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ABSTRACT

FlyZone is a testbed architecture to experiment with aerial drone
applications. Unlike most existing drone testbeds that focus on
low-level mechanical control, FlyZone offers a high-level API and
features geared towards experimenting with application-level func-
tionality. These include the emulation of environment influences,
such as wind, and the automatic monitoring of developer-provided
safety constraints, for example, to mimic obstacles. We conceive
novel solutions to achieve this functionality, including a hardware/-
software architecture that maximizes decoupling from the main
application and a custom visual localization technique expressly de-
signed for testbed operation. We deploy two instances of FlyZone
and study performance and effectiveness. We demonstrate that we
realistically emulate the environment influence with a positioning
error bound by the size of the smallest drone we test, that our lo-
calization technique provides a root mean square error of 9.2cm,
and that detection of violations to safety constraints happens with
a 50ms worst-case latency. We also report on how FlyZone sup-
ported developing three real-world drone applications, and discuss
a user study demonstrating the benefits of FlyZone compared to
drone simulators.
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(a) The parameters of the existing

implementation are optimized for a

domestic environment [15].

(b) Oil tanks lack the visual features

of Fig. 1a, and require a new set of pa-

rameters to efficiently operate SLAM.

Figure 1: Target environments for SLAM.

1 INTRODUCTION

Aerial drones represent a new breed of mobile computing. They
enable sophisticated applications largely unfeasible with any other
technology, such as gathering high-resolution imagery in an au-
tomatic fashion [38], and collecting fine-grained environmental
data in near-inaccessible areas [8]. Experimenting with aerial drone
applications, however, is currently an ordeal.
Motivation. Representative of an oil company eventually asked
us to prototype a drone system to perform automatic visual in-
spections of oil tanks [40], using low-cost drones. These are hostile
environments, as gases originating from chemical residuals abound.

Using drones therefore represents a viable alternative, but the
necessary functionality is non-trivial. Oil tanks are GPS-denied en-
vironments and cannot be instrumented beforehand. Autonomous
navigation is to be achieved using visual or dead-reckoning tech-
niques [27]. The former tend to be more precise [16], but their
performance is sensitive to the environment visual features.

We started off from an existing implementation of simultaneous
localization and mapping (SLAM) for the AR.Drone 2.0 [15, 58].
Note that this was already way more mature than many existing
implementations of autonomous navigation functionality: it was
extensively tested using real drones [15], and offered optimized
parameters for the target drones.

We created oil tank mock-ups and started experimenting. Initial
tests were disastrous; the existing implementation turned out to
be very inaccurate in navigating the environment. In total, we
broke seven drones crashing against walls and ceilings, not to count
damages to objects nearby. The reason is intuitively shown in Fig. 1:
the parameters driving the recognition of visual landmarks were
tuned for objects of shape, color, and size different from the inner
side of an oil tank.

The implementation we used offers several knobs to tune SLAM.
Experimenting with different parameter values, however, was ex-
tremely laborious as every inaccurate setting eventually resulted
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in a crash. This required fixing broken parts, checking the system
sanity, and rebooting the application with different parameters.
Challenge.Oil tank inspections aremerely an example. Developers
of aerial drone applications are confronted with similar issues in a
range of diverse domains, including ambient intelligence [19] and
search-and-rescue missions [33].

Existing techniques enabling autonomous behaviors rarely work
out of the box, as they are typically tested only in simulation, or
require significant application- and hardware-specific customiza-
tion [51]. Many drone applications may also benefit from multiple
collaborating drones [8]. Investigating distributed interactions fur-
ther complicates matters. Developers are thus confronted with how
to verify that their implementations meet the requirements at stake.

Drone simulators exist [4, 34], which are however simplified com-
pared to reality, are unable to model application-specific sensors,
and are often limited to waypoint GPS-driven navigation. Robot
simulators [20, 22, 24, 29, 45] often focus on aspects such as swarm
behaviors, targeting scenarios with thousands of unsophisticated
resource-constrained devices. In comparison, drones are muchmore
powerful platforms, able to operate in a stand-alone fashion. More-
over, simulators may require developers to use different languages
compared to actual systems, which duplicates development efforts.

Because of these reasons, experimenting with drone applications
tends to take place right in the target settings [43]. This is often
a recipe for disaster. Ensuring the safety of objects and people
when running prototype implementations is extremely difficult,
while the consequences of bugs may be catastrophic [57]. The
ever-changing regulations on the use of civil drones compound the
problem [18]. The result is that most drone applications are still
manually operated [57].
Contribution. As further discussed in Sec. 2, drone testbeds exist.
However, the vast majority of them focuses on low-level mechanical

control, using expensive motion capture systems for localization
and highly-engineered drones [32, 35, 62]. The outcomes of the
experimentation are therefore difficult to translate into application-
specific operation in a given environment. Developers of drone
applications rather require a means to run high-level application

functionality by emulating the features of the target deployment

setting, using commercially-available drones.
FlyZone fills this gap. It provides drone developers with an

application-level API and ways to emulate environment influences,
such as wind or pressure gradients, while developer-provided safety
constraints are automatically monitored that mimic the presence
of physical obstacles. For example, using FlyZone a developer
may test an application’s reaction to lateral forces on the drone,
or express constraints on what trajectories a drone is allowed to
fly based on a virtual representation of oil tanks. Any violation to
these constraints prompts FlyZone to reclaim control of the drone
and execute developer-provided fail-over actions.

Achieving such a functionality requires to address conceptual as
well as technical challenges:

(1) To ease the transition from testbed to deployments, we must
decouple the testbed infrastructure from the application. To
this end, we design a lightweight system architecture and a
set of dedicated application-level APIs, described in Sec. 3.

ground control station

developer
autopilot

Figure 2: Components in drone platforms. The ground control

station let users configure high-level mission parameters, the autopilot

software implements the low-level motion control aboard the drone.

(2) Realistically emulating the environment influence is extremely
difficult, and hides subtle interactions with the flight control
logic. To address this, we conceive a custom technique to
reproduce the effect of external forces, described in Sec. 4.

(3) Drone localization in a testbed is a different problem than
robot localization in a target application. Moreover, FlyZone
must not interfere with other localization systems used by
the main application. We illustrate in Sec. 5 a custom visual
localization technique that addresses these needs.

FlyZone provides several benefits. Unlike simulators, the addi-
tional development effort due to FlyZone is arguably small, while
fidelity increases. Experimentation occurs using the same applica-
tion code and drone platforms to be deployed in the target setting.
In addition to portability across drone platforms, our design facil-
itates replicating the testbed infrastructure at different sites in a
fully customized fashion. To that end, we do offer a well-defined
set of procedures and scripts to automate this effort [3]. FlyZone
is entirely built with off-the-shelf commercial hardware, which
facilitates obtaining the equipment and reduces costs.

Two working installations of FlyZone currently exist, located at
Politecnico di Milano, Italy and University of Virginia, US. Both are
actively used by researchers at either institution. Sec. 6 describes
these prototype installations, which are also instrumental to evalu-
ate the performance of FlyZone. The results we present in Sec. 7
indicate, for example, that we realistically emulate the environment
influence with a positioning error bound by the size of the smallest
drone we test, that our localization technique provides a root mean
square error of only 9.2cm, and that safety violations are detected
in under 50ms .

Finally, Sec. 8 reports on our experience using FlyZone for devel-
oping prototype drone applications that reached real deployments.
We also discuss the results of a user study comparing the use of
FlyZone with a widespread drone simulator for developing one
of these applications. Further, we illustrate how FlyZone is unex-
pectedly doubling as a training facility for professional drone pilots
seeking to acquire the official license [17], as much as we discuss
limitations of our work.

2 BACKGROUND

FlyZone supports drone developers experimenting with high-level

application functionality. Therefore, it differs from existing litera-
ture, which mainly investigates low-level mechanical control.
Platforms. Drone platforms are often architected as in Fig. 2. Ap-
plication software runs at a ground-control station (GCS), which is



typically a standard computer that communicates with the drone
using a long-range radio. On the drone, the high-level commands
from the GCS are translated into low-level motor operation by
the autopilot software [7], which runs on a dedicated embedded
computing unit [46].

Platforms also exist where the application logic runs aboard
the drone, on what is called “companion computer” [64]. This al-
lows application developers to create sophisticated autonomous
functionality, such as vision-based navigation [14], that can run
independent of external infrastructure. The companion computer
is typically a Linux box [50, 52, 64] that connects to the autopilot
board through a UART interface.

Developers use robot operating systems [51] or custom drone
APIs [2]. The high-level application-specific functionality running
on the GCS or the companion computer continuously exchanges
data with the autopilot. This is necessary as applications need to
adapt to the instantaneous run-time conditions, such as environ-
ment influences or the appearance of obstacles. Handling these
cannot be delegated to the autopilot but in the simplest scenarios,
such as waypoint navigation.

FlyZone supports both GCS-based platforms and companion
computers.When using aGCS, the FlyZone hardware to bemounted
on the drone adds no run-time overhead and little weight. When
using a companion computer, FlyZone is sufficiently lightweight
to be deployed on that and rely on the same connection to the
autopilot board. Thus, no additional hardware is required.
Testbeds. While we focus on application-level experimentation
using commercially-available drones, existing drone testbeds con-
centrate on low-level mechanical control, using highly-engineered
drones backed by computing clusters and expensive motion capture
systems [32, 35, 62]. The objective of the experimentation is not to
test application implementations, but to investigate fine-grained
flight regulators that enables demonstrations such as drones throw-
ing and catching balls [54] or building physical structures [28].

Few robot testbeds exist to experiment with application-level
functionality. Nonetheless, for example, Saeed et al. [56] do not
offer a generic application-level API and use a single ceiling camera
to track ground robots. Their technique aims to tell the robots apart
from the surrounding, and is thus inherently site-specific. The
median localization error of 50cm with robots in fixed positions
is arguably too large to ensure safety of flying drones, and much
greater than what we show in Sec. 7.

Common to these solutions, and unlike FlyZone, is the tight
integration of the testbed software and hardware with the main
application. Our design keeps the two as decoupled as possible, to
facilitate transitioning from testbed operation to deployment.
Localization. In general, localizing drones in a testbed is a distinct
problem compared with robot localization in a given application

scenario. In the former, absolute accuracy and speed are key, while
the environment may be freely instrumented. Localizing drones in a
given application scenario, instead, typically assumes little existing
infrastructure, whereas a limited loss of accuracy is accepted as
long as application requirements are met.

The question is whether any of the latter techniques may be
employed for drone localization in a testbed. For example, Hirose et
al. [23] use pictographs to localize ground robots. Their technique
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Figure 3: FlyZone architecture. Components in grey are

FlyZone-specific.

is very precise, yet the processing times are prohibitive for accurate
control of flying drones. AprilTag [41] and AprilTag 2 [65] are
closest to the approach we use for testbed-level localization. While
their accuracy is comparable to ours, Sec. 7 demonstrates that the
processing times are inappropriate for use in FlyZone.

A large body of work exists in SLAM [14]. An example for
commercially-available drones is the work of Engel et al. [15], who
report a localization accuracy comparable to ours. Their technique
targets unknown environments and limits the degrees of freedom.
However, in a testbed, the environment is known and the drone
must be able to move freely. Similar considerations apply to the use
of optical flow methods [21].

Works exist using ultra-wide band (UWB) technologywith drones.
The key issue here is the presence of outliers [25]. For operation in a
testbed, these may threaten the ability to promptly react whenever
the application loses control. Moreover, UWB-based solutions do
not provide orientation information per se, forcing the use of tech-
niques that likely introduce errors that accumulate over time [6].

Laser scanners aboard the drones [55] provide best accuracy
among existing solutions. However, they tend to impact a drone’s
lifetime because of the added weight. We rather aim at providing
a solution with minimal added overhead. Finally, solutions exist
for camera tracking of mobile entities. For example, Ctrax [10]
tracks swarms of walking flies. These systems are, however, de-
signed to meet very different goals than ours. Ctrax, for example,
is designed to provide a quantitative behavior analysis tool to the
neuroethology community.

3 ARCHITECTURE

The design of FlyZone has two objectives. First is to decouple
the testbed infrastructure from the main application. Second is to
support both GCS-based platforms and companion computers.

Fig. 3 shows a lightweight architecture that achieves these ob-
jectives. The picture shows the case where the application runs on
a GCS; minimal variations apply if the application is deployed on a
companion computer.
Drone controller.We deploy an additional single-board computer
on every drone, termed as drone controller. This is responsible for
executing the testbed commands to emulate the influence of the
environment; for example, by steering the drone in arbitrary di-
rections and for checking violations to safety constraints. It runs
a minimal Linux installation and a custom FlyZone software that
exchanges flight commands and telemetry data with the autopilot,



using the MAVLink [49] protocol though a UART interface. The
controller also serves part of the localization system, as described
in Sec. 5, so it is informed of the location.

An alternative to this design would be to rely on the autopilot
board. Doing so would require altering the time-sensitive control
loops responsible of flight control, which is in general not advis-
able [43] and bound to be platform-specific. Moreover, autopilot
boards are extremely resource-constrained, and unlikely to have
unused resources. The cost for our choice is a possible reduction in
flight times due to the additional weight of the controller and its
battery. Currently available technology, however, offers a range of
low-cost options [5, 52], most of them imposing limited additional
weight and operating for hours using small powerbanks.
Experiment script. The controller receives commands from, and
forwards telemetry data to an experiment script. This specifies the
actions developers are interested in, for example, to create given
environment situations, and the safety constraints for the experi-
ment. The script may be deployed on the GCS or on a companion
computer. In the former configuration, a FlyZone-specific wireless
link is to be used to connect to the controller.

Only one instance of experiment script exists in the system.
When deploying multiple drones, the FlyZone API allows one to
apply different sequences of actions to different drones, possibly
depending on their mutual interactions. If communication between
the main application and the experiment script is required, devel-
opers use a remote procedure call stub we provide. In this case, the
code for using the stub would be the only place in the main appli-
cation that needs changes when moving to an actual deployment.
APIs. FlyZone is implemented in Java. Testbed operations may
be invoked from an experiment script in Java or from application
code using other languages, provided the corresponding stub is
available. Right now, we provide stubs for Java, Python, and C++.
We only summarize the key traits of the FlyZone API here, but
further details are available [3].

Key to writing FlyZone experiment scripts is an interface called
Drone we provide. It provides controls for the single drone using
a coordinate system determined by the localization technique we
illustrate in Sec. 5. When invoking any of these operations, the
corresponding controller accordingly instructs the autopilot. This
interface includes three kinds of operations.

First, it provides basic functionality such as taking off or moving
to a certain coordinate. These operations are useful to create a
given initial situation. For example, when testing obstacle avoidance
techniques, developers may want to boot the system by placing
drones according to specific patterns relative to the obstacles.

The second kind of operations are useful to emulate the environ-
ment influence onto drones, such as wind. These operations accept
data structures mapping every location in the testbed to a vector
of external forces whose effect is reproduced by FlyZone onto the
drone, as explained in Sec. 4 This functionality is useful when ex-
perimenting with applications targeting outdoor deployments; for
example, search-and-rescue operations.

The third kind of operation allows developers to state safety
constraints that mimic the presence of physical obstacles or protect
drones and their surroundings. For the visual inspection of oil tanks
described earlier, developers rely on this to create virtual fences

corresponding to the shape of tanks. When invoking any of these
operations, the constraints are installed on the controller, which
monitors them continuously.

Finally, interfaces are provided to process real-time updates of
drone position and navigation data including speed, acceleration,
roll, pitch, yaw, and battery level. Classes implementing this in-
terface are also notified of violations to the safety constraints, so
corrective actions may be applied.

4 ENVIRONMENT INFLUENCE

When emulating the environment influence, the drone controller
issues commands to the autopilot to steer the drone as if it was
subject to the corresponding forces. Applications cannot distinguish
these dynamics from actual environment influence, as both are
detected at the higher levels through MAVLink telemetry packets.

Two main challenges exist: i) how to tune the commands from
the drone controller to the autopilot to yield a realistic behavior,
discussed in Sec. 4.1, and ii) how to handle the interplay between
these commands and those issued by the application when it reacts
to the perceived environment influence, discussed in Sec. 4.2. The
following description builds on fundamentals of flight dynamics
that, in the interest of brevity, we include in an accompanying
technical report [3].

4.1 Drone Dynamics

Intuitively, to tackle the first challenge, we are to reverse-engineer
the physical behavior of the drone. External forces are normally
applied to the drone by the environment. In response to that, the
drone moves in certain ways. We need to do the opposite: we want
to proactively move the drone in a way that reproduces its physical
response to external forces. We thus need a model to tell how the
drone moves when subject to external forces of a given strength
and duration, so the drone controller can replay those movements.
Design options. We provide two solutions to this problem. On
one hand, we rely on the vast literature [66] on aircraft dynamics
and adapt existing detailed models to FlyZone. Note that we need
a model for general navigation, unlike task-specific models [54].

Our models require some, still reasonable, effort in parameter
estimation. This is needed only once and solely in case FlyZone
does not integrate a given type of drone already. We currently
support 24 different drones, ranging from custom quad-, hexa-, and
octocopters to commercial devices such as DJI Spark, Mavic Pro,
and the whole Phantom and Inspire series.

Should a developer not be willing to invest effort in parameter
estimation for a detailed model, we provide a ready-to-use alterna-
tive that approximates the drone as a point in space corresponding
to its center of mass. A linear model determines the parameters of
the commands issued by the drone controller to the autopilot.

Such an approach only requires knowledge of the approximate
weight at take-off. Considering the shirking sizes of drones and their
relative dimensions compared to the surrounding space, they may
be considered as a point in a three-dimensional space. Moreover,
weight distribution is both even and concentrated in the middle
of the drone, where cameras and batteries are installed. Although
these assumptions are not unreasonable, ease of use comes at the



cost of reduced realism, as this model disregards factors such as
drag and inertia due to the specific body shape.

We describe next the detailed models and omit the approximate
ones for brevity. Further details are available nonetheless [3]. Both
modeling approaches are appropriate for rotor symmetrical drones.
Fixed-wing and Y6 configurations [1] require different approaches.
Model structure. Aerial drones are 6-degree of freedom (DOF)
rigid bodies [66]. Long-established approaches to model their dy-
namics are the Euler-Lagrange and Newton-Euler methods. The
former is more compact, but the latter lends itself to incorporate
external forces, which is our goal.

With theNewton-Eulermethod, two frames of reference are used:
one is fixed to the Earth and termed as navigation reference; the
other is fixed with the body of the drone. Let pn and vn be the drone
position and velocity vectors in navigation coordinates (denoted
with n), and wb be its angular rate in body coordinates (denoted
with b). Its dynamics are described as the instantaneous change in
position and velocity of its center of mass in the navigation frame,
plus the instantaneous change in angular rate in the body frame.
By applying fundamental laws of kinematic, we write

Ûpn = vn (1)
Ûvn =m−1CnbF (2)
Ûwb = J−1M (3)

where F and M are the sum of forces and torques on the drone,m
and J are its mass and inertia, and Cnb transforms body coordinates
into navigation coordinates.

The solution to eq. (1)-(3) are the necessary and sufficient in-
formation to steer the drone as if it was subject to given external
forces. We translate the solution to low-level MAVLink commands
the drone controller issues to the autopilot. We describe next how
to obtain the necessary drone-specific inputs and parameters. Posi-
tion information are provided by the FlyZone localization system,
described in Sec. 5.
Model inputs.We apply existing methods to compute the torque
vector M in eq. (3) [11]. The force vector F in equation (2) is a
combination of drag forces Fd , motor thrust Fm , and gravity Fд .
We compute Fm based on the relation between input current and
output thrust for brushless DC motors [9], which typically equip
aerial drones. We obtain input currents based on the transformation
parameters used in electronic speed converters (ESCs). These are
in charge of translating the pulse width modulation (PWM) signal
from the autopilot into a current flow to the motors. The ESC
firmware is typically open-source, even for commercial drones [12];
thus the translation parameters are generally available. The gravity
vector Fд is straightforward.

The remaining force vector represents drag forces Fd , which we
express as

Fd = −Cd,FC
b
n |v

n − vnw |(v − vw ) (4)
where Cd,F is the diagonal drag coefficient matrix and vnw is the
velocity vector of external forces applied to the drone [31]. Using
FlyZone, the latter is input to a given experiment and represents
the knob developers use to set the environment influence. They
may provide this information as a constant velocity vector that
applies throughout the field, using meteorological software [48] to

generate detailed three-dimensional wind maps, like in Fig. 4a, or by
synthetically creating wind patterns modeling specific situations,
such as narrow passages or airflows around objects [38].
Parameter estimation. The remaining unknown quantities are
the drone massm, inertia J, and diagonal drag coefficient matrix
Cd,F. We computem by weighing individual components. We use
a three-dimensional drone model in Blender combined with the
BGE Advanced Physics Library and custom scripts we develop
to estimate J and Cd,F. Blender is a state-of-the art open-source
3D editing software, often used to create 3D models of drones for
optimizing their aerodynamics. The BGE Advanced Physics Library
is included in the Blender distribution and is used to understand
the physical properties of Blender models. These software packages
are included in the FlyZone distribution.

Throughout this process, some approximations are inevitable
to keep the problem tractable. We use 3D models as exemplified
in Fig. 4b, which omit the presence of smaller components such as
ESCs, antennas, and the like. Further, our scripts compute propeller
drag only based on length and maximum rotation speed, similar to
existing literature [9], rather than considering the specific propeller
shape. Finally, the drone aerodynamic drag and rotational drag
coefficients are computed separately and then arithmetically com-
bined, whereas they are known to have limited, but still non-zero
influence on each other [13].

4.2 Executions

With either drone model providing the necessary inputs to the au-
topilot to emulate the environment influence, the next question is
how to manage the interplay between these inputs and the applica-
tion inputs to the autopilot, whenever it reacts to these influences.

There are, in fact, subtle interactions that may occur. The drone
controller issues commands to the autopilot at a preconfigured rate.
As soon as the application detects the environment influence, that
may also issue further commands to the autopilot to counteract the
corresponding effects. Say any two of these commands reach the
autopilot within an interval ϵ smaller or equal to the flight control
period. The behavior would be at best undefined, as two different
inputs are to be processed for the same control loop iteration.
Design options. One way to address these situations is to mod-
ify the autopilot implementation. Whenever two commands are
received within ϵ , the autopilot first computes the corresponding

knots

(a) Wind map in the plane generated us-

ing QGis software.

(b) Quadcopter Blender model.

Figure 4: Inputs for environmental influence and parameter

estimation.



control loop outputs separately, then linearly combines the result-
ing force and torque vectors before outputting the PWM signals.

We argue that this solution would be greatly impractical. Au-
topilots are time-sensitive software functionality. This kind of mod-
ifications are likely to be very difficult to carry out, as they require
intimate knowledge of the autopilot implementation and run the
risk of affecting the stability of control loops [43]. In addition, most
commercial drones do not allow one to freely modify the autopilot
implementation.

We rather adopt a few key precautions to rule out these situa-
tions, requiring no changes to the autopilot implementation. First,
we increase the autopilot control rate to the maximum supported
setting, that is, we run the flight control loop as often as possi-
ble. We do this to make ϵ as small as possible, at the price of a
slight increase in energy consumption of the autopilot board. This
is negligible compared to the energy draw of motors [7]. Crucially,
a smaller ϵ decreases the likelihood of the above situations, still
without completely ruling them out. Unlike loading a new autopilot
firmware, this is possible also on commercial drones [12].

If the autopilot implementation supports priorities for MAVLink
packets, we set the ones emulating the environment influence to the
lowest priority. Such a setting gives priority to application packets
whenever those fall within the same ϵ as the ones from the drone
controller. It has no effect otherwise. If MAVLink priorities are not
supported, we reduce the size of the MAVLink input packet queue
to one. Thus, the first such packet that arrives is the one that the
autopilot processes. Any other packet is silently discarded. Using
either approach, we could fully integrate the aforementioned 24
different drone types.

The combination of these techniques may result in a slight re-
duction of realism, yet Sec. 7 demonstrates that this is minimal in
concrete applications.

5 LOCALIZATION

Drone localization must happen with accuracy, speed, and limited
processing overhead. We are expecting FlyZone installations to be
located indoor, so GPS is generally not applicable. Moreover, Sec. 2
argues how motion capture systems are expensive and laborious to
install, whereas application-level robot localization is inapplicable.

We opt to design a custom visual localization technique that
is entirely based on off-the-shelf technology. Our technique uses
visual tags like the one in Fig. 5a, deployed on the ground at known
positions, as shown in Fig. 5b. The tags are dynamically recognized
through a camera connected to the drone controller and attached to
the bottom of the drone, pointing to the ground. The tags provide
localization and orientation information in the plane. Note that such
a technique is solely meant for testbed operation and is replaced
with an application-specific localization systemwhen deploying the
system, for example, using GPS or SLAM [15]. We obtain altitude
information from the autopilot software, based on the readings of
ultrasound sensors part of a drone’s IMU and employed to this end
also in real deployments.

We use Java to implement the localization pipeline we described
next, using OpenCV [42]. The pipeline may run on a central com-
puter that simply receives the video feed from the drone controller,
or entirely on the latter. Using a central computer, we may leverage

(a) Visual tag. (b) Tag space.

Figure 5: Localization system in FlyZone.

GPU acceleration, whereas using the drone controller we can pro-
vide positioning information locally to the drone, thus emulating
the presence of an on-board GPS sensor. The software components
implementing the localization pipeline are fully decoupled from
the rest of the testbed architecture; this enables replacing the visual
techniques we describe next with alternative solutions depending
on where the testbed is installed. When installing FlyZone outdoor,
for example, GPS may be simply used.

Next, Sec. 5.1 discusses the tag design and placement. In Sec. 5.2
we illustrate how we derive positions.

5.1 Tag Design

Every tag is composed of a number of squared tiles of different
colors and corresponds to a numerical value.

To decode the value, we employ a positional notation and a one-
to-one mapping between colors and numerical values. The tag in
Fig. 5a represents a specific point in such a space; the corresponding
numerical value is obtained by decoding the numerical values of the
individual tiles in a clockwise manner starting from the lower-right
corner. The latter is identifiable independent of camera orienta-
tion as one of the tiles is intentionally misplaced. In this example,
the tag in Fig. 5a represents the value 3201 in base-4. Every value
corresponds to a position in the plane.
Dimensioning. For a given FlyZone installation, we are to deter-
mine how many colors c one should employ and how many tiles
n should be included in a single tag. This is a function of the area
covered by the testbed on the ground plane, camera resolution and
angle of view, as well as maximum and minimum flying height.

We derive analytical expressions tying the values of c and n
to these three parameters, in a way that i) ensures the camera
constantly sees multiple tags, which provides redundancy, and
ii) maximizes the accuracy in decoding individual tags. Such a
derivation, which we report in a companion report [3], eventually
leads to a Pareto front of optimal solutions for c and n.

To find a practical design point, we proceed as follows. Say k is
the minimum probability a camera guarantees in distinguishing two
colors, as shown in Sec. 6. We can experimentally find the maximum
number of colors cmax corresponding to such probability. Based
on our analytical derivations [3], cmax corresponds to a minimum
value nmin of the number of tiles.

Dually, the number of tiles per tag is limited above because of
the camera’s field of view at the minimum flying height. Such a
maximum number of tiles nmax corresponds to a minimum num-
ber of colors cmin [3]. The upper and lower bounds for c and n



determine a narrower band of admissible values in the Pareto front,
where the selection is simpler. Sec. 6 demonstrates this based on an
actual installation of FlyZone.
Placement. Once appropriate values for c and n are identified, it
remains to be determined where each of the possible cn tags is
placed within the considered area.

A random or sequential placement may, in fact, be sub-optimal.
As mentioned above, chances are that if one tile is incorrectly
recognized in a tag, the same tile is also incorrectly recognized
in any adjacent tag. This may happen because uneven lighting
conditions or camera distortions are likely to apply to a slice of the
camera field. This is why we should avoid placing tags with the
same or similar tiles near each other. The more diverse are the tiles
in adjacent tags, the less likely is an incorrect recognition of a tile
to propagate to multiple tags within the camera’s field.

We turn the placement of tags into an optimization problem.
Based on the color distance [47] between tiles, the color distance
between any two tags T1 and T2 is

dist(T1,T2) =

√√ n∑
i=1

(coloriT1 − coloriT2 )
2 (5)

where colori indicates the color value of the i-th tile according to
the clockwise ordering described in Sec. 5.1. The expression above
is equivalent to considering a tag to be an n-dimensional vector in
the color space.

Based on eq. (5), we formulate an optimization problem that
seeks to maximize color distance between adjacent tags, including
diagonals. The inputs are:
1) Decision variables to represent the locations; therefore, there

are at most cn of these.
2) Bounds for every such variable to assume a value between 0

and cn − 1.
3) A constraint that forces every variable to assume a unique value,

as we cannot re-use the same tag.

The assignments to the decision variables encode the tag place-
ment. We use MiniZinc [37] as solver; with the installations in
Sec. 6, MiniZinc returns a near-optimal solution in a few hours.

5.2 Deriving Positions

First, we need to recognize tags in the camera field. We use stan-
dard image-processing techniques. First, we apply a thresholding
operator to convert the image to black and white. Next, we ap-
ply a contour finding operator to identify the tiles, including the
misplaced one to determine the orientation. Finally, we map this
information back to the original image, read the tiles’ colors, and
decode the value of the tag.

Recognizing individual tags is not sufficient. Some of the tags in
the camera field may be incorrectly recognized. Moreover, the view
of the camera is parallel to the ground only if the drone hovers
stably, as in Fig. 6a, but drones move in space by inducing pitch
and roll. As shown in Fig. 6b, this changes the perspective of the
camera on the ground, distorting the image. Installing a gimbal to
correct this would increase costs and weight.

To address these issues, we proceed with two additional steps
once individual tags are recognized:

(a) Hovering. The image center cor-

responds to location.

(b) Moving. The drone location is

not at image center.

Figure 6: The camera perspective on the tag space changes

when drones move.

1) Reference mapping: based on the set of recognized tags in
an image, we reconstruct the slice of the coordinate system as
seen by the drone. The latter allows us to spot the incorrectly
recognized tags. We know, in fact, that tags follow a specific
spatial sequence as determined in Sec. 5.1.

2) Compensation: based on IMU information, we recreate the
frame of reference as seen by the camera, correcting the dis-
tortions induced by pitch and roll. This process is repeated for
every tag in the image. The results are then averaged to obtain
final positioning and orientation information.

The output of the process is a tuple of three values: coordinates
⟨x ,y⟩ and orientationα in the horizontal plane. The third coordinate
is obtained from the autopilot software that already compensates
the readings of the ultrasound sensor on the drone’s IMU.

6 INSTALLATION

We offer a few practical considerations on deploying an instance of
FlyZone at a target site. These are based on the two existing instal-
lations, covering a space of about 80sqm and 144sqm respectively.

We use Parrot’s AR.Drone 2.0 as well as custom quadcopters and
hexacopters based on Ardupilot and PixHawk. The AR.Drone 2.0
is GCS-based, whereas we deploy a companion computer on the
custom drones. We use a RaspberryPI Zero W with a RaspiCam V2
as drone controller and input for localization. The RaspberryPI is
powered by a separate battery. The total added weight is 89 grams.
Tags. We determine the maximum number of colors the camera
can distinguish with a minimum probability k , which we set to 0.9.
We perform a sequence of experiments to check the RaspiCam’s
capability to distinguish c different colors at distances from the
minimum and maximum flying height at the target site1.

It turns out the camera detects six different colors with almost
absolute certainty. Given cmax = 6, we calculate nmin = 4 [3]. This
way, we obtain the upper (lower) bound for c (n). With similar ex-
periments, we determine the camera’s field of view and accordingly
identify an upper (lower) bound for n (c). Based on analytical deriva-
tions [3], we calculate nmax = 17 and a corresponding cmin = 2.

The optimal values for ⟨c,n⟩ thus range from ⟨2, 17⟩ to ⟨6, 4⟩ .
We choose c = 6 and n = 4 because smaller values for c do not
improve the detection probability; as that is already equal to 1 for
1These experiments only require the camera and sample print-outs of test colors at
maximum color distance [47]; the camera is not on the drone. The lighting conditions
during these experiments are described next.



Component Price (e) Quantity
Printed tag space 225 1
400W halogen lights 13 4
RPi Zero W and RaspiCam V2 60 8
Desktop computer 1500 1
Miscellaneous 100
Total 2500

Figure 7: Approximate cost of FlyZone. The prototype supports

up to eight drones. The total estimated cost is ≈ 2500 e, excluding the
drones to be used in the testbed.

FlyZone testbed

wind 
machine

anem
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Figure 8: Evaluating realism in emulating environment in-

fluence: testbed setup to gain ground truth.

c = 6. Conversely, larger values for n are detrimental to the the
robustness of tag recognition, as illustrated in Sec. 5.1. We thus
calculate all relevant quantities and generate the tag space [3].
Deployment. We use plastic nets to protect the surroundings of
the experimentation area. To ensure proper illumination of the tag
space, we employ four halogen light sources placed at the corners
of the testbed area, below the minimum flying height and pointed
to the center. We use halogen bulbs as they do not produce strobing
light. This setup guarantees that the angle of direct light is too small
to cause glaring, and that the drones never cast their shadows on
the tag space.

Fig. 7 indicates the bill of materials for one of the FlyZone in-
stallations. The figures for the other installation are similar. The
cost varies with how many drones need to be simultaneously sup-
ported, which is eight in this case. The machine we use for the
localization pipeline when not running on the drone controllers is
equipped with an Intel Xeon E3 v1270 CPU and a cheap NVIDIA
GPU. The total—excluding drones—is comparable to a high-end
modern laptop.

7 EVALUATION

We evaluate the performance of FlyZone along two dimensions,
using the installation at Politecnico di Milano, Italy. In Sec. 7.1, we
investigate how realistic is the emulation of environment influence;
Sec. 7.2 reports on the performance of localization and detection of
safety violations.

7.1 Environment Influence

Quantifying how realistically we emulate the environment influ-
ence is a challenge per se. The key problem is how to gain some
form of measurable ground truth.

Setting. Fig. 8 intuitively describes the physical setup we design
to this end. We rent eight 17” wind machines of the type used in
professional movie making. These offer accurate power and orien-
tation settings, which we use to create repeatable wind patterns
in the three dimensions. To measure the effect before any drone
is deployed, we install 48 portable anemometers measuring flow
speed and direction, uniformly in the three-dimensional testbed
area. They are installed on top of thin poles, which minimally affect
air flows. We linearly interpolate their single data points to create
a three-dimensional wind map of the kind in Fig. 4a.

As a form of ground truth, we run the test applications described
next against the actual influence of the wind machines, using the
same settings used for creating the windmaps, but without the
poles and anemometers in the field. For comparison, we input the
windmaps to FlyZone to recreate the corresponding environment
effect. We experiment with both the detailed model and the ap-
proximate one, described in Sec. 4.

We develop a single-drone application called trajectory that
directs the drone along regular three-dimensional paths, such as
cubes and helices. The application may run in two different modes:
in compensation mode, it tries to counteract the effect of wind
machines to maintain the shape of the trajectory; in simple mode,
it does nothing to that end. In addition, we emulate a search-and-
rescue application developed by external users of FlyZone using
five drones, as described in Sec. 8, and call it search.

We track the drones using an OptiTrack motion capture sys-
tem [63]. We compute the Root Mean Square Error (RMSE) of drone
positions and orientations between the path flown in the ground
truth setting and when using FlyZone. We consider this as a mea-
sure of FlyZone realism. When emulating the environment in-
fluence, the drone controller inputs MAVLink commands to the
autopilot twice per second. We experiment with a total of 62 dif-
ferent wind machines configurations, creating a variety of air flow
patterns. We repeat the same experimental setting ten times to
factor out inaccuracies in the setup, using either the AR.Drone 2.0
or our custom PixHawk-based hexacopter. Each experiment lasts
20 minutes. We total 400+ hours of tests.
Results. Fig. 9 plots the RMSE results in drone positions; we ob-
tain similar trends for orientation. We test average wind speeds
up to 5 knots; current regulations advise not to fly beyond these
conditions [17, 61].

Fig. 9a investigates the position performance against variable
average wind speeds. The detailed model yields realistic perfor-
mance and is minimally affected by increasing intensity of external
forces. The absolute RMSE are constantly lower than the physi-
cal dimensions of the smallest drone we use. The approximate
model has comparable performance at low average wind speeds,
but quickly looses realism as the latter grows. At 5 knots, the RMSE
becomes comparable with the size of the AR.Drone 2.0. These trends
are expected; the more intense are the external forces, the more the
physical features that the approximate model does not represent
bear an impact.

Fig. 9b plots the position performance as a function of the tested
application. The results are very similar and follow the same trend,
demonstrating the general applicability of our approach. The slight
differences are due to the interplay between drone controller and



 0
 10
 20
 30
 40
 50
 60

 0  1  2  3  4  5  6

R
M

S
E

 (
c
m

)

Average wind speed (knots)

Detailed Approximate

(a) Realism depending on model.

 0

 5

 10

 15

 20

 0  1  2  3  4  5  6

R
M

S
E

 (
c
m

)

Average wind speed (knots)

Trajectory-Compensation
Trajectory-Simple

Search

(b) Realism depending on application.

Figure 9: FlyZone performance in emulating the environ-

ment influence.

application. The trajectory-simple case shows the lowest aver-
age RMSE because the application does nothing to counteract the
environment influence, so the situations of Sec. 4.2 never occur. Con-
versely, search uses a complex application logic that constantly
tries to correct the trajectory. Nonetheless, the solution we describe
in Sec. 4.2 to handle the interplay between this and the drone con-
troller yields a minimal decrease in realism.

The absolute values as well as the trends hitherto discussed are
similar for the AR.Drone 2.0 and our custom hexacopter. The two
are strikingly different in physical terms; the AR.Drone 2.0 weighs
380д and is 58cm wide, whereas our custom hexacopter weighs
1.2Kд and is 94cm wide. This indicates that the models of Sec. 4
remain accurate also with different types of drone.

Key to the performance in emulating environment influences are
both the models and the accuracy of position information, which
we investigate next.

7.2 Localization and Safety Violations

The localization system in FlyZone is a foundation formany testbed
functionality. In addition to increasing realism when emulating the
environment influence, high-frequency drone tracking improves
how promptly we recognize violations to safety constraints.
Setup. We consider the same predefined flight paths we used in
Sec. 7.1. We trace the location updates returned by FlyZone and
compare against two baselines.

One baseline is AprilTag 2: a state-of-the-art visual technique
widely employed for application-level localization [65]. We apply
the same placement technique and reference mapping of FlyZone,
as in Sec. 5. This factors out any aspect not related to the tag design.
The comparison is meant to demonstrate that a custom technique is
necessary for testbed operation. The other baseline is the OptiTrack
system [63] used in Sec. 7.1, which we employ as ground truth.
Note that FlyZone and AprilTag 2 employ two different types of
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AprilTag 2 with a single drone, at varying distances from

the tags.

tags. Therefore, they can be compared only relative to the common
baseline provided by the OptiTrack system.

We perform a total of 180 experiments at different heights and
speeds between 2m/s and 6m/s , each lasting 20 minutes. We de-
ploy up to eight drones in separate experiments to measure the
performance whenever the camera view is partially occluded by
other drones. We collect 90.000 data points in total. We compute
the RMSE compared to OptiTrack as a measure of accuracy, and the
number of Frames Per Seconds (FPS) as an indication of processing
performance compared to AprilTag 2. As each frame in the video
input yields a single location update, the FPS correspond to the rate
of location updates.

Note that the video input for localization comes from the drone
controller. Therefore, the results we describe next equally apply
when using any other drone with the same drone controller.
Results: localization. The accuracy performance of AprilTag 2
is comparable, or at times moderately worse than FlyZone. For
example, FlyZone shows an RMSE of 9.2cm (2.1°) in location (orien-
tation) against 11.8cm (3.8°) forAprilTag 2. Theworst-case location
outlier is 12.9cm (15.1cm) for FlyZone (AprilTag 2). Compared
with UWB in an almost identical setting [25], the performance of
either system is markedly better in accuracy, and one order of mag-
nitude lower in worst-case outlier. UWB localization alone cannot
provide orientation information.

Fig. 10 plots the localization RMSE in the ground plane, against
a variable distance from the tags. This is the main parameter deter-
mining the performance of visual localization techniques, including
AprilTag 2 [65]. As the distance from the tags increases, the error
of AprilTag 2 grows slightly faster than FlyZone. Similar observa-
tions apply to orientation.

In a multi-drone scenario, we investigate the same figures as
a function of the percentage of frames where a drone appears
in the camera’s field of another drone. Note we can control this
parameter by forcing trajectories to cross a given number of times.
Also consider that multiple drones appearing in the same frame are
considered as separate instances, as they typically occlude different
slices of the tag space.

Fig. 11 reports the localization RMSE in the ground plane; we
observe again similar trends for orientation. FlyZone shows better
resilience than AprilTag 2 to partial occlusions of the camera field.
FlyZone’s performance only marginally worsens with an increas-
ing fraction of partially occluded frames compared to AprilTag 2,
which are not designed to incorporate any form of intra-tag redun-
dancy. This shows in the increasing RMSE and in the increasing
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Figure 12: FPS depending on image resolution, as returned

by FlyZone or AprilTag 2.

standard deviation around the RMSE of AprilTag 2 compared to
FlyZone. Intuitively, with eight drones flying simultaneously, the
scenario is already quite crowded.

Crucially, Fig. 12 shows the FPS performance of FlyZone com-
pared with AprilTag 2. It shows that FlyZone is twice (three times)
as fast than AprilTag 2 when the localization pipeline runs on
a desktop computer (drone controller). Such an improvement is
enabled by the simpler design of FlyZone tags, which are straight-
forward to recognize and decode, thus requiring fewer computing
resources. Using a smaller resolution to improve performance, at
the cost of lower accuracy, does not change the trends in Fig. 12.
The desktop computer mounts a low-end GPU, which offers an
order of magnitude performance advantage over the RaspberryPI
ZeroW.Where to deploy the localization pipeline is thus a trade-off
between FPS and the ability to provide positioning information at
the drone controller.

The localization technique in FlyZone thus offers only slight
accuracy improvements over AprilTag 2 in a single drone scenario.
However, it shows marked advantages in accuracy with multiple
drones and in processing speed, which are key for a multi-drone
testbed and instrumental to check safety constraints efficiently.
Results: safety.We investigate the latency to detect safety viola-
tions using a variable number of AR.Drone 2.0 flying at variable
speeds during a dummy experiment, until one of them is purposely
directed towards a forbidden area. The OptiTrack system deter-
mines when the drone’s location should trigger the violation. We
measure the time until the experiment script is notified, using NTP
for time synchronization. We repeat every experiment 10 times and
average results.
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Figure 13: Latency in detecting safety violations.

Whenever the drone controller runs the localization pipeline,
the detection of safety violations happens locally. In this situation,
we measure a nearly constant latency of about 40ms , regardless
of the speed and number of drones. Differently, Fig. 13 shows the
latency in detecting safety violations whenever the localization
pipeline runs on a desktop computer. Speed still plays no role,
yet the number of drones becomes a factor as the WiFi network
is increasingly loaded, due to funneling real-time video from the
drone controller.

The absolute values in Fig. 13 are, however, limited even with
eight drones. In the worst case, a drone flying at 11m/s—top speed
for the AR.Drone 2.0—travels about half a meter in around 50ms .
This is within the safety margins for obstacle avoidance [26]. To
further improve this figure, one may use different WiFi networks
over different channels if possible or use packet prioritization.

8 APPLICATION EXPERIENCE

We report on the experience using FlyZone for developing appli-
cations that eventually reached real-world deployments, and on a
user study comparing FlyZone with a simulator. The observations
we draw provide evidence that the quantitative results we described
in Sec. 7 apply to realistic settings. We conclude by discussing al-
ternative uses and limitations.
Oil tanks. The application outlined in the Introduction was the
original motivation for designing FlyZone. We used safety con-
strains to indicate where the drone was allowed to fly inside our
mock-up oil tank. Every violation to these constraints was detected
by FlyZone before we had lost control of the drone. The experiment
script stopped the main processing, moved the drone back to the
initial position, changed relevant parameters, and restarted the test.
These experiments could ran in a semi-automatic fashion.

Once we could rely on this functionality, it took five days of
work to find efficient SLAM parameters. This is very little time
compared to the two months we spent hopelessly trying to identify
suitable values without being able to prevent mishaps. Our final
prototype was eventually demonstrated in public, autonomously
navigating mock-up oil tanks of arbitrary shapes and colors [30].
Across 16 hours of such experiments, the system always correctly
navigated the planned paths showing no unintended behaviors.
Obstacle avoidance. Within a graduate course on embedded soft-
ware, we gave students a task to develop an ambient intelligence
application that uses drones to find lost items in a house. The items
send a radio beacon the drone can locate with room-level accuracy.
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tion for different groups in the final challenge trials.

The students started with the same SLAM system we used for
oil tank inspections [58]. The default parameters were already opti-
mized for a domestic environment, as shown in Fig. 1a. The chal-
lenge was to extend it to: i) drive navigation based on radio beacons,
and ii) avoid obstacles. To that end, the students equipped the drone
with a BLE radio and a mmWave sensor [59].

It turned out that the functioning of SLAM was affected by the
presence of obstacles. Whenever flying above one, the ultrasound
sensor reported a decrease of height, due to the signal bouncing
on the object rather than the ground. The mapping step of SLAM
was then led to think that the perspective on entire scene suddenly
changed, producing an unstable behavior.

FlyZone’s safety constraints were key again. The students cre-
ated mock-ups of a domestic environment and specified the space
occupied by physical obstacles as not allowed for drones. This
helped them extend the existing implementation to handle this
specific case. FlyZone supported the development of the additional
functionality. The effort was significant, as the additional code even-
tually accounted for more than half of the final implementation.

Such a development effort would be impossible without FlyZone.
The students entered the final stage of TI’s Innovation Challenge
with this work [60].
Search and rescue.We ran a student challenge comparing the use
of FlyZone with the SITL [4] simulator, the de-facto standard for
simulating MAVLink-based drone platforms. The students worked
in pairs to create a prototype search-and-rescue application using
a custom hexacopter with a Raspberry PI 3 companion computer
and an ARVA radio receiver for finding people under snow [44].
The objective was to minimize search times. We recruited a total of
20 last-year M.Sc. graduate students with multi-course expertise
in software engineering and embedded systems. For development,
half of the students used FlyZone, the other half used SITL.

Unlike the previous examples, the students could not rely on an
existing implementation and started from a textbook description
of a gradient descent algorithm [53]. They were also required to
extend the system to multiple collaborating drones to reduce search
times [8, 36]. This functionality had to be developed from scratch.

Development times were generally in favour of the groups using
SITL, who invested about 33% fewer hours. It goes without saying
that no testbed may ever match the ease of use of a simulator.
Looking at the actual system performance, however, turned things
in favor of the groups using FlyZone.

We measured the search times in the final challenge trials based
on four individual runs of the prototypes in a rugby field. The
drone and the ARVA transmitter were initially placed at opposite

ends. This site was unknown to the students until they turned in
the final implementations. We used the same digital anemometers
of Sec. 7.1 to make sure the running conditions were comparable
across groups.

Fig. 14 plots the results. Group one to five, who used FlyZone,
show better performance than the other groups who used SITL, but
group #4. Group #8, who used SITL, never completed the search.
The application logic was very similar among the different groups,
as it was based on the same search algorithm. The parameter tuning
made the difference. Using FlyZone to emulate the environment
influence led the groups to eventually obtain more efficient param-
eters able to withstand the environment effects.
Other (non-)uses. FlyZone at ⟨OMISSIS⟩ is also helping a local
piloting school train pilots towards obtaining the official license for
flying professionally [17].

Although this was never among our goals, FlyZone’s features
are useful in this case too. We are running no application; the drone
is manually controlled. We wrote an experiment script that specifies
safety constraints to make sure even the most novice pilot can do no
harm. The same script triggers different “trials” to check whether
the pilot can deal with environment influences, for example, due
to wind gusts. FlyZone is currently the only indoor infrastructure
that pilots can use to learn how to fly in realistic conditions.

FlyZone has limitations in scope. As we focus on application-
level experimentation, testing changes in the autopilot software is
not possible and we consider the autopilot as trusted. Moreover,
specific functionality may necessarily require experimenting in the
target site. An example is the detection of drones based on signa-
tures in their wireless transmissions [39]. The features that enable
such detection are inherently a function of the deployment setting;
therefore the results of experimentation in a testbed—FlyZone or
any other—unlikely translate to real deployments.

9 CONCLUSION

FlyZone is a testbed infrastructure to support developing aerial
drone applications. Its unique features include the ability to emulate
the environment influence, which we achieve with a positioning
error bound by the size of the smallest drone we test, and the auto-
matic monitoring of safety constraints that mimic obstacles, whose
violations we detect in under 50ms . A custom visual localization
techniques, providing positioning errors as low as 9.2cm, enables
this performance, while a lightweight testbed architecture that
maximizes decoupling from the main application facilitates transi-
tioning from testbed to real deployments. We provide evidence of
FlyZone effectiveness based on three real-world aerial drone appli-
cations we developed with FlyZone and a user study comparing
FlyZone support with the SITL simulator.
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