifically as it features Trust-
Zone technology. At the time of writing, it represents one of the
very few MCUs equipped with such technology. It operates at a low
voltage range of 1.62V to 3.63V with a current consumption below
25`𝐴/𝑀𝐻𝑧 in active mode. The Cortex-M23 core is based on the
ARMv8-M instruction set and contains 64 Kbytes of flash memory,
16 Kbytes of Static Random-Access Memory (SRAM), secure-key
storage, True Random Number Generator (TRNG), and a basic
crypto accelerator. The crypto accelerator only supports AES-ECB
mode and two hashing algorithms.

3.3 Metrics and Workloads
Our primary metrics are time and energy overhead due to the use
of either security mechanism described earlier. We compare this
figure to executionswhere checkpoints and restore operations occur
with no security feature. We use Microchip’s power measurement
module XAM, available on both development boards we use, to
measure the current drawn by the MCU and by its peripherals. We
correlate code execution and energy consumption by manipulating
the GPIO pins at the boundaries of different code sections.

The workloads we consider allow us to measure the impact of
either metrics on the energy patterns of typical intermittently-
computing applications. Each workload is iterated 50 times and
we compute the average of the results to factor out inaccuracies in
the measurement setup. Similar to existing work, we consider i) a
simple Bit Counting procedure performed over 2048 random bits,
ii) an implementation of the Dijkstra’s Shortest Path algorithm fed
with a graph of 128 nodes and 512 edges, iii) an implementation
of the Fast Fourier Transform over 128 complex numbers with
two decimal points, and iv) an implementation of the Quicksort
algorithm operating on an array of 256 elements.

To decide when to take a checkpoint, we analytically calculate
the latest point in time when it is necessary and possible to do
so, that is, whenever the remaining energy is barely sufficient to
dump the system state on the MCU’s internal flash memory. This
is determined based on a given energy budget, corresponding to
the charge of a given capacitor.

4 EVALUATION
We discuss first the results characterizing the intermittent execu-
tion of the workloads we consider. Next, we dissect the system
operation and study where and how energy is specifically spent by
the different security mechanisms. We mainly focus on checkpoint
operations, as restore operations show similar trends. The complete
code of our experiments is available online [1].
Workload characterization. Fig. 1 reports the energy measure-
ments obtained by running 50 iterations of every benchmark appli-
cation, using either software-based AES encryption, the onboard
crypto accelerator, TrustZone, or no security mechanism.

With a small capacitor of 60`F, as shown in Fig. 1a and Fig. 1b, the
Bit Counting procedure fails most often regardless of the security
mechanism and sometimes even in the case of no security. This is
because the capacitor is too small to accumulate sufficient energy to
perform some application processing, execute security mechanisms

ENSsys ’20, November 16–19, 2020, Virtual Event, Japan Hafiz Areeb Asad, Erik Henricus Wouters, Naveed Anwar Bhatti, Luca Mottola, and Thiemo Voigt

if any, and write on flash in a single power cycle. Note that applying
any security mechanism provides no progress for the application,
as it merely represents overhead. The workload can only complete
using hardware-based encryption or TrustZone on the Cortex M23,
with both showing a performance almost identical to no security.

In all other cases of Fig. 1a and Fig. 1b, only the internal crypto
accelerator and TrustZone make it possible to apply some security
mechanism within the given energy budget and also complete the
workload. Using the crypto accelerator, the overhead imposed com-
pared to the case of no security is roughly comparable to the cost of
application processing, as shown in Fig. 1a. In the case of TrustZone,
the overhead is marginal, which makes the energy figure similar
to the case of no security, as shown in Fig. 1b. The software imple-
mentation of AES, on the other hand, makes it again impossible
to complete the workload. Although a software implementation
offers better modularity and the possibility of future updates, here
it becomes a major hampering factor due to the extreme scarcity of
energy, resulting in no forward progress.

The same experiments executed with a 220`F capacitor, as shown
in Fig. 1c and Fig. 1d, show the Bit Counting procedure again failing
for all software implementations of AES using the Cortex M0+, but
all other benchmarks completing successfully. The energy overhead
for relying on the onboard crypto accelerato is now appreciable, but
limited, whereas TrustZone imposes essentially no additional cost.
The performance penalty due to running AES in software compared
to the overall energy expenditures of an intermittent execution is,
however, significant. We find this to be often higher than the cost
of operating on the internal flash. As this operation repeats at every
power cycle, the impact on the overall energy efficiency is notable
and indicates a clear opportunity for optimisation.
Energy analysis. Fig. 2 reports the analisys of energy and time
spent in performing a checkpoint operation for a given amount of
data, by possibly applying a given security mechanism.

As for energy, the hardware implementation of AES on the on-
board crypto accelerator bears half the overhead of equivalent
software implementation(s) for the Cortex M0+, as shown in Fig. 2a,
and only a fraction of that on the Cortex M23, as shown in Fig. 2b.
The performance of a software implementation compared to using
the crypto accelerator may be intuitive at first, yet we found no indi-
cation of the quantitative gap between the two in existing literature
and in the context of intermittent computing. We also recognize
the use of TrustZone in intermittent computing to be largely unex-
plored. Our measurements indicate that, whenever available and
provided the treat model is respected, TrustZone is to be preferred
to protect persistent state in terms of energy consumption, as the
overhead is almost negligible.

Fig. 2a prompts two additional observations. First, using the
crypto accelerator, the energy cost of running AES-128 or AES-256
is basically the same. Should energy be the main concern, there
would be no reason to weaken the level of protection. Second, a
marked gap also exists between the two software implementations
we test, with mbedTLS outperforming wolfCrypt on the Cortex
M0+. If hardware support is not available, the choice of an efficient
implementation becomes crucial depending on the platform.

The time measurements are reported in Fig. 2c and Fig. 2d. Using
the Cortex M0+, the conclusions remain largely the same as in

Bit Counting Dijkstra FFT Sorting
Workload

(a) 60`F capacitor, Cortex M0+

Bit Counting Dijkstra FFT Sorting

Workload

(b) 60`F capacitor, Cortex-M23

Bit Counting Dijkstra FFT Sorting

Workload

(c) 220`F capacitor, Cortex M0+

Bit Counting Dijkstra FFT Sorting

Workload

(d) 220`F capacitor, Cortex M-23

Figure 1: Breakdown of energy consumption.

Fig. 2a, but the gaps are sometimes amplified. For example, a small
gap emerges between 128- or 256-bit keys with the crypto accelera-
tor. We also experiment with GCMmode, and obtain similar results.
This is despite the additional tags GCM uses that would, in princi-
ple, increase NVM operations and yet, because of the granularity
of flash reads/writes, rarely become a factor. In relative terms, the

On Securing Persistent State in Intermittent Computing ENSsys ’20, November 16–19, 2020, Virtual Event, Japan

0 1000 2000 3000 4000 5000 6000
Checkpoint Size [Bytes]

0

200

400

600

800

1000

1200

1400
En

er
gy

 [μ
J]

Hardware
AES-128 CBC Crypto accelerator
AES-256 CBC Crypto accelerator

Software
AES-128 CBC wolfCrypt
AES-256 CBC wolfCrypt
AES-128 CBC mbedTLS
AES-256 CBC mbedTLS

No Security
No Security

(a) Energy vs. checkpoint size, Cortex M0+

0 1000 2000 3000 4000 5000 6000
Checkpoint Size [Bytes]

0

200

400

600

800

En
er

gy
 [μ

J]

AES-128 ECB Crypto accelerator
AES-128 ECB wolfCrypt
AES-128 ECB mbedTLS
TrustZone
No Security

(b) Energy vs. checkpoint size, Cortex M23

0 1000 2000 3000 4000 5000 6000
Checkpoint Size [Bytes]

0

100

200

300

400

500

Ti
m

e
[m

s]

Hardware
AES-128 CBC Crypto accelerator
AES-256 CBC Crypto accelerator

Software
AES-128 CBC wolfCrypt
AES-256 CBC wolfCrypt
AES-128 CBC mbedTLS
AES-256 CBC mbedTLS

No Security
No Security

(c) Time vs. checkpoint size, Cortex M0+

0 1000 2000 3000 4000 5000 6000
Checkpoint Size [Bytes]

0

200

400

600

800

En
er

gy
 [μ

J]

AES-128 ECB Crypto accelerator
AES-128 ECB wolfCrypt
AES-128 ECB mbedTLS
TrustZone
No Security

(d) Time vs. checkpoint size, Cortex M23

Figure 2: Energy consumption and execution time.

gains of a crypto accelerator are now even larger than for energy
consumption, compared to software implementations. In contrast,
using the Cortex M23, the software implementations perform dif-
ferently in time, despite the comparable performance in energy,
as seen in Fig. 2b. TrustZone, on the other hand, shows limited

0 1000 2000 3000 4000 5000 6000
Checkpoint Size [Bytes]

0

100

200

300

400

500

600

700

800

En
er

gy
 [μ

J]

Without countermeasures
With countermeasures

(a) Energy consumption with and with-
out countermeasures

0 1000 2000 3000 4000 5000 6000
Checkpoint Size [Bytes]

0

25

50

75

100

125

150

175

Ti
m

e
[m

s]

Without countermeasures
With countermeasures

(b) Execution time with and without
countermeasures

Figure 3: Energy and time with countermeasures against
side-channel attacks, using the crypto accelerator onboard
the Cortex M0+ and AES-256 CBC mode.

overhead in time as well, and becomes the best performing option
in this case too, whenever provided by the underlying platform and
within the constraints of the corresponding threat model.
Contributing factors. A closer look reveals that the analysis of
performance and trends in Fig. 2, and thus the results of Fig. 1, must
carefully consider aspects such as compiler configuration, MCU
settings, and level of protection provided.

For example, we have no evidence that mbedTLS uses specific
techniques against time-based side-channel attacks, whereas Wolf-
Crypt explicitly employs as close to constant time code as possible.
Such a technique necessarily imposes an overhead, which might
justify the worse performance in energy and time of WolfCrypt
compared to mbedTLS for the Cortex M0+.

The crypto accelerator onboard the Cortex M0+ may also work
with specific countermeasures against side-channel attacks, which
are disabled in the experiments of Fig. 2. To investigate this as-
pect, Fig. 3 exemplifies the impact of enabling those features on
energy and time overhead. The plot shows how performance is
only marginally affected. Therefore, the observations we draw from
Fig. 2 remain largely valid.

Fig. 4 and 5 show how varying compiler configuration and MCU
settings possibly impact energy consumption and execution time
on the Cortex M0+, using either of the software implementation of
AES, the onboard crypto accelerator, or no security mechanism.

Fig. 4 shows that using the crypto accelerator, the energy cost
is dominated by flash operations, as it is also the case when using

ENSsys ’20, November 16–19, 2020, Virtual Event, Japan Hafiz Areeb Asad, Erik Henricus Wouters, Naveed Anwar Bhatti, Luca Mottola, and Thiemo Voigt

Legend
AES-256 CBC Mode Encrypt
AES-256 CBC Mode Decrypt

Flash Write
Flash Read

O1
4MHz

O1
12MHz

O3
4MHz

O3
12MHz

0

100

200

300

400

500

600

700

En
er

gy
 [μ

J]

46
46

494

14
600.83

40
40

570

12
660.87

44
45

482

13
584.2

38
38

569

12
657.36

(b) Crypto accelerator

O1
4MHz

O1
12MHz

O3
4MHz

O3
12MHz

0

250

500

750

1000

1250

1500

En
er

gy
 [μ

J]

527

518

494

13
1551.9

483

477

571

12
1542.32

479

469

481

13
1441.11

445

426

555

11
1435.65

(c) WolfCrypt

O1
4MHz

O1
12MHz

O3
4MHz

O3
12MHz

0

200

400

600

800

1000

1200

1400

En
er

gy
 [μ

J]

364

379

491

13
1247.58

334

351

564

11
1259.6

365

380

489

13
1247.22

331

344

555

11
1241.68

(d) mbedTLS

O1
4MHz

O1
12MHz

O3
4MHz

O3
12MHz

0

100

200

300

400

500

600

En
er

gy
 [μ

J]

490

13
503.3

574

12
586.36

484

13
496.6

574

12
586.17

(e) No security

Figure 4: Energy consumption using different compiler con-
figurations and at different clock speeds; checkpoint size is
4 Kbytes secured with AES-256 CBC mode.

no security mechanism. This observation applies regardless of the
compiler configuration and MCU setting. In contrast, when using
software implementations of AES, the overall energy consump-
tion is evenly split between running the encryption algorithm and
flash operations, and again remains largely the same regardless of
compiler configuration and MCU setting.

Fig. 5 offers a complementary view, where the impact of running
the MCU at higher clock speeds becomes apparent, and yet causes
no additional energy consumption as discussed earlier. The perfor-
mance is almost unaltered depending on compiler configuration,
which we ultimately conclude to bear no significant impact.

5 CONCLUSION AND OUTLOOK
We presented experimental results on applying different security
mechanisms to protect persistent state in intermittent computing,
including software- and hardware-based implementations of AES
encryption and ARM TrustZone. Using modern MCUs of the Cortex
M* series and staple intermittent computing benchmarks, we found
that the modularity and ease of update of software implementa-
tions comes at the cost of a marked energy and time overhead,
which possibly prevents forward progress. The hardware-based
implementations abate energy and time overhead, but require care
in understanding their internals and their potential influence on
performance. TrustZone, which is right now available on only a
few platforms, shows almost negligible overhead, at the cost of a
different memory management to implement in application code.

Our work lays the basis to design more efficient means to protect
persistent state, especially for platforms that do not support Trust-
Zone. Using software-based security mechanisms, for example, the
encryption mode and hence the related overhead may be tuned
depending on energy patterns in ways to retain forward progress

Legend
AES-256 CBC Mode Encrypt
AES-256 CBC Mode Decrypt

Flash Write
Flash Read

O1
4MHz

O1
12MHz

O3
4MHz

O3
12MHz

0

25

50

75

100

125

150

175

Ti
m

e
[m

s]

36

36

93

9
168.59

12
12

60

3
86.86

34

34

82

8
157.68

11
11

56

3
81.31

(b) AES-Module

O1
4MHz

O1
12MHz

O3
4MHz

O3
12MHz

0

100

200

300

400

500

600

Ti
m

e
[m

s]

258

257

89
9

612.74

86

85
58
3

232.19

222

220

82
8

532.76

74
73
56
3

205.92

(c) WolfCrypt

O1
4MHz

O1
12MHz

O3
4MHz

O3
12MHz

0

100

200

300

400

Ti
m

e
[m

s]

160

172

89
9

429.79

53
57

58
3

171.73

160

172

89
9

429.4

51
55
56
3

164.6

(d) mbedTLS

O1
4MHz

O1
12MHz

O3
4MHz

O3
12MHz

0

20

40

60

80

100

Ti
m

e
[m

s]

88

9
97.15

58

3
61.38

82

8
90.62

59

3
61.71

(e) No security

Figure 5: Execution time using different compiler configu-
rations and at different clock speeds; checkpoint size is 4
Kbytes secured with AES-256 CBC mode.

whenever possible. Segmenting the checkpoint and only encrypting
the most sensitive parts may also help reduce the overhead, at the
cost of increased complexity in checkpoint and restore operations.

6 ACKNOWLEDGMENTS
This work was supported by the Swedish Foundation for Strategic
Research (SSF) through the aSSIsT project.

REFERENCES
[1] 2020. Benchmarking code for Securing Persistent State in Intermittent Comput-

ing. https://github.com/areebasad/Benchmarking-for-Securing-Persistent-State-
in-Intermittent-Computing. (Accessed on 10/18/2020).

[2] Saad Ahmed, Naveed Anwar Bhatti, Muhammad Hamad Alizai, Junaid Haroon
Siddiqui, and Luca Mottola. 2019. Efficient intermittent computing with differen-
tial checkpointing. In Proceedings of the 20th ACM SIGPLAN/SIGBED International
Conference on Languages, Compilers, and Tools for Embedded Systems. 70–81.

[3] D. Balsamo, A. S. Weddell, A. Das, A. R. Arreola, D. Brunelli, B. M. Al-Hashimi,
G. V. Merrett, and L. Benini. 2016. Hibernus++: A Self-Calibrating and Adap-
tive System for Transiently-Powered Embedded Devices. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (2016).

[4] D. Balsamo, A. S. Weddell, G. V. Merrett, B. M. Al-Hashimi, D. Brunelli, and L.
Benini. 2015. Hibernus: Sustaining Computation During Intermittent Supply for
Energy-Harvesting Systems. IEEE Embedded Systems Letters (2015).

[5] Mihir Bellare, Phillip Rogaway, and David AWagner. 2003. EAX: A Conventional
Authenticated-Encryption Mode. IACR Cryptol. ePrint Arch. 2003 (2003), 69.

[6] N. A. Bhatti, M. H. Alizai, A. A. Syed, and L. Mottola. 2016. Energy Harvesting and
Wireless Transfer in Sensor Network Applications: Concepts and Experiences.
ACM Transactions on Sensor Networks (2016).

[7] N. A. Bhatti and L. Mottola. 2017. HarvOS: Efficient Code Instrumentation for
Transiently-powered Embedded Sensing. In Proceedings of the 16th ACM/IEEE
International Conference on Information Processing in Sensor Networks (IPSN).

[8] Julia Borghoff et al. 2012. PRINCE–a low-latency block cipher for pervasive
computing applications. In International Conference on the Theory and Application
of Cryptology and Information Security. Springer.

[9] A. Colin and B. Lucia. 2016. Chain: Tasks and Channels for Reliable Intermittent
Programs. In Proceedings of the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA).

[10] Zahra Ghodsi, Siddharth Garg, and Ramesh Karri. 2017. Optimal checkpointing
for secure intermittently-powered IoT devices. In 2017 IEEE/ACM International

https://github.com/areebasad/Benchmarking-for-Securing-Persistent-State-in-Intermittent-Computing
https://github.com/areebasad/Benchmarking-for-Securing-Persistent-State-in-Intermittent-Computing

On Securing Persistent State in Intermittent Computing ENSsys ’20, November 16–19, 2020, Virtual Event, Japan

Conference on Computer-Aided Design (ICCAD). IEEE, 376–383.
[11] J. Hester and J. Sorber. 2017. The Future of Sensing is Batteryless, Intermittent,

and Awesome. In Proceedings of the 15th ACM Conference on Embedded Network
Sensor Systems (SENSYS).

[12] J. Hester, K. Storer, and J. Sorber. 2017. Timely Execution on Intermittently
Powered Batteryless Sensors. In Proceedings of the 15th ACM Conference on
Embedded Network Sensor Systems (SENSYS).

[13] H. Jayakumar, A. Raha, W. S. Lee, and V. Raghunathan. 2015. QuickRecall: A
HW/SW Approach for Computing Across Power Cycles in Transiently Powered
Computers. ACM Journal on Emerging Technologies in Computing Systems (2015).

[14] Archanaa S Krishnan, Charles Suslowicz, Daniel Dinu, and Patrick Schaumont.
2019. Secure intermittent computing protocol: Protecting state across power loss.
In 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[15] K. Maeng, A. Colin, and B. Lucia. 2017. Alpaca: Intermittent Execution Without
Checkpoints. Proceedings of the ACM Programming Languages (2017).

[16] B. Ransford, J. Sorber, and K. Fu. 2011. Mementos: System Support for Long-
running Computation on RFID-scale Devices. ACM SIGARCH Computer Archi-
tecture News (2011).

[17] Archanaa Santhana Krishnan and Patrick Schaumont. 2018. Exploiting Security
Vulnerabilities in Intermittent Computing: 8th SPACE International Conference.
104–124.

[18] M Vaidehi and B Justus Rabi. 2014. Design and analysis of AES-CBC mode for
high security applications. In Second International Conference on Current Trends
In Engineering and Technology-ICCTET 2014. IEEE, 499–502.

[19] Emanuele Valea, Mathieu Da Silva, Giorgio Di Natale, Marie-Lise Flottes, Sophie
Dupuis, and Bruno Rouzeyre. 2018. SI ECCS: SECure context saving for IoT
devices. In 2018 13th International Conference on Design & Technology of Integrated
Systems In Nanoscale Era (DTIS). IEEE, 1–2.

[20] J. Van Der Woude and M. Hicks. 2016. Intermittent Computation Without
Hardware Support or Programmer Intervention. In Proceedings of the 12th USENIX
Conference on Operating Systems Design and Implementation (OSDI).

[21] K. S. Yildirim, A. Y. Majid, D. Patoukas, K. Schaper, P. Pawelczak, and J. Hester.
2018. InK: Reactive Kernel for Tiny Batteryless Sensors. In Proceedings of the
16th ACM Conference on Embedded Networked Sensor Systems (SENSYS).

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Experimental Setup
	3.1 Security Mechanisms
	3.2 Hardware
	3.3 Metrics and Workloads

	4 Evaluation
	5 Conclusion and Outlook
	6 Acknowledgments
	References

