
Silent Stores in the Battery-less Internet of Things:
A Good Idea?

Weining Song*, Stefanos Kaxiras*, Luca Mottola*†, Thiemo Voigt*, Yuan Yao*
*Uppsala University; †Politecnico di Milano

weining.song@angstrom.uu.se; stefanos.kaxiras@it.uu.se; luca.mottola@angstrom.uu.se;
thiemo.voigt@angstrom.uu.se; yuan.yao@it.uu.se

Abstract
We present experimental results investigating the use of

silent stores in the battery-less Internet of Things (IoT). Silent
stores occur in a program when the value being written onto
memory exactly matches the memory content; general-purpose
computing systems exploit silent stores to improve memory
throughput. Battery-less IoT devices, on the other hand, rely
on ambient energy harvesting as the only power source. Er-
ratic energy patterns, however, cause frequent power failures,
rendering executions intermittent and thereby requiring the
use of energy-hungry non-volatile memory (NVM) to persist
program states. The question we seek to answer is whether
intermittently-computing IoT devices may reap any benefit
from silent stores – or from a related variation called tempo-
rary silent store – as a way to save energy by sparing NVM
operations. Our results point to a negative answer. Albeit in
principle we observe copious (temporary) silent stores in sta-
ple battery-less IoT benchmarks, resource limitations of IoT
devices and the features of modern NVM technology, such as
FRAM, largely neutralize their impact on the energy figures
in practice. In actual executions, for example, we measure a
mere 2.2% energy consumption improvement, on average. The
(negative) results we present here, obtained based on common
IoT architectures such as ARM Cortex M* and MSP430 mi-
crocontrollers, raise awareness on the features of battery-less
IoT devices and inform future research efforts.

Categories and Subject Descriptors
Embedded and cyber-physical systems [Embedded sys-

tems]: Embedded hardware

General Terms
Computer architecture, embedded systems

Keywords
Energy harvesting, non-volatile memory

1 Introduction
Limitations in a device physical footprint and maintenance

concerns motivate replacing traditional batteries with ambient
energy harvesting [5]. However, ambient energy is generally
erratic, causing frequent and unanticipated power failures. For
example, harvesting energy from RF transmissions to compute
a simple cyclic redundancy check (CRC) may lead to 16 power
failures over a six second period [5]. Executions thus become
intermittent, as they consist of intervals of active computation
interleaved by periods of recharging energy buffers [12].
Question. Due to resource constraints of IoT devices, energy
failures normally cause a device to lose the program state. To
ensure forward progress across energy failures, a variety of
techniques exists that make use of persistent state stored on
non-volatile memory (NVM) [12]. Persistent state is retrieved
from NVM when energy is back, so devices resume close to
the point of energy failure rather than performing a complete
reboot. However, NVM causes significant energy overhead.

Reducing memory writes on NVM is potentially one way to
abate this overhead. To do so, we investigate whether silent and
temporary silent stores may bring any benefit in intermittent
executions. Silent stores occur when the value being written
matches the exact value already stored at the same memory
location [15]. Temporary silent stores only change the value
temporarily, to subsequently return to the previous value at the
same memory location [16]. In general-purpose computing,
works exist that eliminate (temporary) silent stores to improve
memory throughput [13–16, 24].

With energy as the key performance metric and with dif-
ferent staple benchmarks, the question stands as to whether
(temporary) silent stores are beneficial also for battery-less
IoT devices that compute intermittently. Eliminating (tempo-
rary) silent stores, which avoid unnecessary write operations
on NVM, is orthogonal to many existing intermittent comput-
ing solutions and may potentially boost their performance.
Our answer. The key contribution of this paper is to provide
experimental evidence that, due to a combination of factors, the
abundance of silent stores in staple benchmarks of battery-less
IoT devices does not translate into matching energy savings.
We argue that quantifying this performance is essential to make
any solid claim on the potential applicability of silent stores
and combat a case of hindsight bias [27].

We consider common IoT architectures such as ARM Cor-
tex M* and MSP430 microcontrollers (MCUs), using a con-
figuration where program variables are mapped to NVM-based
main memory at compile time and only the register file must
be saved before an energy failure to ensure forward progress.

#store #store

Section 3

#silent stores#silent stores

Section 4.1

#silent stores#silent stores

Section 4.2

energy savingsenergy savings

Section 5

2.2%
instructions

100%

from ORACLE

45%

from store buffer
23%

Figure 1. Road-map through the paper.

Note that this configuration should, in principle, amplify the
advantages due to sparing NVM operations.

Fig. 1 qualitatively depicts the conceptual and technical pro-
cess we go through to investigate the use of silent stores in
battery-less IoT devices. After summarizing background in-
formation and related work in Sec. 2, Sec. 3 illustrates the ex-
perimental setup, benchmarks, and baselines. We observe that
store instructions abound in the benchmarks we consider. Of
the entire number of store instructions in a benchmark, make
that a 100% figure, we cannot know beforehand, however, how
many of those are (temporary) silent.

Using both static code analysis and emulation experiments,
in Sec. 4 we analyze store instructions in the benchmarks we
consider and find that, in principle, silent stores account for
nearly 45% of all store instructions. These figures, however,
do not consider that the ability to capture (temporary) silent
stores at run-time is limited by resource constraints germane to
battery-less IoT devices. For example, when using a limited-
size store buffer, only 23% of the total number of store instruc-
tions can be recognized as (temporary) silent. Hence, more
than half of the potential benefit is already shaved off.

Next, in Sec. 5 we compute the energy saving that elimi-
nating (temporary) silent stores may produce. This is the net
performance gain we are ultimately interested in. The features
of modern NVM technology, however, lead us to conclude that,
in practice, we may only obtain a mere 2.2% energy improve-
ment. This is specifically a result of the word-level addressing
that NVM technology such as FRAM offers, combined with
extremely low read/write energy costs and the symmetry in en-
ergy consumption between read and write operations.

We further discuss the key results of this paper in Sec. 6 and
finally conclude the paper in Sec. 7.

2 Background and Related Work
In this section, we provide the necessary conceptual back-

ground and briefly survey related works.
Intermittent computing. The erratic energy patterns of ambi-
ent energy harvesting motivate efforts to address the resulting
unpredictable power failures. Most existing works [12] focus
on how to make efficient use of NVM technology to persist
intermediate program states, thus ensuring forward progress.
Some solutions employ a form of checkpointing [2–4,7,20,25,
30]. This consists in replicating the application state on NVM
at specific points in the code, where it is retrieved once the
system resumes with sufficient energy. Other approaches offer
abstractions that programmers use to define and manage per-
sistent state [9,17,19,23,31], targeting platforms where a slice
of the main memory is already mapped to NVM [21, 29].

Regardless of the specific approach, modern NVM tech-
nologies, such as FRAM, tend to replace CMOS-based mem-
ory, such as Flash, due to the higher access speed and energy
efficiency [6, 13, 29]. The limited size of the FRAM chips is
usually not a problem in battery-less IoT devices, as the code-
bases are limited and data is rarely retained locally but most
often eventually transmitted to a central collection point.

Num. Access Type Addr. Value Silent?

1 Store 0x42 0x00 N/A

2 Store 0xF1 0x94 N/A

3 Load 0x42 0x00 N/A

...

9 Store 0xF1 0x94 Silent

10 Store 0x42 0x16 N/A

11 Store 0x42 0x00 Temp. Silent

Figure 2. Example of silent and temporary silent stores.

Silent stores. Lepak and Lipasti first present the concept of
silent store [15]: a store instruction that writes the exact value
already at that memory location. Later, they extend the concept
and define temporary silent stores, where a store instruction
temporarily changes the value, yet a further store instruction
restores the previous value at the same memory location [16].

Consider the example in Fig. 2. Provided no other store in-
struction exists between instruction 3 and 9 that targets address
0xF1 or 0x42, a silent store occurs at instruction 9 because
the value already at 0xF1 is overwritten with the same value.
A temporary silent store occurs at instruction 11, as the orig-
inal value 0x00 is written again in place of 0x16 that was
temporarily stored at instruction 10.

More generally, we state that a silent store S occurs at the
i+ j-th instruction in the program when

f (xn)i = f (xn+1)i+ j (1)

with f (xn)i being the value that the n-th write operation that
appears in the program as the i-th instruction stores at mem-
ory address x. This value equals the n+1-th write operation at
the same memory address x that appears as the i+ j-th instruc-
tion in the program. Note this also entails that no other store
instruction exists that operates on memory address x between
instruction i+1 and i+ j−1 in the program.

Similarly, a temporary silent store St occurs at the
i+ j+ z-th instruction in the program when

f (xn)i = f (xn+2)i+ j+z ̸= f (xn+1)i+ j (2)

that entails the i + j + z instruction in the program is the
n+ 2-th write operation to memory address x and rewrites the
same value that the n-th write operation stored, whereas an-
other (single) write operation exists in between these two that
(temporarily) writes a different value, for some j and z.
Detecting silent stores. Existing research on silent stores fo-
cuses on general-purpose systems to improve memory through-
put. Several approaches exist.

Many processors use a write-back cache to achieve higher
execution performance. Silent stores may occur when a cache
line writes back to main memory. Krishnamurthy et al. [14]
employ an additional cache besides the original one to detect
(temporary) silent stores. The additional cache acts as a mir-
ror of main memory, allowing them to save up to 50% memory
writes. When a cache eviction occurs, the evicted cache line is
compared to the additional cache first. If they match, a silent
store occurred and nothing is written to main memory. An ad-
ditional cache, however, may cause an energy overhead that a
battery-less IoT device likely cannot afford.

Similar considerations apply to approaches that inspect the
value of the memory before issuing the actual write opera-
tion [15]. Before writing a value to a memory address, the

processor reads the value stored in memory and compares it to
the value about to be written. If they are the same, a silent
store occurred and nothing is written to main memory. As
a result, every store instruction converts to a read, compare,
and possible-write operations. This yields an 11% execution
speedup in mainstream platforms [15], but likely causes an en-
ergy overhead that is not practical for battery-less IoT devices.

Silent stores may also be detected by analyzing the code at
compile time. Store instructions that may be definitely identi-
fied as silent may be removed altogether from the code, sparing
the cost of fetch, execute, and write operations. This holds the
potential of saving energy rather than causing an overhead like
the approaches above; however, the lack of run-time informa-
tion may drastically limit the ability of any static analysis to
identify the full set of (temporary) silent stores.

Finally, store buffers may be employed to detect (tempo-
rary) silent stores. Store buffers are broadly used in modern
processors to improve execution performance [11, 26]. Check-
ing the addresses and values of store instructions in the store
buffer is efficient, also in terms of energy consumption [15].
The limiting factor is the size of the store buffer, which is
comparatively limited compared to both the distance between
the store instructions possibly involved in a (temporary) silent
store, and w.r.t. the number of different addresses that store
instructions in a program may target.

The performance gains unlocked by silent stores in general-
purpose computing prompt us to investigate their applicability
in the battery-less IoT, despite the change in technology and
performance metrics, filling a gap in the existing literature.
3 Setting

We describe the experimental setup we use to obtain the
quantitative results we discuss in the rest of the paper.
Processor architectures and tools. We consider the two most
common processor architectures for battery-less IoT devices:
TI’s MSP430 and ARM Cortex M*. Both are widely used in
research prototypes [12] and real deployments [1].

We consider a 64KB main memory space in ARM Cor-
tex M* architecture and a 16KB main memory space in the
MSP430 architecture. We implement main memory with
FRAM technology, which provides state-of-the-art perfor-
mance in energy consumption and is vastly employed to sup-
port intermittent executions [2, 12, 20, 22, 30]. These architec-
tures act as baselines and originally lack the ability to eliminate
silent stores. When using store buffers, we consider the latter
implemented with SRAM technology.

Note that for the purpose of this study, we extend both archi-
tectures with features that they currently do not have; specifi-
cally, we extend the MSP430 architecture with a store buffer
and attach a FRAM-backed main memory to the Cortex M* ar-
chitecture. In modern embedded processors, store buffers typ-
ically accommodate from 1 to 4 entries. We extend the store
buffer size up to 16 entries in our experiments to investigate the
trends in the number of silent stores it can capture.

We run representative benchmarks, described next, using
the Gem5 [8] computer architecture simulator for ARM Cortex
M* processors and the MSPSim [10] instruction-level emula-
tor for MSP430 processors. To study the energy consumption
of FRAM, we take energy figures from the MSP430FR5969
datasheet [29]. We build an energy model to quantify the
energy consumption of each individual memory access on
FRAM. By integrating this model into Gem5 and MSPsim, we

Table 1. Memory operations in the benchmarks we con-
sider depending on processor architecture.

MSP430 ARM
Benchmarks Loads Stores Loads Stores

rsa 27651 3088 46351 5514
crc 22227 805 36912 2232
aes 551023 52936 247017 29970

basicmath 2454184052 300706881 95168101 10786063
fft 62713698 7781205 4476449 502436

patricia N/A N/A 82130142 9305522
sha N/A N/A 29232741 6494310

susan N/A N/A 28564838 53017

accurately calculate the total energy consumption associated
with accessing FRAM during program execution. Note how
built-in FRAM in the latter shows the same energy cost for
read and write operations [29], unlike the systems considered
in previous literature [28]. We anticipate that the symmetry
in energy cost between read and write operations is one of the
causes for the results we report in Sec. 5.
Benchmarks. We use the Mibench2 benchmark suite [18].
Mibench2 (or parts thereof) is used in a vast fraction of in-
termittent computing literature [2–4, 7, 13, 20, 22, 25, 30]. We
are particularly interested in memory operations. Tab. 1 shows
the number of memory access operations of each benchmark in
Mibench2, using either MSP430 or ARM Cortex M* processor
architectures. The numbers provide evidence of the diversity
among different benchmarks.

Note that, as in existing literature [22], we consider only five
benchmarks on the MSP430 architecture because the memory
footprints of the other benchmarks are excessive compared to
the data memory of the MSP430.
Oracle. As a baseline to compare against, we use Gem5 or
MSPSim to trace the execution of all feasible benchmarks and
examine all memory operations afterwards. Based on this in-
formation, we identify each and every (temporary) silent store,
simply by looking at what data the program writes at what
memory address, and when.

The measures we collect this way effectively represent an
ORACLE that knows exactly what (temporary) silent stores oc-
cur when, because it relies on post-facto complete knowledge
on the program execution. This performance is unattainable in
practice, but is useful as a yardstick to understand how practi-
cal solutions compare with the theoretical optimum.
4 On the Number of Silent Stores

We investigate whether (temporary) silent stores are found
in the benchmarks we consider, using the two aforementioned
processor architectures. Verifying their existence is a necessary
stepping stone to accurately identify the source of energy gains
they possibly enable, or the reason for their absence.

We split the discussion between what we observe with the
ORACLE, that is, a technique based on post-processing detailed
program traces, yet inapplicable in reality, and how a dedicated
store buffer may perform at run-time in real executions.
4.1 Theory → Oracle

Fig. 3 shows the results on the number of (temporary) silent
stores from the ORACLE. The chart demonstrates that, on aver-
age, about 40% of all store instructions are silent, and another
5% are temporary silent. The CRC benchmark appears as an

rsa cr
c

ae
s

ba
sic

m
ath fft

av
er

ga
e

MSP430

rsa crc ae
s

ba
sic

math fft

pa
tri

cia sh
a

su
sa

n

av
era

ge

ARM

0%

20%

40%

60%

80%

100%

P
er

ce
nt

ag
e

of
 a

ll
 s

il
en

t
an

d
te

m
po

ra
ry

 s
il

en
t s

to
re

s

Temporary Silent Stores Silent Stores

Figure 3. Percentage of (temporary) silent stores in
Mibench 2 on MSP430 and ARM Cortex M* architectures,
obtained with the ORACLE. On average, 40% (5%) of the
total number of store instructions are (temporary) silent.

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 60 %
2 0 %
4 0 %
6 0 %
8 0 %

1 0 0 %

Per
cen

tag
e o

f al
l si

len
t st

ore
s

S i z e o f s t o r e b u f f e r

 a e s b a s i c m a t h f f t r s a c r c

Figure 4. Percentage of all silent stores captured using a
variable size store buffer on an MSP430 processor archi-
tecture. The ability of the store buffer to detect silent stores
increases with its size. On average, a 16-entry store buffer can
capture over 59% of all silent stores.

outlier on both processor architectures. This is because CRC
is a compute-intensive benchmark and, in the worst case, every
bit of value in a CRC needs to be explicitly computed.

We observe that the number of silent stores is much higher
than the number of temporary silent stores. We conjecture that
this is because of the limited number of internal registers in
modern embedded processors. For example, there are only 12
general-purpose registers in MSP430RF* architectures and 12
to 31 general-purpose registers in ARM Cortex M* architec-
tures. When the register file is full and a load instruction ex-
ecutes without an available register, the existing value in the
register needs to write back to memory. This form of register
spilling causes a silent store without any explicit store instruc-
tion, which increases the number of silent stores overall.

The abundance of silent stores we observe prompts us to
further our study and better understand i) how many of these
silent stores may be practically captured at run-time, which we
examine next, and ii) what are the energy savings stemming
from eliminating silent stores, which we investigate in Sec. 5.
4.2 Practice → Store Buffer

Fig. 4 shows the percentage of silent stores, out of all avail-
able silent stores in a program, that can be practically captured
using a store buffer of different size on an MSP430 architec-
ture. A store buffer can capture over 75% of all silent stores in
AES and 38% on average when it has 4 entries. When the store

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 60 %
2 0 %
4 0 %
6 0 %
8 0 %

1 0 0 %

Per
cen

tag
e o

f al
l si

len
t st

ore
s

S i z e o f s t o r e b u f f e r

 s h a s u s a n c r c r s a
 b a s i c m a t h f f t p a t r i c i a a e s

Figure 5. Percentage of all silent stores captured using a
variable size store buffer on an ARM Cortex M* proces-
sor architecture. On average, the store buffer captures up to
42.9% of all silent stores when it has 16 entries. However, the
results show significant variance across different benchmarks.

buffer has 16 entries, it can, on average, capture over 59% of
all silent stores. With an MSP430 architecture, a store buffer
appears reasonably effective at capturing silent stores.

Fig. 5 demonstrates the ability of a store buffer to capture
silent stores on ARM Cortex M* processor architectures. On
average, the store buffer captures up to 42.9% of all silent
stores when it has 16 entries. In SHA, all silent stores poten-
tially existing in the code may be captured already with only
two entries in the store buffer; in AES, this figure drops to only
6.7% of all silent stores, even with 16 entries in the store buffer.
Since the experimental results show great variability, we con-
clude that the efficiency of store buffers in ARM Cortex M* ar-
chitectures is dependent on the characteristics of benchmarks.
5 On the Energy Gains of Silent Stores

Building upon the results of Sec. 4, we proceed with mea-
suring the potential energy savings enabled by silent stores.
This time, our discussion is three-pronged.

First, we analytically compute the energy saving enabled
by removing from machine code all silent stores that the OR-
ACLE identifies, as per the results of Fig. 3. This entails that
the device spares not just the energy of the actual write to
memory, but also the cost of instruction fetch and execution.
The figures we obtain this way represent a theoretical upper
bound, yet unattainable in practice. Next, we measure the en-
ergy gains in a device with an infinite-size store buffer. This
provides an intermediate point for performance evaluation: it
is also unattainable in practice, but represents a step towards
an actual run-time solution and it does account for instruction
fetch and execution. Most importantly, the infinite-size store
buffer serves to understand the gap between a run-time upper
bound and what can be practically achieved with a finite-size
store buffer, whose ability to capture silent stores is inherently
limited and whose performance we also measure.
5.1 Theory → Oracle

Fig. 6 shows the energy savings that could be achieved by
removing the silent stores identified by the ORACLE from the
machine code. On average, the ORACLE can save 7.0% of the
total energy consumption on an MSP430 architecture; whereas
it can save 8.2% of the same figure on an ARM Cortex M*
architecture. The highest energy savings is achieved when run-
ning SHA. CRC and susan show lower energy savings than

rsa crc ae
s

ba
sic

math fft

pa
tri

cia sh
a

su
sa

n

av
era

ge

ARM

0%

5%

10%

15%

20%

M
ax

im
um

 p
ot

en
ti

al
 e

ne
rg

y
sa

vi
ng

s

rsa crc ae
s

ba
sic

math fft

av
era

ge

MSP430

Figure 6. Energy savings obtained by removing from ma-
chine code all silent stores the ORACLE identifies. On aver-
age, the energy savings top at 7.0% and 8.2% on MSP430 and
ARM Cortex M* architectures, respectively.

rsa crc ae
s

ba
sic

math fft

pa
tri

cia sh
a

su
sa

n

av
era

ge

ARM

0%

5%

10%

15%

20%

M
ax

im
um

 p
ot

en
ti

al
 e

ne
rg

y
sa

vi
ng

s

rsa crc ae
s

ba
sic

math fft

av
era

ge

MSP430

Figure 7. Energy savings obtained by running the bench-
marks with an infinite-size store buffer. The energy savings
are only 3.5% and 4.1% on the MSP430 and ARM Cortex M*
architectures, respectively.

other benchmarks because susan is a memory-read-intensive
benchmark with limited register spilling, as Tab. 1 shows; CRC
includes a low number of silent stores, as per Fig. 3.
5.2 Theory → Infinite-size Store Buffer

Fig. 7 shows the energy savings obtained by running with an
infinite-size store buffer. On average, the MSP430 architecture
offers a 3.5% energy gain, whereas the ARM Cortex M* shows
a 4.1% energy gain.

Note that these numbers do not account for the energy over-
head of the store buffer itself, and yet they are already halved
compared to Fig. 6. This is expected for two reasons. The
infinite-size store buffer is structurally unlimited, so its ability
to capture silent stores eventually equals that of the ORACLE,
even though it operates at run-time rather than offline. For ex-
ample, the store buffer in an MSP430 architecture that can cap-
ture all silent stores for fft has 7776658 entries. The overhead
of such large store buffer is unacceptable in battery-less IoT
devices. However, by operating at run-time, this configuration
still pays the energy cost of instruction fetch and execution,
while only sparing the cost of the actual memory write.
5.3 Practice → Finite-size Store Buffer

We combine the results of Fig. 4 and Fig. 5 with the energy
figures of Sec. 3 and compute the energy gains that a variable
size store buffer may offer.

Fig. 8 shows the results for the MSP430 architecture. The
chart indicates that the energy savings in a practical configu-
ration are ultimately minimal: on average, a mere 2.3% of the
total energy consumption with a 16-entry store buffer. Fig. 9

r s a c r c a e s b a s i c m a t h f f t a v e r a g e0 . 0 %

2 . 5 %

5 . 0 %

7 . 5 %

1 0 . 0 %

Po
ten

tial
 en

erg
y s

avi
ngs 2 4 8

 1 6 I n f i n i t e

Figure 8. Energy savings obtained by running the bench-
marks with a variable size store buffer on an MSP430 ar-
chitecture. With a finite-size store buffer, energy savings are
further limited. On average, only a 2.3% improvement can be
achieved with a 16-entry store buffer.

r s a c r c a e s

b a s i
c m a t h f f t

p a t r
i c i a s h a s u s a

n
a v e r

a g e
0 . 0 %

2 . 5 %

5 . 0 %

7 . 5 %

1 0 . 0 %

Po
ten

tial
 en

erg
y s

avi
ngs 2 4 8

 1 6 I n f i n i t e

Figure 9. Energy savings obtained by running the bench-
marks with a variable size store buffer on an ARM Cortex
M* architecture. On average, the 16-entry store buffer saves
only 1.9% of the total energy, leading to the same conclusion
as for the MSP430 architecture.

shows the results for the ARM Cortex M* architecture. On av-
erage, only 1.9% of the energy may be saved with a 16-entry
store buffer, hence leading to the same conclusion.

Interestingly, Fig. 8 shows that only four entries in the store
buffer suffice in the AES benchmark to save as much energy as
a 16-entry store buffer, and both are close to the performance of
an infinite-size store buffer. For RSA, the trends are markedly
different: the 16-entry store buffer performs much better than
any other configuration, but is still far from the performance of
an infinite-size store buffer. This is coherent with the results
of Fig. 4, where AES is the only benchmark where a practical
store buffer can capture most silent stores.

Fig. 9 similarly shows that in SHA, the energy savings with
a 2-entry store buffer match the ones of an infinite-size store
buffer, as two entries are enough to capture all silent stores, as
shown in Fig. 5. However, the energy savings observed in other
benchmarks are quite far from the ones enabled by an infinite-
size store buffer, which is consistent with the results of Fig. 5.
The latter figure shows indeed that not even 16 entries in the
store buffer suffice to capture most silent stores.

The difference in performance across benchmarks provides
an interesting perspective on how diverse is the workload of

battery-less IoT devices. Using the MSP430 architecture, pro-
grams exist, such as AES, that are structurally designed in ways
that store instructions are sufficiently close to each other that
a small store buffer is sufficient to capture most of the silent
stores. Programs such as RSA, instead, do not show this char-
acteristic and would require large store buffers to do the same.
6 Discussion

Our work certainly has limitations. We may, for exam-
ple, investigate new compilation techniques that use different
memory layouts or register spilling techniques that increase the
availability of silent stores. Not considering the complexity of
designing these techniques, the results we obtain with the OR-
ACLE determine the upper bound. This is arguably not suffi-
ciently large to justify the massive efforts required for conceiv-
ing a dedicated compilation pipeline.

We attribute the negative results we obtain to a fundamen-
tal difference in the key performance metrics for battery-less
IoT devices, compared to general-purpose computing systems
where silent stores offer significant advantages. Indeed, the
quest for energy efficiency over any other performance im-
provement [12] has two consequences.

1. Most existing techniques to capture silent stores are in-
applicable due to the tremendous energy overhead they
would cause, as we argue in Sec. 2. The applicable tech-
niques, however, show severe limitations in their ability to
capture silent stores, as we report in Sec. 4.

2. The energy performance, word-level addressing, and sym-
metry in the energy cost of read and write operations
of modern NVM technology, such as FRAM, drastically
close the gap to the volatile counterpart. Saving memory
operations on FRAM, therefore, no longer represents such
a huge energy saving, as shown in Sec. 5.

Beyond specifically investigating the applicability of silent
stores in intermittent computing, the key contribution of this
paper is to inform future efforts. Should energy consumption
remain the chief performance metric, FRAM technology ar-
guably places upcoming research in a situation where energy
savings are to be sought elsewhere.
7 Conclusion

We investigated the applicability of silent stores in battery-
less IoT devices that compute intermittently. We demonstrated,
using common IoT architectures, that silent stores abound in
representative benchmarks, yet the energy improvements they
enable is unfortunately minimal. Resource constraints and the
features of modern NVM technology, such as FRAM, indeed
largely neutralize the potential benefits stemming from captur-
ing silent stores.
Acknowledgements. This work is supported by the Swedish
Foundation for Strategic Research (SSF).
8 References

[1] M. Afanasov et al. Battery-less zero-maintenance embedded sensing at
the mithræum of circus maximus. In International Conference on Em-
bedded Networked Sensor Systems (SENSYS), 2020.

[2] S. Ahmed et al. Efficient intermittent computing with differential check-
pointing. In International Conference on Languages, Compilers, and
Tools for Embedded Systems (LCTES), 2019.

[3] D. Balsamo et al. Hibernus: Sustaining computation during intermittent
supply for energy-harvesting systems. IEEE Embedded Systems Letters
(ESL), 2014.

[4] D. Balsamo et al. Hibernus++: a self-calibrating and adaptive sys-
tem for transiently-powered embedded devices. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems (TCAD),
2016.

[5] N. Bhatti et al. Energy harvesting and wireless transfer in sensor network
applications: Concepts and experiences. ACM Transactions on Sensor
Networks (TOSN), 2016.

[6] N. Bhatti and L. Mottola. Efficient state retention for transiently-powered
embedded sensing. In International Conference on Embedded Wireless
Systems and Networks (EWSN), 2016.

[7] N. Bhatti and L. Mottola. Harvos: Efficient code instrumentation for
transiently-powered embedded sensing. In International Conference on
Information Processing in Sensor Networks (IPSN), 2017.

[8] N. Binkert et al. The gem5 simulator. ACM SIGARCH computer archi-
tecture news, 2011.

[9] A. Colin and B. Lucia. Chain: tasks and channels for reliable inter-
mittent programs. In International Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA), 2016.

[10] J. Eriksson et al. COOJA/MSPSim: interoperability testing for wireless
sensor networks. In International Conference on Simulation Tools and
Techniques (SIMUTools), 2009.

[11] J. Hennessy and D. Patterson. Computer Architecture A Quantitative
Approach. 2017.

[12] J. Hester and J. Sorber. The future of sensing is batteryless, intermittent,
and awesome. In International Conference on Embedded Networked
Sensor Systems (SENSYS), 2017.

[13] M. Hicks. Clank: Architectural support for intermittent computation.
ACM SIGARCH Computer Architecture News, 2017.

[14] P. Krishnamurthy et al. Evaluating dusty caches on general workloads. In
International Workshop on Duplicating, Deconstructing, and Debunking
(WDDD), 2006.

[15] K. Lepak and M. Lipasti. Silent stores for free. In International Sympo-
sium on Microarchitectures (MICRO), 2000.

[16] K. Lepak and M. Lipasti. Temporally silent stores. ACM SIGARCH
Computer Architecture News, 2002.

[17] B. Lucia and B. Ransford. A simpler, safer programming and execution
model for intermittent systems. ACM SIGPLAN Notices, 2015.

[18] M. Hicks. Mibench2. https://github.com/
impedimentToProgress/MiBench2.

[19] K. Maeng, A. Colin, and B. Lucia. Alpaca: Intermittent execution with-
out checkpoints. Internatonal Conference on Programming Languages
(PACMPL), 2017.

[20] K. Maeng and B. Lucia. Adaptive dynamic checkpointing for safe effi-
cient intermittent computing. In International Symposium on Operating
Systems Design and Implementation (OSDI), 2018.

[21] A. Maioli et al. Discovering the hidden anomalies of intermittent com-
puting. In International Conference on Embedded Wireless Systems and
Networks (EWSN), 2021.

[22] A. Maioli and L. Mottola. Alfred: Virtual memory for intermittent com-
puting. In International Conference on Embedded Networked Sensor
Systems (SENSYS), 2021.

[23] A. Majid et al. Dynamic task-based intermittent execution for energy-
harvesting devices. ACM Transactions on Sensor Networks (TOSN),
2020.

[24] F. Pereira, G. Leobas, and A. Gamatié. Static prediction of silent stores.
ACM Transactions on Architecture and Code Optimization (TACO),
2018.

[25] B. Ransford, J. Sorber, and K. Fu. Mementos: System support for long-
running computation on rfid-scale devices. In International Conference
on Architectural support for Programming Languages and Operating
systems (ASPLOS), 2011.

[26] J. Shen and M. Lipasti. Modern Processor Design. 2005.
[27] D. Stahlberg, F. Eller, A. Maass, and D. Frey. We knew it all along: Hind-

sight bias. Organizational Behavior and Human Decision Processes,
63(1):46–58, 1995.

[28] A. Suresh, P. Cicotti, and L. Carrington. Evaluation of emerging mem-
ory technologies for hpc, data intensive applications. In International
Conference on Cluster Computing (CLUSTER), 2014.

[29] Texas Instruments. MSP430FR5969 Data Sheet. www.ti.com/
document-viewer/MSP430FR5969/datasheet, 2012.

[30] J. Woude and M. Hicks. Intermittent computation without hardware sup-
port or programmer intervention. In USENIX Symposium on Operating
Systems Design and Implementation (ODSI), 2016.

[31] K. Yildirim et al. Ink: Reactive kernel for tiny batteryless sensors. In In-
ternational Conference on Embedded Networked Sensor Systems (SEN-
SYS), 2018.

