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Abstract—We present MICNEST: an acoustic localization system enabling precise drone landing. In MICNEST, multiple microphones
are deployed on a landing platform in carefully devised configurations. The drone carries a speaker transmitting purposefully-designed
acoustic pulses. The drone may be localized as long as the pulses are correctly detected. Doing so is challenging: i) because of limited
transmission power, propagation attenuation, background noise, and propeller interference, the Signal-to-Noise Ratio (SNR) of
received pulses is intrinsically low; ii) the pulses experience non-linear Doppler distortion due to the physical drone dynamics; iii) as
location information is used during landing, the processing latency must be reduced to effectively feed the flight control loop. To tackle
these issues, we design a novel pulse detector, Matched Filter Tree (MFT), whose idea is to convert pulse detection to a tree search
problem. We further present three practical methods to accelerate tree search jointly. Our experiments show that MICNEST can localize
a drone 120 m away with 0.53% relative localization error at 20 Hz location update frequency. For navigating drone landing, MICNEST

can achieve a success rate of 94 %. The average landing error (distance between landing point and target point) is only 4.3 cm.

Index Terms—Localization, Acoustic, Microphone Array, Drone
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1 INTRODUCTION

Aerial drone technology represents a new breed of com-
puting platform [1], enabling applications in a range of
fields such as agriculture, search and rescue, film-making,
impromptu networking, and logistics. Landing is a key
step in a drone’s operation [2], one that is both delicate as
the risk of damaging the drone itself or the surroundings
is highest [3], and an essential component in many next-
generation applications enabled by drone technology.
Target scenarios. With the roll-out of 5G networks, beyond-
line-of-sight operation becomes possible: a drone flies au-
tonomously over long distances without a physically co-
located human pilot, but connected to an Internet back-
end that monitors its operation in real time. This ability
unlocks a range of potential applications, such as long-range
visual inspections executed by multiple drones in a shared
airspace [1] and instant asset delivery with drones.

Let us examine further the latter application. Compared
to ground couriers, drones can bypass the complex urban
traffic and deliver packages in a much shorter time. This
is ideal for time-sensitive deliveries, such as medical sup-
plies [4] and food [5], [6], [7], and also caters for contactless
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Figure 1: Two phases of drone landing.

deliveries, which helps reduce the spread of viral diseases.
Many companies are exploring the commercial feasibility
of instant deliveries with drones; for example, Amazon [8],
Alphabet Project Wing [9], Wal-Mart [10], [11], JD.com [12],
Domino’s [5], UPS [13], Ele.me [6], and Meituan [7].

Instant delivery with a drone unfolds as follows. After
the package is placed onboard, the drone takes off, climbs
to cruising altitude, and heads towards the destination. The
latter is typically a self-collection station1 near the customer.
When the drone is close to the destination, a precise landing
procedure is initiated, as depicted in Fig. 1. The drone first
approaches the landing platform horizontally to achieve
vertical alignment, as in Fig. 1(a). Next, the drone starts the
descent, shown in Fig. 1(b). Once the drone safely docks
onto the landing platform, the package is dropped into the
self-collection station, where the customer fetches it.

The consequences of not landing precisely can only be
underestimated. Loss of the transported good is the most
obvious. Should the drone miss the landing platform even

1. These self-collection stations are set up and operated by the drone
delivery companies and shared with the nearby residents.
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Figure 2: An illustration of MICNEST.

partly, it would quickly lose control and crash, possibly
damaging objects or hurting people [14]. The key require-
ments to avoid similar mishaps are as follows: i) cm-level
positioning accuracy ii) at 100+m altitude, with positioning
accuracy improving as the altitude decreases, and iii) low-
latency location updates to feed the flight control loop. These
requirements form the essence of our research problem.
State of the art. During the horizontal approach, shown
in Fig. 1, the flight control loop mainly relies on Real-Time
Kinematic Positioning (RTK) [15]. During the descent, the
flight control loop must keep the drone horizontally cen-
tered over the landing platform. As we further articulate in
Sec. 2, settings exist, such as urban canyons, where the ac-
curacy of GPS or RTK degrades with decreasing altitude up
to making either system essentially unusable [16], [17], [18].
Auxiliary anchor-based systems may assist the drone during
the descent such as visual markers [19], [20], [21], [22], [23],
laser stations [24], ultra-wide band (UWB) stations [25], [26],
or motion capture cameras [27].

Few of these systems, however, fulfill the requirements
mentioned earlier. The only technique that may potentially
do so is visual markers, read by downward-facing cameras
the drone must be equipped with. According to our real-
world experiences, we find that these techniques, however,
exhibit key limitations:

1) They are sensitive to lighting variations; visual markers
are difficult to detect in the fog or at night; equipping
the drone with a light source may partly ameliorate the
problem, however limiting the operational range to 20-
30m and only obtaining unstable performance.

2) They are constrained in horizontal coverage; depending
on the camera field of view and the drone’s vertical align-
ment with the marker, the camera may not completely
capture the marker, resulting in a localization failure [28].

3) They limit system throughput; as visual markers require
line of sight between the camera and the marker, drones
necessarily need to land one by one; otherwise, the first
drone that commences the descent visually blocks the
marker for all others.

MICNEST. We present MICNEST, an acoustic localization
system to assist drones in precise landing, summarized in

Sec. 3. As illustrated in Fig. 2, A speaker carried by a drone
broadcasts purposefully-designed acoustic pulses. Multiple
microphones are deployed on the landing platform in care-
fully devised configurations. By localizing the speaker from
the microphone signals, we localize the drone during the
descent. The localization results are transmitted to the drone
via WiFi and taken as an input for navigation, closing the
control loop that drives the drone onto the landing platform.

MICNEST is rooted in the unique features of acoustic
signals. The spatial resolution of a signal is proportional to
its speed and inversely proportional to its bandwidth [29].
Thus, the slower a signal is, the finer spatial resolution it can
provide. Acoustic signals with a limited bandwidth, say 24
kHz, can provide a fine-grained spatial resolution, around
0.71 cm when the sampling rate is 48 kHz. In comparison,
the spatial resolutions of RF signals like UWB with a 1.3
GHz bandwidth or mmWave with a 4 GHz bandwidth are
10 cm [30] and 3.75 cm [31], respectively.

Compared to the visual techniques, using acoustic sig-
nals further allows MICNEST to i) operate regardless of
lighting conditions and ii) provide larger horizontal cov-
erage. Further, we adopt Pseudo-Random Noise (PRN) to
modulate acoustic pulses emitted by a drone. Because PRN
pulses are orthogonal as long as they are statistically inde-
pendent of each other, we can detect these pulses separately
from the collided signal and identify which drone each pulse
corresponds to. This makes MICNEST able to iii) provide
concurrent detection and localization of multiple drones.

MICNEST provides, nonetheless, additional benefits. The
use of PRN pulses makes MICNEST friendly to human ear.
As drones may operate in populated areas, pulses should
not cause acoustic discomfort, yet PRN has the same acous-
tic characteristics as white noise and is almost imperceptible
to human ears [32], [33], [34]. Finally, MICNEST is resis-
tant to impersonation attack, because pulses are (pseudo)
randomly generated and it is difficult for third parties to
generate the same pulse and impersonate a drone.

We want to point out that MicNest is a complement, not
a replacement, to the existing localization solutions. The
safety of commercial drones can not be overemphasized.
To assist drones in precise landing, MicNest will not work
alone but will cooperate with RTK and the visual marker to
provide a more reliable and accurate localization service.
Challenges and contribution. Localizing drones via acous-
tics must tackle three fundamental challenges.

First, the SNR of acoustic pulses is inherently low. The
transmission power of the speaker must be limited to avoid
acoustic discomfort. MICNEST needs to achieve long-range
localization, thus acoustic pulses experience significant at-
tenuation. Further, background noise in many cities is intrin-
sically strong, around 40-75 dB SPL [35], and when airborne,
drone propellers generate much acoustic interference [36],
possibly up to 104 dB SPL [37].

Second, acoustic signals experience non-linear signal dis-
tortions due to Doppler effects. The severity of this effect is
inversely proportional to signal speed. Compared to RF sig-
nals, the sound speed is much lower. It can be expected that
acoustic pulses experience serious distortion when drones
are airborne. Modern flight control loops take flight deci-
sions at 400+ Hz, rapidly changing the drone velocity. An
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acoustic pulse thus experiences various degrees of Doppler
effect, ultimately undergoing non-linear distortions.

Third, signal processing must withstand the latency con-
straint imposed by the nature of flight control loops. The
latter consumes location information as one of their most
critical inputs. Evidence shows that increasing the latency
of location updates may represent a source of system in-
stability [3]. To make things worse, MICNEST must provide
low-latency location information at a time when the system
dependability is most important: during landing.

The key enabling technology behind MICNEST is a novel
pulse detector called Matched Filter Tree (MFT) and presented
in Sec. 4. The key idea is to model pulse detection as a
tree search problem. We cut one pulse into multiple short
segments. The time span of each segment is short enough
that the drone velocity in the three dimensions can be
considered as constant. Therefore, Doppler distortion within
each segment is linear. We then build a search tree, where
each level’s nodes correspond to each segment’s candidate
drone velocities. For each segment, we check all possible
velocities to compensate its distortion. If all segments are
compensated with the right velocities, the problem of non-
linear distortion is thus addressed. In addition, MFT allows
us to increase pulse length on demand to further address
the low-SNR problem. MFT addresses the first and second
challenges above.

To enable low-latency localization, we present three
techniques to accelerate tree search: i) tree pruning for
reducing the search space by reducing the branching factor
of the search tree; ii) correlation acceleration for reducing
the time cost of each search by accelerating correlation; and
iii) heuristic search for reducing the number of searches by
exploiting past history to quickly dive towards the solution.
The three techniques, presented in Sec. 5, are used jointly to
address the third challenge above.

Although the techniques above significantly improve
accuracy and reduce latency, they exclusively operate on
single pulses. The specific problem we are to tackle, how-
ever, exhibits a further trait that may be exploited to im-
prove overall performance: the localization process must be
continuous. As the drone approaches the landing platform,
acoustic pulses are transmitted continuously from the drone
to the platform, and the localization results are similarly
sent the other way around. Based on this observation, in
Sec. 6 we present two further techniques: i) a joint audio
transmission and reception scheme, and ii) a technique to
dynamically adapt the pulse length, based on the instant
SNR. Their combination allows MICNEST to further reduce
overall latency while maintaining high accuracy.

We report on the performance of MICNEST in Sec. 7.
Using a custom foldable landing platform we build, over
a total of 60 hours of real-world experiments with multiple
drones, we provide evidence of how MICNEST fulfills the
requirements at stake. We demonstrate, for example, that
MICNEST provides a median error of just 0.043 m below
20 m altitude, that is, where accuracy matters the most for
precise landing. In an experiment covering altitudes up to
120 m, nonetheless, the absolute localization error over the
distance to the landing platform is only 0.53%. The mean
latency to obtain a location update at the drone is 29.7 ms,
which is compatible with use in flight control loops [3], [38].

We also show how MICNEST is only marginally affected
by factors it cannot control, such as background noise, and
can localize multiple drones with limited degradation of
accuracy. Finally, we put MICNEST through its paces and
test its ability to control drone landing in a realistic setup.
The results show that MICNEST can navigate the drone
onto the landing platform with a 94 % success rate and an
average landing error of only 4.3 cm.

2 RELATED WORK

Our work lies at the intersection of localization in mobile
robotics and localization using acoustic signals.
Localization in mobile robotics. GPS is by far the most pop-
ular technique providing meter-level accuracy in outdoor
settings. RTK is an improved but more expensive version
of GPS and can achieve cm-level accuracy. Satellite-based
systems become inaccurate or prevented from operating
in urban canyons, because the surrounding buildings may
reflect or block the GPS signals [16], [17], [18], resulting in
the serious multipath issue or NLOS reception, respectively.

Because of these issues, several auxiliary techniques exist
to localize mobile robots and especially aerial drones. April-
Tags [19], [20], [21] may be used to localize drones by using
a downward-facing camera to detect visual markers on the
ground. Similar techniques also exist that are customized for
testbed operation [39]. These systems can achieve cm-level
accuracy. However, they are sensitive to lighting conditions
and have a limited horizontal coverage depending on the
camera field of view and distance to the marker.

Optics-based systems [24] and motion capture sys-
tems [27] can also localize drones with cm-level accuracy.
However, their localization range is limited to a few me-
ters, which makes them unsuited to enable precise landing.
TrackIO [26] uses UWB tags for localizing drones. The
median error is 1+ m, which may not be sufficient to support
precise landing. Finally, similar to MICNEST, Rabbit [40] de-
ploys a speaker on the drone to emit frequency-modulated
continuous wave (FMCW) signals and uses a mobile phone
to track the drone. Although the localization error is less
than 3 cm, the range is limited to 1.5 m.

In summary, no existing localization system for mobile
robots can simultaneously fulfill the three requirements in
the Introduction, thus enabling precise drone landing.
Localization with acoustic signals. Acoustic signals may
be used for localization indoor [41], [42], [43], [44], [45],
[46], [47], [48], [49], [50], [51] or outdoor [52], [53], [54],
[55], [56]. Many works utilize audible acoustic signals or
actively transmit acoustic signals for indoor localization.
For example, GuoGuo [42] proposes a fine-grained adaptive
ToA (Time of Arrival) estimation approach to improve the
location update frequency. VoLoc [46], Symphony [47], and
MAVL [57] use a single microphone array to localize sources
via wall reflections. Lin et al. [48] transmit the ultrasonic
sound and exploit the non-linearity effect to localize devices.
Some of these techniques achieve m-level accuracy, with a
range limited to less than 20 m.

In outdoor localization, works exist that present the
design of wireless acoustic sensor networks to achieve lo-
calization in vast areas with m-level accuracy [53], [54]. Li et
al. [55] also present a machine learning technique to detect
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Figure 3: MICNEST system architecture.

cars via acoustics and exploit the geometric information of
roads to localize cars. These works deploy microphones
across a vast area, while our deployment is limited to a
landing platform not much larger than the drone.

Here again, the conclusion is that no existing technique
can simultaneously fulfill the requirements at stake, either
because of limited accuracy or coverage, or due to deploy-
ment constraints dictated by the target scenario.

3 MICNEST IN A NUTSHELL

Fig. 3 shows the system architecture of MICNEST. The drone
carries a speaker that transmits acoustic pulses continu-
ously. Four distributed microphones are deployed at the
corners of the landing platform to capture these pulses.
MICNEST localizes the drone by localizing the speaker.
PRN modulation. We adopt Pseudo-Random Noise (PRN)
modulation to generate the pulses. Specifically, let

s = [s0, s1, . . . , sn, . . . , sN−1]
T (1)

indicate the acoustic pulse for a drone, where sn denotes
the PRN code of a pulse, and N is the pulse length. We
take a drone’s identifier as a random seed and generate a
sequence of N Gaussian random variables as the N codes
of the pulse. By doing so, the pulses transmitted by different
drones are independent and thus orthogonal to each other.
In MICNEST, the code rate equals the sampling rate of the
microphones, that is, 48 kHz. The corresponding frequency
band of pulses is 0-24 kHz. For continuously localizing the
drone, pulses are transmitted repeatedly.
Pulse detection and TDoA estimation. First, we need to
detect the pulses from the signals recorded by the micro-
phones. Matched filters are a standard method to detect
acoustic pulses. The idea is to consider the transmitted pulse
as a template and to correlate it with the received signal. The
signal received by a microphone is

x = αs+w, (2)

where α is the attenuation factor2, and w =
[w0, w1, . . . , wN−1]

T denotes a vector of Gaussian white
noise. To detect the pulse s, the matched filter correlates s
with the received signal x. The output is

y = sTx = αsTs+ sTw. (3)

By feeding a stream of x into the matched filter, we obtain a
stream of correlations y. Upon observing a correlation peak
in the output, we consider a pulse to be detected.

2. For simplicity, we assume all codes experience the same attenua-
tion α.

Table 1: Summary of mathematical symbols.

Term Description

Tc, T
′
c Code periods w/o and w/ Doppler effect

G, G
′ SNR gains w/o and w/ Doppler effect

v Drone radial velocity
c Sound Speed
∆ Doppler time shift experienced by PRN
N Number of PRN codes in a pulse
L Number of synchronized PRN codes

Once an acoustic pulse is detected we calculate the times
when the pulse arrived at microphones (ToAs) and time dif-
ference of arrivals (TDoAs), that is, the differences in ToAs.
In MICNEST, we compute TDoAs between opposite micro-
phones on the landing platform, that is, <Mic. 0, Mic. 2>
and <Mic. 1, Mic. 3> in Fig. 3. This is because opposite mi-
crophones have the largest inter-microphone distance and
therefore yield the largest aperture [29]. The two TDoAs of
pairs <Mic. 0, Mic. 2> and <Mic. 1, Mic. 3> are denoted as
τ<0,2> and τ<1,3>, respectively.
Localization. τ<0,2> and τ<1,3>, are transmitted to the
drone, for example, via WiFi. Based on these information,
the drone can establish two hyperboloid equations.

We establish a 3D coordinate system and let the center
of the landing platform be the origin. The coordinates of
microphones are defined as M0 = (d, 0, 0), M1 = (0,−d, 0),
M2 = (−d, 0, 0), and M3 = (0, d, 0), respectively. Given
these, the two-sheeted hyperboloids oriented along the x-
axis and y-axis are given by:{

|PM0 − PM2|2 = 2a0 = abs(τ<0,2> × c)

|PM1 − PM3|2 = 2a1 = abs(τ<1,3> × c)
, (4)

where P = (Px, Py, Pz) is the drone coordinates, | • |2 is the
Euclidean distance (2-norm), and c is the speed of sound.

Note that Eq. (4) is undetermined, since it provides only
two constraints while drone coordinates have three un-
knowns, that are, Px, Py , and Pz . It would be possible to
introduce additional constraints by using TDoAs of other
microphone pairs. However, due to far-field effect, the so-
lution to this system of equations would likely lead to os-
cillating behaviors, especially in the vertical direction, with
the increase of drone distance from the landing platform.
Differently, we estimate Pz based on sensors found aboard
modern drones, such as barometers, ultrasound sensors, and
downward-facing LIDARs. Similar techniques are routinely
used in drone testbeds [39]. By determining Pz , we can use
Eq. (4) to determine Px and Py .

4 TACKLING PULSE DETECTION

The low SNR of received pules and their non-linear Doppler
distortion concur to make pulse detection difficult. This
section elaborates on how we tackle these two challenges;
then it introduces our novel pulse detector: Matched Filter
Tree (MFT). As a reference through this section, Tab. 1 lists
the mathematical symbols we use.
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4.1 Low SNR
Because of limited transmission power, propagation attenu-
ation, background noise, and propeller interference, the SNR
of received pulses is intrinsically low.

An effective solution to address this problem is to in-
crease pulse length, thus improving the SNR gain of the
matched filter. To understand the SNR gain as seen by the
matched filter, we compare the SNRs of the received signal x
and the output y. Considering Eq. (2), the SNR of x is

SNRx =
E
[
|αs|2

]
E [|w|2]

=
|α|2sTs

E [
∑

|wn|2]
=

|α|2sTs
Nσ2

, (5)

where σ2 is the noise variance. Similarly, the SNR of y is

SNRy =
E
[
|αsTs|2

]
E [|sTw|2]

=
|α|2sTs · sTs
sTE [wwT ] s

=
|α|2sTs

σ2
, (6)

where E
[
wwT

]
is the covariance matrix of w, which is σ2I .

The SNR gain of the matched filter is thus given by

G =
SNRy

SNRx
= N. (7)

Eq. (7) leads to a fundamental insight: the SNR gain G equals
the pulse length N . This means that, at least in principle, we
may trade time for a higher SNR. Unfortunately, doing so
backfires in the presence of non-linear Doppler distortion,
as explained next.

4.2 Non-Linear Doppler Distortion
The Doppler effect introduced by drone dynamics may
seriously distort the acoustic pulses. The severity of Doppler
effect is generally inversely proportional to signal speed.
Due to the low speed of acoustic pulses, they heavily suffer
from such distortion.
Code desynchronization. Doppler effect gradually makes
the received pulses misaligned with the transmitted original
pulses in the time domain, and ultimately desynchronize the
received codes with the transmitted ones.

Consider the continuous-time waveform of the transmit-
ted pulse s which is given by3

s(t) =
N−1∑
n=0

sn · rect(
t− nTc

Tc
), 0 ≤ t ≤ NTc. (8)

Here, rect(t) is the rectangular function that is 0 outside the
interval [0, 1) and 1 inside of it, whereas Tc denotes the code
period, that is, 1/48kHz s in our implementation.

In the presence of Doppler effect, the codes of the re-
ceived pulse expand or compress in time. The period of
these codes can be calculated as [58]

T
′

c =
(
1− v

c

)
Tc, (9)

where v denotes the drone velocity4. Given this, the received
pulse distorted by Doppler effect is

s
′
(t) =

N−1∑
n=0

sn · rect(
t− nT

′

c

T ′
c

), 0 ≤ t ≤ NT
′

c . (10)

3. For simplicity, we use the Zero-Order Hold (ZOH) to model the
Digital-to-Analog Converter (DAC).

4. Unless otherwise specified, drone velocity refers to radial velocity
of drone with respect to the ground port. The velocity is negative if the
drone moves towards the ground port.
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However, the receiver simply samples the pulse with the
original code period Tc. The discrete-time waveform of the
received pulse is

s
′

n = s
′
(t) · δ(nTc), n = 0, 1, . . . , (11)

where δ(t) is the Dirac delta function. Note that the period
of received codes is T

′

c while the sampling period is Tc. This
means that each sampled code is shifted in time by

∆ = Tc − T
′

c =
v

c
· Tc. (12)

To make things worse, the time shift accumulates over
multiple samples. Consider Fig. 4 as an example. It can be
calculated that when n ≥ L = ⌊c/v⌋, the accumulated time
shift that s

′

n experiences is larger than the original code
period Tc. This means that the codes received hereafter are
desynchronized with the transmitted codes, therefore the
following holds: {

s
′

n = sn if n < L

s
′

n ̸= sn if n ≥ L
(13)

Impact of code desynchronization. The derivation of the
SNR gain in Eq. (7) assumes that the transmitted codes, that
is, the template, are synchronized with the received codes.
This assumption may not hold due to code desynchroniza-
tion. In such a case, the SNR gain of the matched filter can
be re-written as

G
′
=

SNR
′

y

SNR′
x

=

(
|α|2sTs′ · sTs′

σ2s
′T
s

′

)/ |α|2s′T
s

′

Nσ2


= N

(
sTs

′

s
′T
s

′

)2

, (14)

where s
′

denotes the received pulse [s
′

0, s
′

1, . . . , s
′

N−1]
T .

Based on Eq. (13), if the number of codes n is less than L,
then s

′
= s. In this case, there is no code desynchronization,

and G
′
= G = N . Instead, if n ≥ L, then only the first L

codes of s
′

equals those of s and the remaining codes are
desynchronized. Therefore,

G
′
= N

(∑L−1
n=0(s

′

n)
2 +

∑N−1
n=L sns

′

n∑N−1
n=0 (s

′)2

)2

= N

(∑L−1
n=0(s

′

n)
2∑N−1

n=0 (s
′
n)

2

)2

≈ N(
L

N
)2 =

L2

N
, N > L. (15)

Here, the reason for
∑N−1

n=L sns
′

n = 0 and for the ap-
proximation in the second line is that codes in our pulse
are a sequence of independent pseudo-random Gaussian
variables [59]. As a result, once the pulse length N exceeds
L, the SNR gain degrades with the increase of pulse length.
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Figure 5: A drone’s radial velocity during landing.
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Figure 6: Illustration of a search tree.

We are now facing a catch-22 situation. Eq. (7) suggests
that a long pulse length helps mitigate the low-SNR prob-
lem. Conversely, Eq. (15) indicates that the maximum pulse
length that can improve SNR gain is L = ⌊c/v⌋, whose value
is upper-limited by the (low) speed of acoustic signals c. Let
us consider a concrete example to illustrate the problem.
Suppose the sound speed is 343 m/s and the drone speed is
6 m/s. Thus, a complete code desynchronization will occur
after L = ⌊343/6⌋ = 57 codes, as per Eq. (13). On the other
hand, as we indicate in Sec. 7, the pulse duration should be
at least 50 ms so as to localize a long-range drone, thus the
corresponding pulse length N is 2400 at a sampling rate 48
kHz. The huge gap between N = 2400 and L = 57 indicates
that Doppler distortion significantly hinders addressing the
low-SNR problem by increasing the pulse length.

Physical drone dynamics. Should the drone velocity be con-
stant, the corresponding Doppler distortion would be linear.
If we were in this situation, we might simply determine
what drone velocity compensates the Doppler effect. This is
precisely the idea of the matched filter bank [60], [61].

In practice, however, the drone velocity is not constant,
leading to non-linear distortion. As an example, Fig. 5 plots
the radial velocity of a drone when it is landing automat-
ically from a 50 m altitude, based on location and velocity
information obtained by an RTK system in an open area
and the on-board IMU. The drone velocity fluctuates rapidly
during landing in response to commands from the on-board
flight control loops [38], which rapidly change the drone
motion to maintain stable flight on a predetermined route.

Flight control loops operate at 100Hz-32kHz [62], [63],
[64]. This means that a drone may change its velocity at sub-
10-ms scales. On the other hand, Eq. (7) shows that in order
to take advantage of the SNR gain of the matched filter,
we should increase pulse length. Our real-world experimen-
tal evaluation, reported in Sec. 7, indicates pulse duration
should be no less than 50 ms to localize the drone robustly.
We may thus expect that multiple motions occur within the
duration of one pulse. Therefore, pulses undergo non-linear
distortion and different codes experience different degrees
of Doppler effect, hindering detection.

4.3 Matched Filter Tree

We present a dedicated pulse detector, called Matched Filter
Tree (MFT), to detect a low-SNR pulse subject to non-
linear distortion. The key idea we exploit is to model pulse
detection as a tree search.
Intuition. Fig. 6 illustrates the idea. We split one pulse into
M equal segments denoted as Seg. 0, 1, ... with segment
length Nseg = N/M . The segments are short enough that
the drone velocity can be considered constant within the
duration of a segment. Therefore, each segment experiences
a linear Doppler distortion.

We build a search tree where the nodes at each level
correspond to the possible drone velocities during the trans-
mission of a segment. For each segment, we consider the K
possible velocities to compensate the Doppler shift it ex-
periences. Ideally, if all segments are compensated with the
correct velocities, the new pulse spliced by the compensated
segments restores its code synchronization with the received
pulse, eliminating the non-linear distortion. Sec. 5 discusses
the setting of the parameters at hand, including the choice
of M , and the search resolution for velocity.
Searching the solution. Let velocities <
v(0), v(1), . . . , v(M−1) > be one possible combination
of candidate velocities, for example, corresponding to path i
in Fig. 6, where v(m) denotes the candidate velocity for Seg.
m. We perform the following steps to check whether the
candidate velocities compensate the non-linear distortion:
• S1 (compensation): for each velocity v(m), we estimate

the Doppler shift that Seg. m suffers as (v(m)/c) · Tc,
according to Eq. (12)); we compensate this Doppler shift
by resampling this segment with spacing (c− v(m))/c.

• S2 (concatenation): we concatenate the resampled ver-
sions of M segments into a new pulse, denoted as s

′

i.
• S3 (correlation): we take the new pulse s

′

i as a new
template and correlate it with the received signal.

If velocities < v(0), v(1), . . . , v(M−1) > along path i
match the actual drone velocities, the new pulse s

′

i is again
synchronized with the received pulse; thus it has maximum
correlation with the received signal because the non-linear
distortion is minimized. Therefore, the problem of detecting
pulses corresponds to finding a solution path in the search
tree that can minimize the non-linear distortion.

A straightforward solution is exhaustive search, that is,
visiting every path of the search tree. For each such path, we
use the velocities along the path to compensate the Doppler
shift of the pulse, as per S1 and S2, and to calculate the
correlation, as per S3. After visiting all paths, we select the
path whose corresponding correlation has the maximum
value; the maximum correlation value means that the non-
linear distortion is minimized.

The processing overhead of an exhaustive search is,
however, unacceptable for MICNEST, because of the low-
latency requirement discussed earlier. The search space
indeed grows exponentially with the number of segments
M . Given the computational complexity of the correlation
operation in S3, it is nearly impossible to visit every path
and return a solution at low latency. Note that it is also
infeasible to search for the solution path incrementally or
greedily, that is, choose the candidate velocity that can
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(a) Detecting linearly distorted pulses.
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Figure 7: Two specific cases MFT can be narrowed down to.

maximize the correlation at each level of the tree. This is
because the length of each segment is so short that the SNR
gain of segment-audio correlation is immaterial. The noise
typically dominates the correlation. Sec. 5 explains how we
accelerate the tree search.

With the help of MFT, we can compensate for the non-
linear distortion in the received pulses. This means that
the problem of code desynchronization can be tackled, and
we can avoid the dilemma that a long pulse length can
undermine the SNR gain. In other words, it is safe for us
to choose a longer pulse on demand to boost the SNR of
the MFT’s outputs (see Eq. (7)). In Sec. 7, we study the pulse
length that MICNEST demands.

4.4 Other MFT Uses

Above, we show that MFT is feasible to detect pulses
suffering from both low SNR and non-linear distortion, which
is indeed a challenging task. In fact, MFT can also be used
for detecting pulses in other cases, as shown in Fig. 7:
• Detecting linearly distorted pulses: Fig. 7(a) showns

this case. When the received pulses suffer from linear dis-
tortion, all segments experience the same degree of dis-
tortion. Based on this, we remove the unfeasible search
paths and reduce the search space from an exponential
one to a linear one. This kind of MFT is equivalent to
matched filter bank [60], [61], as used in GPS receivers.

• Detecting high SNR pulses: A high SNR of received
pulses can lower the requirement for the SNR gain of
MFT. This means that the pulse length can be reduced,
and correspondingly the depth of the search tree can
be reduced. As illustrated by Fig. 7(b), when the SNR
is sufficiently high, the search tree can be chopped to a
single layer, reducing the search space.

MFT therefore enjoys the flexibility to adapt to detection
tasks according to signal quality. Meanwhile, MFT is an
extension to a matched filter. By replacing the template
of MFT, MFT can detect not only PRN pulses used by
MICNEST, but also other types of signals, such as FMCW
signals and OFDM signals. We believe MFT is a general
detection tool and may be equally applied to other signal
processing tasks.

5 TACKLING THE LATENCY CHALLENGE

We present three methods to accelerate the tree search.

Seg. m

Seg. m+1 vk-Δv vk+Δvvk

vk

speed upslow down no change

 

 

Figure 8: To prune the search space, the branching factor of the
search tree is aggressively reduced to three.

5.1 Tree Pruning
We note that the drone velocity does not change abruptly:
the velocity of the next segment is unlikely to considerably
deviate from that of the current segment. This observation
allows us to reduce the branching factor of the tree, that
is, the number K of candidate velocities. We expect this to
abate the processing overhead.

In our design, we aggressively reduce the branching
factor to three, as shown in Fig. 8. Suppose vk is chosen
as the velocity of the m-th segment. Only three candidate
velocities exist for the next segment, that is vk −∆v, vk, and
vk +∆v, where ∆v denotes the search resolution. By doing
so, the search space is significantly reduced.

However, to safely prune the tree, we must satisfy the
following two constraints.
• C1: ensure that the solution path is within the pruned

search space. That is

∆v ≥ Nseg · Tc · amax, (16)

where amax denotes the maximum drone acceleration.
Intuitively, this requirement expects a large ∆v so that
the candidate velocities along the considered paths can
catch up with the rapid change of drone velocity.

• C2: ensure that the search resolution ∆v is fine enough
that the Doppler shift of each segment can be compen-
sated. In fact, each candidate velocity is a numerical
representation of the actual velocity with resolution ∆v.
Due to numerical error, the Doppler shift may not be
completely compensated. According to Eq. (12), the accu-
mulated Doppler shift of segment with length Nseg can
be calculated as

∑Nseg−1
n=0

v[n]
c ·Tc, where v[n] denotes the

drone velocity during code sn. After compensating the
Doppler shift with vk, the residual Doppler shift δshift
is δshift =

∑Nseg−1
n=0

v[n]−vk
c · Tc. Given the resolution

∆v, the upper bound of δshift is Nseg · ∆v
2c · Tc. To

avoid introducing code asynchronization additionally,
the residual Doppler shift δshift should be less than Tc:

Nseg ·
∆v

2c
· Tc < Tc. (17)

Obviously, constraints C1 and C2 are conflicting since C1
expects a larger ∆v while C2 expects a smaller one.

We notice that segment length Nseg plays a key role in
fulfilling both C1 and C2. Nseg needs to be small enough
that during each segment the drone velocity can be assumed
as constant. This assumption also contributes to the residual
Doppler shift because the actual velocity is not constant. The
resulting maximum possible deviation between the actual
velocity and the candidate velocity is Nseg · Tc · amax +∆v.
Therefore, Eq. (17) should be modified as

Nseg ·
Nseg · Tc · amax +∆v

2c
· Tc < Tc. (18)
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Figure 9: To accelerate the operation of correlation, we take two stages to do so: We first calculate and cache all possible segment-
audio correlations. During the tree search, we efficiently compute one pulse-audio correlation by shifting and adding up the
segment-audio correlations elementwisely.

In a nutshell, we should satisfy the constraints of Eq. (16)
and Eq. (18) before aggressively pruning the tree to three
branches. In our implementation, Tc = 1/48k s. The maxi-
mum acceleration of our drones amax is 8 m/s2. Given these,
we set Nseg to 240 and ∆v to 0.1 m/s, ensuring a sufficient
search space and providing a promising search resolution.

5.2 Correlation Acceleration
Correlation is the most time-consuming operation during
tree search (S3 in Sec. 4.3). Here, we reduce its time cost.

Let us define Cor<v0,v1>[τ ] as the correlation function
between vectors v0 and v1, and s̃

(m)
seg as the compensated

version of Seg. m, and N
(m)
seg as the length of s̃(m)

seg .
We find that the correlation between the compensated

pulse s̃ and the received audio y can be calculated by
summing the M compensated segment’s correlation with
the received audio y:

Cor<s̃,y>[τ ] =
M−1∑
m=0

Cor
<s̃

(m)
seg ,y>

[τ + L(m−1)], (19)

where L(m) is defined as
∑m

k=0 Ñ
(k)
seg . We can rewrite the

compensated pulse s̃ as a concatenation of M compensated
segments:

s̃[n] =
M−1∑
m=0

bool[L(m−1) ≤ n < L(m)] · s̃(m)
seg [n− L(m−1)],

(20)
where bool[condition] is a boolean function that equals 1 if
condition is true and 0 otherwise. Substituting Eq. (20) into
the definition of correlation leads to Eq. (19):

Cor<s̃,y>[τ ] =
Ñ−1∑
n=0

y[n+ τ ]s̃[n]

=
M−1∑
m=0

N−1∑
n=0

y[n+ τ ]1[L(m−1) ≤ n < L(m)] · s̃(m)
seg [n− L(m−1)]

=
M−1∑
m=0

Lm∑
n=Lm−1

y[n+ τ ] · s̃(m)
seg [n− L(m−1)]

=
M−1∑
m=0

Ñ(m)
seg∑

n=0

y[n+ τ + L(m−1)] · s̃(m)
seg [n]

=
M−1∑
m=0

Cor
<s̃

(m)
seg ,y>

[τ + L(m−1)]. (21)

Eq. (19) reveals a key fact that can be exploited to acceler-
ate correlation operation. That is, the pulse-audio correlation

Cor<s̃,y> can be decomposed into multiple segment-audio
correlations. In other words, if segment-audio correlations
are available, pulse-audio correlation can be calculated by
adding M vectors, that is, M segment-audio correlations.

Given this, we apply a two-step process, shown in Fig. 9:
• Stage 1: this stage is performed before the tree search.

We calculate and cache all possible segment-audio corre-
lations. Specifically, for each Seg. m and for each candi-
date velocity v(m), we resample this segment with v(m)

and then correlate it with a window of received signals.
The resulting segment-audio correlation is then saved to
a lookup table with key < m, v(m) >.

• Stage 2: this stage is performed during the tree search.
For one search path, we retrieve all required segment-
audio correlations from the lookup table. For each Seg.
m, we shift its segment-audio correlation by Lm−1. We
then add up M shifted segment-audio correlations ele-
mentwisely.

Note that the total number of segment-audio correlations
is not an exponential function of segment number M , but a
linear function, that is,

∑M−1
m=0 (2m+3). This is because after

reducing the branching factor to three (see Sec. 5.1), Seg.
m has only 2m + 3 candidate velocities. So Stage 1 can be
finished in a short time (about 3.1 ms)

Also note that, the vector add in Stage 2 can be efficiently
parallelized. We take advantage of native NVIDIA CUDA
kernel5 to further accelerate Stage 2. In our implementation,
searching one tree path takes only 5.3 µs on the NVIDIA
RTX 3070, on average.

5.3 Heuristic Search

Instead of visiting all tree paths in a brute-force way, we
adopt a heuristic method to reduce the total visit count.

Our method is similar to Monte-Carlo Tree Search
(MCTS) [65], [66], [67]. Our insight is: for each search path,
its corresponding maximum correlation values contain the
useful information, which can be exploited to guide towards
the solution path in the search tree. The path that has a
larger correlation value is more likely to be closer to the
solution path, and thus the nodes along this path are more
promising to be the nodes of the solution path. Therefore,
we pay more attention to nodes that look promising, so as
to avoid traversing the search tree exhaustively.

5. Native CUDA kernel also allows us to perform shift operation
efficiently. This is because by passing different memory offsets of
vectors to the CUDA kernel, we can implicitly perform shift operation
without memory copy.
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Figure 10: Localization modes.

Our method consists of repeated rounds. For each round,
we perform three procedures:

• Batch path selection: we first generate a batch of tree
paths in the search tree. The batch size is denoted as
B. During the generation of each path, we start from
the root node and choose the next child with the highest
Upper Confidence Bound (UCB) value [66], defined as

UCB(node j) = scorej +Kucb

√
logNvis

N j
vis

, (22)

where scorei denotes the score of node j, explained later,
Nvis is the total number of paths that has been visited,
N j

vis denotes the number of times that node j have been
selected, and Kucb is an empirical parameter that used to
trade off between exploration and exploitation [67].

• Batch path evaluation: For each path from the B gen-
erated tree paths, we compute its corresponding correla-
tion using the accelerated method introduced in Sec. 5.2.
We treat each path as a comparison game. The paths
whose correlations are top B0 largest are regarded as win
(B0 < B), and other paths as lose.

• Backpropagation: we then use the game results of B
paths to update the score of nodes. The score of node j
is simply defined as the winning rate of paths that pass
through it: scorej = N j

win/N
j
vis, where N j

win denotes the
winning times of paths passing through node j.

It can be expected that, as the number of rounds grows,
the nodes of the solution path will be visited more and
more frequently as their node scorej are gradually growing.
Therefore, our method will converge to the solution path. In
our implementation, the batch size B is empirically set to
20, B0 is 1, and Kusb is 0.4. The total visit count is limited
to 5000 (see Sec. 7.3). By doing so, the time cost of detecting
one pulse is less than 30 ms.
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Figure 11: Toy example of continuous pulse detection.

6 CONTINUOUS DRONE LOCALIZATION

To carefully navigate the drone onto the landing platform,
we further need to detect a continuous sequence of pulses
so as to localize the drone continuously with high precision.
This aspect offers avenues for further optimizations.

6.1 Localization Mode
Our key design principle for continuous localization is to
reduce the interaction between the drone and the landing platform
as much as possible.

The alternative to continuous localization would be op-
erating on-demand, as illustrated in Fig. 10(a): the platform
asks the drone via WiFi to transmit one PRN pulse and con-
sequently records a window of signals. Next, the platform
uses MFT to detect pulses and then calculate TDoAs, which
are transmitted back to the drone for localization. The on-
demand operation would suffer for multiple reasons:
• Acoustic spectral leakage: whenever the speaker is

switched on/off, the signal energy leaks to undesired
frequency components [68]. This not only distorts the
signal additionally, but also makes sounds noticeable
since the leaked components may fall into the frequency
range of the human ear.6

• Additional waiting latency: given fluctuating wireless
latency, the signal window should be somewhat larger
than the PRN pulse length, so to ensure the entire pulse
can be recorded. The landing platform would need to
increase waiting times, increasing latency.

• Limited update rate: for each round of localization,
MICNEST must pay for extra communication latency,
besides the above-mentioned additional waiting times.

To tackle the above issues, MICNEST adopts a pipelined
localization mode, as shown in Fig. 10(b). The main feature
is that signal transmission is fully decoupled from signal
reception. The drone simply continuously repeats the pulse
without spectral leakage and without any interaction with
the landing platform. The platform can immediately launch
pulse detection upon arrival of an entire pulse, which signif-
icantly compresses the entire process over time, compared
to the on-demand mode. The pipelined localization mode,
however, requires a joint design of audio transmission and
reception schemes, as described next.

6.2 Audio Transmission and Reception
Let us consider Fig. 11 as an example. As the drone simply
repeats its PRN pulses continuously, they are saved at the

6. These two problems may be mitigated by applying a Hamming or
Blackman-Harris window to the audio pulse, however, at the cost of
sacrificing pulse strength and quality.
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Figure 12: To search for the target pulse-1, we set the template
of MFT to the pulse-1, and try to detect it window by window
from the receive audio buffer.

platform into a received signal buffer sequentially. The plat-
form then repeatedly performs the following procedures: it
fetches a window of audio signals from the buffer, then uses
MFT to detect the corresponding PRN pulse.

Ideally, the signal window should align with the re-
ceived pulse, as in Fig. 11(a). Thus, MFT is expected to
produce the pulse-audio correlation with a single correlation
peak, whose index indicates the ToA of the pulse. However,
the most general case is that the window is misaligned with
the pulse, as shown in Fig. 11(b). In this case, the signal
window contains two parts from two adjacent identical
pulses. Since both parts are correlated with the template,
multiple correlation peaks will be generated, resulting in
the following two crucial problems:

• Peak ambiguity: the ambiguity is two-fold. i) since
there are multiple candidate peaks, MICNEST cannot
determine which peak to choose to calculate ToA; ii) as
explained in Sec. 5.3, we exploit the correlation values
of history paths to guide MFT to find more promising
search paths, but multiple peaks confuse MFT, slowing
down the tree search.

• Reduced SNR gain: Eq. (7) indicates that the SNR gain is
proportional to the number of the correlated codes. The
misaligned window reduces the number of correlated
codes, and thus reduces the SNR gain. In other words,
the misalignment distributes the signal energy over mul-
tiple peaks, rather than concentrating it in a single peak.

The crux of the problems is the setting of the pulse rep-
etition period and window size: to avoid introducing peak
ambiguity, the same PRN pulse should not appear multiple
times within a window, not even partly. This requires the
pulse repetition period to be larger than the window size.
We address this issue by making the drone repeat a group
of different PRN pulses, rather than a single one, which
therefore increases the pulse repetition period several times.

To avoid reducing the SNR gain, the signal window
should be extended to reserve some guard interval, so that
the entire pulse corresponding to the template case can be
captured even when the two are misaligned. We set the
window size to twice the target pulse length, and the step
size used for sliding the window is set to the pulse length.
This ensures that the target pulse is captured in a window.

Fig. 12 gives an example of how the platform detects the
pulse with the design above. Suppose the drone transmits
P different PRN pulses repeatedly (P ≥ 3). The landing
platform initially chooses pulse-1 as a target to detect. It
then sets the template of MFT to pulse-1, and attempts to
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Figure 13: Impact of pulse length and altitude on pulse-audio
correlation.

detect pulse-1 from the signal buffer, window by window.
In case that the current signal window covers pulse-1 only
partially, the detection fails as shown in Fig. 12(a). However,
our design ensures that pulse-1 is captured by the next
window and thus detected by MFT, as shown in Fig. 12(b)7.

Note that the P pulses and their transmission sequence
are known to the landing platform. Once pulse-1 is detected,
the platform knows what pulses arrive next, and when.
The platform can consequently select the right templates to
detect pulses from given signal windows.

6.3 Adaptive Pulse Length
The design above offers an additional knob to the landing
platform, as we can adaptively tune the pulse length at run-
time, especially as a function of the instantaneous SNR.

Fig. 13 experimentally shows how information on al-
titude and length of PRN pulses impact the pulse-audio
correlation. We make the drone hover at altitudes of 25 m,
75 m, and 120 m. At each altitude, the drone repeatedly
transmits acoustic pulses of 250 ms length. We correlate the
received audio with pulse templates with variable lengths:
12.5 ms, 25 ms, 50 ms, and 100 ms. When the pulse length
is only 12.5 ms, we still observe distinguishable correlation
peaks at 25 m altitude, but the correlation is almost entirely
superseded by the noise floor when the altitude is increased
to 120 m, indicating the drone altitude has a greater impact
on the instantaneous SNR. Therefore, the lower the altitude,
the shorter the pulse length required by MICNEST. This
offers an opportunity to decrease transmission delay.

In our design, the landing platform continuously esti-
mates the signal quality and accordingly tunes the pulse
(template) length. We set the maximum pulse length to
2400, corresponding to 50 ms at 48 KHz sample rate. This is
reasonable since a pulse with 2400 length can still provide

7. Note that, a possible issue is that if the platform fails to detect
pulse-1, it must wait for another pulse repetition period. To alleviate
this problem, we limit the pulse repetition period to 250 ms.
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reasonable detection results at 120 m, as shown in Fig. 13,
striking a balance between detection accuracy and transmis-
sion delay. The minimum pulse length is empirically set to
600, corresponding to 12.5 ms at 48 KHz sample rate.

At a drone commences the approach to the landing
platform, the latter uses the template with the maximum
length to search for the first pulse. For each computed pulse-
audio correlation, we calculate the peak-to-noise-floor ratio
(PNFR), which is empirically defined as the ratio between
the correlation peak value and the noise floor. We decrease
the next template length by 120, corresponding to 2.5 ms at
48 KHz sample rate, when PNFR > 3.5; increase the next
template length by the same quantity when 1.5 < PNFR
< 2.5; and resort to maximum pulse length if PNFR < 1.5
or the detected peak fails the validity checks. We leave the
length unchanged otherwise.

In short, the template length for the t-th detection Nt is

Nt =



2400, if t = 1 or PNFR < 1.5

or invalid peaks;
max(Nt−1 − 120, 600), if PNFR > 3.5;
min(Nt−1 + 120, 2400), if PNFR < 2.5;
Nt−1, otherwise.

(23)
Note that, in addition to PNFR, MICNEST performs

three additional validity checks on detected peaks so as to
minimize false positives. The valid peaks should meet all of
the following requirements.
• V1: Reasonable TDoA. The TDoAs calculated by the

peak indexes should not be larger than the maximum
possible value, corresponding to the inter-microphone
distance divided by the sound speed.

• V2: Well-conditioned problem. The parameter matrix
of Eq. (4) should not be ill-conditioned. We empirically
set the threshold for the condition number to 500.

• V3: Promising index. If the current pulse is successfully
detected, we may predict the index of the next peak in-
dex to some degree. Meanwhile, the Doppler effect might
slightly bias the actual peak index8. MICNEST checks the
time interval of the predicted and detected peak. A time
interval less than vmax

c TcNt+1 is acceptable, where vmax

is the maximum drone speed.

6.4 Integration
Fig. 14 illustrates the operation of pulse search and pulse
detection. The process unfolds through three main states:

8. Recall,Eq. (9) shows that the Doppler effect expands or compresses
the received pulse, thus deviating the next peak index.

search, confirm, and detect.
Search. After initializing the necessary components, MIC-
NEST searches the audio buffer for the first 50 ms of PRN
pulses through a sliding window. In this state, the window
size and the sliding size of the audio window are set to
100 ms and 50 ms, respectively. For each correlation peak
detected within each window, we perform validity checks
V1 and V2. Note that we cannot perform V3 checks because
they require information about previously detected peaks,
which is not available at this stage. If the checks are valid,
the processes transitions to the confirm state.
Confirm. The main purpose of this state is to disambiguate
the search and detect states. The validity checks are empirical
in nature; therefore, the peaks that pass these checks are
not necessarily correct. MICNEST now performs all validity
checks V1, V2, and V3 to reduce false positives. In practice,
MICNEST may also miss one pulse during continuous pulse
detection. In this case, we give MICNEST a single chance to
detect the pulse again. We transition back to the search state
only if the pulse detection fails again. The pulse length is set
to 50 ms and the sliding size is equal to the pulse length. We
set the size of the audio window to be only slightly larger
than the pulse length, around 55 ms, since we can predict
when the target pulse arrives.
Localize. Ideally, MICNEST should be able to detect pulse
sequentially at this stage. Each peak that passes the validity
check (V1, V2, and V3) is transmitted to the drone for the
final localization. We apply here the adaptive length scheme
to tune the pulse length Nt, as seen in Eq. (23). The window
size equals the pulse length plus 5 ms. The sliding size of
the next audio window St+1 is tuned based on the detected
peak index Pt to track the next pulse, that is,

St+1 = Pt +Nt − 240. (24)

where 240 represents the number of samples for 5 ms audio.

7 EVALUATION

Our evaluation of MICNEST is composed of five parts
and entirely based on real-world experiments. Following
a description of the implementation we use and of the
experimental setting in Sec. 7.1, we report in Sec. 7.2 on the
crucial performance metrics we target: localization accuracy
and processing latency. We proceed by investigating the
influence of key system parameters in Sec. 7.3. Further,
we study in Sec. 7.4 the impact on MICNEST of external
factors, such as drone speed, background noise, and ambient
temperature. We demonstrate that MICNEST can robustly
and accurately guide the drone to the landing platform
in Sec. 7.5. We conclude in Sec. 7.6 by demonstrating MIC-
NEST’s ability to concurrently localize multiple drones.

The results we collect across a total of 60 flight hours
lead us to six key conclusions:

1) MICNEST provides a range up to 120 m and attains
cm-level accuracy as the drone approaches the platform;

2) The rate of location updates returned by MICNEST is
compatible with use in flight control loops;

3) The performance of MICNEST improves as the drone
approaches the platform, that is, where it matters the most;

4) MICNEST is marginally affected by factors it cannot
control, such as drone speed, noise, and temperature;
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Figure 16: Experimental setting. Our website [69] presents a
vivid demonstration.

5) MICNEST can navigate the drone onto the landing platform
robustly and accurately, with a success rate of at least 94%.

6) MICNEST can localize multiple drones with a limited
degradation of the localization accuracy.

The rest of this section provides experimental evidence.

7.1 Implementation and Setting
We use drone equipment and a deployment setting that
closely mimic actual applications.
Drone. As shown in Fig. 15, we use a custom drone manu-
factured by Meituan that are currently exploring the feasibil-
ity of instant deliveries with drones. The drone is equipped
with six propellers each hooked to a brushless TMotor and
is steered by the PX4 [70] flight controller, running at 400
Hz. The drone has a payload capacity up to 2.6 kg at liftoff,
which is the maximum load that local regulations allow. The
altitude is jointly estimated by an on-board barometer and
a Benewake downward-facing LIDAR.

The only additional equipment, other than what would
normally be present on any professional-grade drone, are
the speakers. They are attached to the bottom of the drone
and should be as light as possible not to negatively impact
the payload capacity. We use a VISTEON speaker weighing
a mere 47 g. The applied voltage and operating current are
12.6 V and 45 mA. According to our measurements, the
speaker draws less than 0.1% of the total battery power. The
speaker volume is empirically set to 70-75 dB SPL (measured
at 1 m distance), which is arguably moderate.
Landing platform and software. We build a squared fold-
able landing platform, shown in Fig. 16, measuring 1 m
x 1 m and 1.41 m x 1.41 m when folded or unfolded,
respectively. Four omni-directional SPK0641HT4H digital
microphones are installed at the corners. The distance be-
tween two microphones along the diagonal is 1.86 m.

We use an XMOS XU216 data acquisition board to drive
and sample the microphones, so that the four signals are
synchronized. The sampling rate is 48 KHz. The board then
streams the audio signals to a laptop via USB UAC 2.0 with
a latency lower than 0.5 ms. We use a high-pass filter with a
cutoff frequency of 500 Hz to pre-process the audio signals.

MFT is implemented in C++ with the CUDA 11.0 library,
running on a machine with an Intel i9-11900H CPU, 32 GB
memory, and an NVIDIA RTX 3070 GPU.
Ground truth. We conduct the experiments in a secluded
area on a building roof, where the reception of GPS signals
is of very high quality. We deploy an RTK base station close
to the experimental site, as shown in Fig. 16, which keeps
rebroadcasting the phase of the GPS signal it observes.

In such a setting, the RTK processing on the drone works
at high fidelity, especially because it does not experience the
performance degradation or outage problems that occur in
an operational site, for example, in a urban canyon, as men-
tioned in Sec. 2. Therefore, we use the localization results
of RTK as ground truth. We compare the performance of
MICNEST with ArUco markers [71], a state-of-the-art visual
localization system. We place an ArUco marker of 1.5 m ×
1.5 m on top of the landing platform, as shown in Fig. 16.
Flight trajectories. The drone operates automatically during
the experiments, exactly as it would in an actual application.
We use QGroundControl [72] as ground station control soft-
ware to plan the flight trajectories. In addition to a hovering
mode that keeps the drone stable at a given position, we
consider three possible flight trajectories:
• In vertical flight, the drone takes off and vertically climbs

to a given altitude; next, it lands back onto the platform
by following the same trajectory in the opposite way.

• In a squared spiral, the drone takes off vertically, climbs
to a given altitude, and flies twice along a squared spiral
trajectory at constant altitude; next, it flies horizontally
back to the starting point and lands vertically.

• In a dense squared spiral, the trajectory is the same as the
squared spiral above, yet the side length of the square is
increased by 2 m every two turns, instead of 10 m; the
drone flies for ten rounds in total, rather than two.

7.2 Accuracy and Latency
Localization accuracy is a function of several factors.
Impact of altitude. We program the drone to perform a
vertical flight up to 120 m. We plot the cumulative distri-
bution function (CDF) of the localization error, compared
to RTK that represents ground truth, at different altitude
intervals in Fig. 17(a)-(d). Note that MICNEST calculates the
horizontal coordinates of the drone at a given altitude. The
scattered plot in each figure shows all the localization biases
of MICNEST within the specified altitude interval.

When the altitude is below (above) 20 m (80 m), the
median error is 0.043 m (0.339 m). On average, the relative
error, that is, the absolute localization error over the distance
to the platform, is only 0.53%. The plots also demonstrate
that the localization error decreases as the drone approaches
the platform. This is indeed a desired characteristic for a
localization system enabling precise landing, that is, the
performance improves when it matters the most. In MICNEST,
this is due to: i) the far-field effect: when the drone flies low,
its slight movements may result in a notable fluctuation in
TDoA, whereas at higher altitudes, the TDoA fluctuations
become less and less distinguishable; and ii) signal attenua-
tion: acoustic signals experience more attenuation at longer
distances and appear to be noisier, this also explains why
there are more and more outliers as the altitude increases.
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Figure 17: Localization error compared to altitude.
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Figure 18: Heatmaps of localization error on the horizontal plane at different altitudes.

Impact of horizontal distance. We program the drone to
fly a dense square spiral. Fig. 18 shows a heatmap represen-
tation of the distribution of the localization error across the
bidimensional plane at four different altitudes.

Generally, MICNEST ’s localization error tends to de-
crease as the drone is horizontally close to the platform. It
enjoys the highest localization resolution when the drone
horizontally aligns with the center of the platform. The
reasons for this behavior are similar to the ones explaining
the performance at different altitudes, discussed above.

An interesting observation is the visible ”X” pattern in
the heatmaps, which corresponds to the higher localization
accuracy. This pattern corresponds to the two vertical bisec-
tors of the diagonal microphones. TDoA-based localization
has indeed the highest spatial resolution in these conditions.
Localization trajectory. As an example, Fig. 19(a)-(c) show
the localization results as the drone flies a squared spiral at
50 m altitude. An illustrative video is available [69].

The plots demonstrate how MICNEST and RTK suc-
cessfully localize the drone throughout the whole flight. In
contrast, the visual marker works intermittently, because it
is difficult for the camera on the drone to capture the visual
marker, especially at higher altitudes. Results at different
altitudes are nonetheless available on our website [69].

To further motivate MicNest, we evaluate the perfor-
mance of MicNest when RTK is hampered. We deliberately
destroy the signals of RTK using a GPS jamming gun in the
experiment. We program the drone to fly along a squared
spiral trajectory at an altitude of 50 m, while collecting local-
ization results from both RTK and MicNest. To simulate GPS
signal interference, we use the GPS jamming gun to simul-
taneously jam two GNSS frequency bands: 1197-1288 MHz
and 1541-1622 MHz. As shown in Fig. 20(a) and (b), during
the drone’s flight, a human operator fires the jamming gun
every 5 seconds to affect the RTK’s performance.

Fig. 21(a) shows the localization results of MicNest, and
Fig. 21(b) and (c) plot the localization results of RTK when

(a) MICNEST (b) RTK (c) Visual marker

Figure 19: Drone trajectories localized by MICNEST, RTK, and
using the visual marker. We provide an illustrative video of
this experiment as well as the results at other altitudes on our
website [69].

MicNest

GPS Jamming 

Gun

Drone

MicNest

(a) (b)
Figure 20: Using a jamming gun to hamper GPS signals.

the GPS jamming power is 12w and 31w, respectively. The
results clearly show that MicNest can localize the drone
throughout the whole flight, while, as expected, RTK works
only when the jamming gun is off. This comparison clearly
demonstrates how MicNest can supplement the deficiency
of RTK, particularly when the GPS signal quality is poor.
Latency. We measure the localization latency as the time
between the moment a PRN pulse is transmitted and the
moment the corresponding localization result is obtained.
Four components contribute to this quantity: i) the propa-
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(a) MICNEST (b) RTK (12W) (c) RTK (31W)

Figure 21: Drone trajectories localized by MICNEST, and RTK
at different jamming powers.
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gation delay, that is, the time needed for acoustic signal to
reach the microphones; ii) the transmission delay that equals
the PRN pulse length (50 ms); iii) the processing delay that is
dominated by the time for MFT to detect pulses, which we
examine later; and iv) the communication delay, that is, the
time for TDoAs to be sent back to the drone via WiFi.

Fig. 22 plots the aggregated latency of localization us-
ing MICNEST at different altitudes. As expected, the only
varying latency component is the propagation delay. Our
measurements indicate that the mean processing delay is
29.7 ms with a standard deviation of 0.6 ms, whereas the
mean WiFi delay is 11 ms. The transmission delay is also
fixed. The plot shows that the aggregated latency changes
with the distance linearly. Since the sound speed is relatively
slow, the aggregated latency is dominated by the propaga-
tion delay when the drone is far from the platform. As a
whole MICNEST can provide localization updates at a rate
more than sufficient to feed the flight control loop [3], [38].

7.3 Maximum MFT visit count

The processing delay of MFT is determined by the number
of tree paths visited while looking for the solution. The more
search paths we visit, the larger correlation value the MFT
outputs and thus the larger SNR gain the MFT yields.

We execute an experiment flying a squared spiral at 120 m
altitude. Fig. 23 plots the correlation ratio9 of MFT outputs
as a function of the maximum visit count. In comparison, the
results of a random search, that is randomly picking a tree
path that is not yet visited, are also shown. Fig. 23 shows that
when the visit count is 5000, the correlation ratio of the MFT
and if the random search is 0.92 and 0.72, respectively. In our
implementation, we set the maximum visit count of MFT to
5000, which ensures that pulse detection can be completed
in a deterministic period. The corresponding time required
for detecting a pulse is 26.5 ms.

9. For visit count Nvis, the correlation ratio is defined as the ratio
of the best correlation values of the first Nvis paths to the maximum
correlation value of the brute-force search.
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Figure 27: The localiza-
tion trajectories of multiple
drones.

7.4 Impact of External Factors

Factors that are not under the direct control of MICNEST
may influence its performance, including drone speed, back-
ground noise, and sound speed.
Drone speed. The drone flies a squared spiral at 50 m altitude
with different speeds: 2 m/s, 4 m/s, 6 m/s, and 8 m/s.

Since the whole trajectory consists of both vertical and
horizontal parts, Fig. 24 plots the localization errors in ei-
ther dimension. The error along the vertical parts appears
lower than along the horizontal ones. This is because the
drone is horizontally aligned to the center of the landing
platform during the vertical parts. Most importantly, the
plot provides evidence that the drone speed has a negligible
impact on the accuracy performance of MICNEST. In turn,
this demonstrates that the MFT can search for the correct
drone speed and compensate the Doppler effect effectively.
Background noise. We place a loudspeaker 1.5 m away
from the center of the landing platform to emulate a source
of noise. The speaker plays music continuously at a fre-
quency between 200 Hz and 3.5 kHz with two volumes: 50
dB and 65 dB. Note how the latter setting is effectively close
to the volume of the MICNEST speaker aboard the drone.
The drone flies again a squared spiral at 50 m.

Fig. 25 illustrates the performance degradation with in-
creasing noise. The mean error of the horizontal flight is
1.13 m in the case of no noise and increases to 1.73 m at
65 dB noise, which represents a case of strong background
noise. By adopting advanced noise reduction techniques, its
impact can be further mitigated [73], [74].
Sound speed. The speed of sound changes with tempera-
ture. As a rule of thumb, a 1 ◦C increase corresponds to a 0.6
m/s increase in sound speed [75]. To investigate this aspect,
we program the drone to perform a vertical flight up to 120 m
altitude. We conduct the flight when the sound speed is 342
m/s. Then we parameterize the sound speed with different
values: 336 m/s, 339 m/s, 342 m/s, 345 m/s, and 348 m/s.
Fig. 26 shows the results in localization error at different
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altitudes. The performance difference at different sounds
speeds is negligible, yet in real operations one can calibrate
the parameter of sound speed in MICNEST by measuring
the sound speed to further refine the performance.

7.5 Drone Landing
Guiding the drone onto the landing platform accurately and
robustly is the ultimate design goal of MICNEST. In this
experiment, we feed the localization results of MICNEST to
the flight controller of the drone. For each experiment, the
drone first flies to an altitude of 120 m and begins to land.
During drone landing, the flight controller is forced to rely
solely on the localization results of MICNEST to navigate the
drone onto the center of the landing platform.

We consider the landing operation as successful when-
ever the drone hits the center of the landing platform with a
maximum error of 10 cm. This is smaller than the frame
size of the drone and an acceptable margin of error for
applications, such as drone deliveries, where the drone
drops a packet after landing or performs actions that require
aligning the drone with the landing platform. We repeat this
experiment 50 times to gather statistically relevant metrics.

Fig. 28 reports the results. MICNEST navigates the drone
onto the landing platform with a success rate of 94%. Only
3 cases of failure exist, and all of them are not caused by
MICNEST. Two of them are caused by the WiFi connection
loss and one is caused by an error independent of MICNEST
operation, as the object avoidance module was mistakenly
triggered. Fig. 29 further illustrates the spatial distribution
of landing points. The average landing error is only 4.3 cm.

A demonstration video that shows the process of navi-
gating drone landing is available [69].

7.6 Localization of Multiple Drones
We conclude the evaluation by studying MICNEST’s ability
to concurrently localize multiple drones. We use two drones
A and B. Drone A flies along a squared spiral at 40 m altitude,
while drone B hovers at 20 m altitude. The two drones play
different PRN pulses.

Fig. 27 plots the localization results of the two drones.
MICNEST can detect both drones’ pulses from the collided
signal. The mean localization errors for drones A and B
are 1.77 m and 0.38 m, respectively. Below 20 m altitude,
this metric for drone A is reduced to 0.17 m, that is, where
accuracy is most important for precise landing.

Compared to the single-drone localization performance,
MICNEST performance is marginally degraded because
the presence of multiple drones adds up the degree of
background interference. Besides the countermeasures men-
tioned in Sec. 7.4 to tame background noise, one may also
improve the coding scheme of pulse and adopt an adaptive
power control scheme [76], [77], [78].

8 DISCUSSION

We elaborate next on the rationale behind some key design
decisions in MICNEST design and implementation.
Why not using inaudible or higher-frequency sounds?
The attenuation of a signal increases as the signal frequency
increases. It can be expected that a higher-frequency signal
that spans the same bandwidth as our current pulses (24
kHz) experiences much more attenuation. This would in-
herently limit the operating range of the system.
Is acoustic signal propagation a limitation? Fig. 22 shows
that the signal propagation becomes a limiting factor for la-
tency only at high altitudes. Here, the propagation delay can
be tolerated to some degree as long as it can be estimated
and reported to the navigation system [79]. As the drone
approaches the platform, that is, where the highest location
update rate is required, the contribution of signal propaga-
tion to processing latency becomes increasingly immaterial.
What about the number of microphones? Our implemen-
tation of MICNEST uses four distributed microphones. We
may further improve localization performance by deploying
more microphones and, for example, using beamforming
techniques to enhance the signal [80].
Why not using frequency-modulated continuous-wave
(FMCW) signals? FMCW signals are resistant to Doppler ef-
fect [81]. However, it is the linear Doppler effect that FMCW
can resist, not the non-linear one. In addition, FMCW signals
cannot satisfy the practical requirements we outline in the
Introduction, such as being friendly to the human ear or
resistant to impersonation attacks.
What about the performance of multi-drone localization?
There exist methods to further improve the performance
of multi-drone localization. For example, each drone may
adopt an adaptive volume strategy: reducing the volume
when the altitude decreases. Therefore, the PRN pulses
transmitted by high-altitude drones are less interfered by
the pulses of low-altitude drones. Another remedy is to
improve the orthogonality of PRN pulses.
Why not accelerating tree search using information from
drone IMU? It is the radial drone velocity with respect to the
microphones that MFT searches for, not the velocity with
respect to the Earth. Before converting the estimated veloc-
ity to the radial one, we should know the location of the
drone with respect to the microphones. This actually leads to
a “chicken-and-egg” problem: tree-search acceleration and
drone localization are a prerequisite of each other.
Can we reversely deploy microphones on the drone and
a speaker on the ground? This may be feasible, but a
practical issue is that the drone size is limited, which sets an
upper bound on the inter-microphone distance (aperture),
resulting in a lower localization resolution. In addition, the
computing resource of drones is generally not sufficient to
support real-time pulse detection.
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How does multipath effect impact MicNest? In general,
MICNEST can tolerate multipath effect as long as there is a
line-of-sight (LOS) path between the microphones and the
speaker. Thanks to the low sound speed, a slight difference
in path lengths will lead to a distinguishable time difference
of arrival. Therefore, the paths reflected from, for example,
the surrounding buildings will not overlap with the LOS
path in the time domain. Given that the LOS path is the
strongest, we can implicitly determine the LOS path by
choosing the most significant correlation peak.

9 CONCLUSION

MICNEST enables precise landing of drones using acous-
tic signals. The key enabling technologies we present are
MFT, a novel pulse detector that models the problem as
a tree search problem, and its efficient low-latency imple-
mentation. These allow MICNEST to localize a drone 120
m away with 0.53% relative localization error at 20 Hz
location update frequency. We demonstrate that MICNEST
can accurately and robustly navigate a drone onto a landing
platform with a 94 % success rate and an average landing
error of only 4.3 cm.
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