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ABSTRACT

We study how tomitigate the effects of energy attacks in the battery-
less Internet of Things (IoT). Battery-less IoT devices live and die
with ambient energy, as they use energy harvesting to power their
operation. They are employed in a multitude of applications, includ-
ing safety-critical ones such as biomedical implants. Due to scarce
energy intakes and limited energy buffers, their executions become
intermittent, alternating periods of active operation with periods
of recharging their energy buffers. Experimental evidence exists
that shows how controlling ambient energy allows an attacker to
steer a device execution in unintended ways: energy provisioning
effectively becomes an attack vector. We design, implement, and
evaluate a mitigation system for energy attacks. By taking into
account the specific application requirements and the output of
an attack detection module, we tune task execution rates and op-
timize energy management. This ensures continued application
execution in the event of an energy attack. When a device is under
attack, our solution ensures the execution of 23.3% additional appli-
cation cycles compared to the baselines we consider and increases
task schedulability by at least 21%, while enabling a 34% higher
peripheral availability.

CCS CONCEPTS

• Security and privacy → Embedded systems security; Denial-
of-service attacks; • Computer systems organization → Sensor

networks.
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Figure 1: Example intermittent execution. Periods of active

computation and periods of charging the energy buffer alternate.

1 INTRODUCTION

Ambient energy harvesting allows Internet of Things (IoT) devices
to eliminate their dependency on traditional batteries [10]. This
enables drastic reductions of maintenance costs and previously
unattainable deployments, for example, due to the reduction of a
device’s footprint. Several battery-less IoT deployments exist, even
in safety-critical settings such as biomedical implants [1, 14, 15, 19,
26, 52] and using a variety of energy sources [10].

Energy harvested from the environment, however, is highly vari-
able in time [10], yet energy buffers, such as capacitors, need to be
miniaturized as well, as they often represent a dominating factor in
size. This trait clashes with the push to realize tiny devices enabling
pervasive deployments. System shutdowns due to energy depletion
are thus difficult to avoid and executions becomes intermittent [25]:
periods of active execution and periods of energy harvesting come
to be unpredictably interleaved.
Computing intermittently. Fig. 1 shows an example execution.
The ambient charges the onboard capacitor until a voltage threshold
𝑉on is reached that causes the device to power on. The device starts
sensing, computing, and communicating as long as the capacitor
charge remains above a threshold 𝑉

off
.

Using existing energy harvesting techniques and resource-con-
strained IoT platforms, such as TI MSP430 MCUs, the net energy
balance during active execution is systematically negative, so the
device rapidly reaches𝑉

off
. When this happens, the device switches

off, waiting for the capacitor to reach again the power-on thresh-
old 𝑉on. This intermittent execution may occur on tiny time scales;
computing simple error correction codes on a battery-less IoT device
powered through radio-frequency energy harvesting may require
as many as 16 energy cycles [11].

Using resource-constrained IoT devices, applications run on bare
hardware with no operating system support [25]. When the device
powers off upon reaching 𝑉

off
, the system state would normally

be lost and the device would completely reboot the next time it
reaches 𝑉on. To address this issue, intermittently-computing IoT
systems employ ad-hoc techniques [2, 8, 9, 11, 16, 31, 39–42, 44, 50,
51, 59, 60] to create and maintain persistent state on non-volatile
memory (NVM). These systems operate as the device approaches
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𝑉
off

, allowing systems to retain the application state across energy
failures. NVM operations, however, are extremely energy hungry
and impose a significant energy overhead [43].

Experimental evidence exists that shows how intermittently-
computing IoT devices are vulnerable to energy attacks [45], that
is, energy harvesting can be used as an attack vector. Exerting
simple control on how the ambient provisions energy allows an
adversary to create situations of livelock, priority inversion, and
denial of service, without requiring physical access to the devices.
The simplest scenario may consist, for example, in the attacker
physically blocking the radiation arriving at a solar panel that
powers the IoT device, eventually impeding forward progress, yet
existing literature demonstrates more subtle setups [45].
Contribution and road-map.We tackle the problem ofmitigating

the impact of energy attacks on system performance. One option
is to design countermeasures that apply to specific attacks. For
example, when an energy attack is meant to cause a livelock, one
may keep track of the number of restarts from a specific point in
the code and suspend the operation for a given time period if this
quantity exceeds a threshold.

We take a different stand here. We develop a generic abstraction
and support run-time, called Energy Attack Mitigation (EAM), that
applies independent of the specific energy attack. We consider a
task-based multi-capacitor architecture, further described in Sec. 2,
given its use in battery-less IoT deployments [1, 17, 19]. Using EAM,
as illustrated in Sec. 3, programmers specify different application
profiles that map task execution rates to different system states.
When an on-device attack detection system reports the occurrence
of an energy attack [45], EAM intelligently throttles task execu-
tion rates and accordingly orchestrates the charging of different
capacitors, reducing energy consumption in an attempt to retain
a minimum programmer-specified. It resumes normal operation
once the attack is (expected to be) over. EAM consists of the energy
manager, task scheduler/peripheral control, and application man-
ager functional blocks that are implemented in software and run
on-board the IoT device MCU.

Our evaluation, reported in Sec. 4, uses a mixture of numerical
simulations and emulation experiments to compare EAM against
two state-of-the-art baselines, using real-world energy traces. We
evaluate the run-time energy consumption overhead associated
with the on-board execution of the EAM solution. A single execu-
tion of EAM has negligible overhead, requiring less than 2 nJ energy
and taking less than 1.5 𝜇sec. The results indicate that EAM ensures
the execution of 23.3% additional application cycles compared to
the baselines we consider and increases task schedulability by at
least 21%, while enabling a 34% higher component availability.

2 BACKGROUND AND RELATEDWORK

The security literature for battery-powered IoT systems is extensive.
Resource-constraints generally make it difficult to apply standard
security mechanisms [57]; further, battery-powered IoT devices
enables peculiar attacks, for example, in an attempt to drain batter-
ies [35, 48]. To save energy, they feature low-power radios, which
makes them vulnerable to denial of service attacks, for example, due
to intentional jamming [32]. Specialized network stacks are also
necessary for multi-hop operation, which are vulnerable to new
kinds of attacks. System characteristics motivate new techniques

for attack detection and mitigation ranging from hardware-based
solutions [49] to techniques employing machine learning [18, 56].

Solutions for battery-powered IoT systems, unfortunately, falls
short of expectations in the case of battery-less IoT devices. Energy
constraints are waymore severe compared to their battery-powered
counterpart. Limited form factors impose restrictions on the har-
vesting unit, limiting power supply to tens of𝑚𝑊 [14, 21, 30, 52].
This creates a demand-supply gap. Systems use tiny energy buffers,
such as capacitors, to tame fluctuations of energy intake and for
performing operations whose power consumption exceeds the max-
imum harvesting capabilities. Moreover, the intermittent execution
pattern adds a new dimension to the problem [25], as periods of ac-
tive operation are interspersed with periods for recharging energy
buffers, while the rest of the system is quiescent.
Architectures. Fig. 3 depicts the prevailing architecture for intermit-
tently-computing IoT devices, as seen in both available platforms [24,
30] and concrete deployments [14, 21]. A mixed-volatile MCU [28]
relies on multiple capacitors [17, 23] to tame fluctuations of energy
intake and for performing operations whose power consumption ex-
ceeds the maximum harvesting capabilities. The multiple capacitors
allow the system to strike a better trade-off between charging times
and available energy. Smaller capacitors are the first to reach 𝑉𝑜𝑛 ;
as this happens, tasks that consume little energy, such as probing
low-power sensors, are immediately executed. Bigger capacitors
take longer to reach 𝑉𝑜𝑛 ; their energy is eventually consumed by
energy-hungry tasks, such as radio operations. A dedicated en-
ergy management module governs the charging of the multiple
capacitors based on energy intake and task demands.

Intermittently-computing IoT devices employ techniques such
as checkpointing [2, 8, 9, 11, 31, 41, 42, 50, 59] or task-based pro-
gramming abstractions [16, 39, 44, 51, 54, 60] to deal with energy
failures. The former consist in replicating the application state on
NVM, where it is retrieved back once the system resumes with
sufficient energy. The latter offer abstractions to define and manage
persistent state, while taking care of data consistency in case of
repeated executions of non-idempotent code [59].

We adopt a task-based programmingmodel and amulti-capacitor
architecture as their combination is demonstrated to be effective in
real-world deployments [1, 17, 19]. Crucially, they also offer ample
opportunities to intelligently manage energy when the system is
under attack, as illustrated in Sec. 3.
Resource management. Orthogonal to the use of multi-capacitor
architectures, several techniques exist to manage energy in battery-
less IoT devices. Dynamic voltage scaling (DVS) is one such tech-
nique that maintains the required performance level by adjusting
the system supply voltage to a suitable minimum [61]. Dynamic fre-
quency scaling (DFS), differently, meets the required performance
by modulating the system clock frequency [13]. Dynamic voltage
and frequency scaling (DVFS) combines the two [4, 6]; custom de-
signs of DVFS exist especially for intermittently-computing devices.

Software-basedmaximumpower point (MPP) tracking can achieve
further energy gains. It can adapt the power consumption of the
system that is operating at an efficient operating voltage and maxi-
mizing forward application execution without adding any external
tracking or control units [7, 20]. Custom MPP designs also exist
for specific energy sources. In the case of kinetic energy [55], for
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Figure 2: Tasks in example applications: (a) HVAC system,

(b) greenhouse irrigation system, and (c) controlled room

ventilation. Tasks represent individual units of processing and run

with transactional semantics. The exchange data through non-volatile

data queues subject to timing requirements.

example, voltage-current characteristics of the energy transducer
are used to find the optimal operating point, dynamically [53].

Energy scarcity also makes the real-time task scheduling diffi-
cult [29, 33, 52]. Schedulability may be improved by dynamically
scheduling the computational and energy-harvesting tasks [29].
This essentially means co-designing scheduling and energy man-
agement, which is demonstrate to be particularly effective in multi-
capacitor architectures [23, 29]. This is precisely what we do in
this work, yet with a different goal compared to existing literature.
Instead of generally improving schedulability, we aim to reach a
minimum programmer-specified task execution rate agains widely
varying energy intakes, possibly affected by energy attacks.
Security. Compared to battery-powered IoT devices, the security
issues in battery-less IoT devices drastically change, largely making
the area uncharted territory.

The few existing solutions focus on securing persistent state.
Krishnan et al. [36] present an attack model for unsecured and
cryptographically secured checkpoints. Asad et al. [5] present an ex-
perimental evaluation on the use of different encryption algorithms
and ARMTrustZone. Krishnan et al. [38] build on this and propose a
configurable checkpoint security setting that leverages application
properties to reduce overhead. Ghodsi et al. [22] use lightweight
algorithms [12] for securing checkpoints. Valea et al. [58] propose a
SECure Context Saving (SECCS) hardware module inside the MCU,
whereas Khrishnan et al. [37] apply Authenticated Encryption with
Associated Data (AEAD) to protect checkpointing data.

Experimental evidence of energy attacks and corresponding vul-
nerabilities exists [45], wheremachine learning is applied to develop
a generic attack detection module. This work tackles the comple-
mentary problem, that is, to mitigate the effects of an energy attack
on system performance once the attack is detected.

3 DESIGN

We use three paradigmatic applications as running examples, de-
scribed in Sec. 3.1, along with the programming model we use to
encode their logic. Sec. 3.2 describes the architecture of an EAM-
enabled system and its run-time operation.

3.1 Applications and Programming Model

We use a programming model that naturally maps to embedded
sensing applications [34] and is based on well-established IoT pro-
gramming concepts [46, 47]. Using this model, we consider three
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Figure 3: Hardware/software device architecture when using

EAM. EAM takes as input the output of the attack detection module,

the 𝑉𝑛 (𝑡), 𝐼𝑛 (𝑡) signals from the energy harvester, the current capaci-

tor charge, and the application specification M.

example applications, graphically illustrated in Fig. 2, correspond-
ing to concrete deployments of battery-less IoT systems [1, 14, 24].

The application logic is split in individual tasks, shown as boxes
in Fig. 2, which represent independent units of processing that exe-
cute asynchronously with respect to each other. Tasks have inputs
and outputs, represented in Fig. 2 with links between the tasks,
with attached timing requirements. For example, task temperature

sensing in Fig. 2(a) must provide a new temperature reading to the
decision task at least once every five minutes. Differently, task hu-

midity sensing in Fig. 2(b) must provide a new humidity reading
to the decision task at least once every 30 minutes, but no more
frequently than once every five minutes [23–25].

Tasks exchange data through non-volatile data queues, which of-
fer a way to persist state in case of an energy failure. Tasks run with
transactional semantics; if they are interrupted by an energy failure
before producing an output, no intermediate result is persisted and
the task restarts from the beginning [2, 16, 39, 40, 60]. When a data
item flows through the entire task pipeline from start to end, we
say the application has completed an execution. The application ex-
ecution rate, that is, the number of times an application completes
an execution in the unit of time, is the primary performance metric
we discuss in Sec. 4.

3.2 Architecture and Run-time

Parameter Value

Supported profiles Short attack (SA), long attack (LA), normal (NML),
low power (LP), critical (CTL)

Task set {Tasks}
Task rate Profile: {Tasks (Rate)}
Task dependency {Finish-to-start Task Lists}

Figure 4: Application specification M. It includes information

on the profiles supported by an application, the task set, their rate

requirements, and their dependencies.

Parameter Symbol

Attack ongoing 𝑎𝑜

Attack ongoing accuracy 𝑎𝑜𝑎

Elapsed time 𝑎𝑒𝑡

Remaining time 𝑎𝑟𝑡

Figure 5: Energy attack parameters in information set A. The
information returned by the attack detection module as used by EAM

to adapt the application behavior during an attack.
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Symbol Definition

𝜌 Application profile
𝛼 Maximum 𝑎𝑟𝑡 corresponding to SA

𝐸, 𝐸𝑖 Available energy and energy stored in buffer 𝑖
Ω0,Ω1 Maximum 𝐸 for CTL and LP profiles, resp.
𝜏,T, 𝜏𝑒 Task, task set, and current execution task

R(𝜏 ), S(𝜏 ) Task-rate and Task-state of 𝜏 , resp.
𝜖 (𝜏 ), B(𝜏 ) Energy required and energy-buffer used to execute 𝜏

𝜆𝜏 Energy proportion stored in B(𝜏 ) for blocked, suspended 𝜏
Λ𝜏 ,Λ𝜏 > 𝜆𝜏 Energy proportion stored in B(𝜏 ) for ready, running 𝜏

Figure 6: Notation. The EAM parameter symbols and corresponding

definitions are summarized here.

Fig. 3 illustrates the hardware/software architecture of an EAM-
enabled system. EAM takes as input a specification M of the ap-
plication behavior, illustrated in Fig. 4. This specification includes
information on what system profile is supported by the application
among five possible options we discuss next. It also specifies the
application’s task set, along with their minimum and maximum
required execution rates for each supported profile and their de-
pendencies. The latter is essentially an encoding of the information
graphically represented in Fig. 2.

The five available system profiles allow programmers to tune an
application’s behavior depending on the situation. Profile normal

(NML) indicates regular operation. Profile low-power (LP) repre-
sents a general situation of energy scarcity, yet the application may
still continue the execution, whereas profile critical (CTL) repre-
sents a situation where the system may fail to achieve progress
due to extreme energy scarcity. None of these situations, however,
necessarily indicates that an adversary is manipulating the energy
supplies. These situations are represented by profile short attack
(SA) and long attack (LA), depending on the expected attack dura-
tion. We indicate with 𝜌 what system profile is currently active.

The adversary manipulates the energy signal 𝑉𝑎 (𝑡) at time 𝑡

and affects the voltage and current 𝑉𝑛 (𝑡), 𝐼𝑛 (𝑡) supplied to the
intermittently-computing IoT device. The attack detection module,
shown in Fig. 3 may realize an attack is occurring and alert EAM
by passing an information set A about the attack, along with the
manipulated𝑉𝑛 (𝑡), 𝐼𝑛 (𝑡) signals. The information we expect to find
in A is in Fig. 5. Quantity 𝑎𝑜 is a binary flag indicating whether an
attack is ongoing, whereas quantity 𝑎𝑜𝑎 indicates how reliable is
the information provided by the attack detector. Quantity 𝑎𝑒𝑡 and
𝑎𝑟𝑡 respectively indicate when the attack detector thinks the attack
started, and for how long it is expected to continue; these quantities
are useful to determine whether profile SA or LA better represent
the current situation. Existing attack detectors can provide this in-
formation accurately [45]. We consider that the harvester receives
no energy during the the long and short energy attack, that is,
during an ongoing energy attack (𝑎𝑜 = 1) at time 𝑡 ′, 𝑉𝑛 (𝑡 ′) = 0.

In Fig. 3, boxes in light blue are the modules we add to a regular
configuration. We describe their functioning next.
Application manager. The application manager module governs
the application execution depending on the active system profile,
based on the application specification M. It does so by periodically
probing the energy buffer to estimate the available energy 𝐸 and
by monitoring the information set A about possible attacks.
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Figure 7: Transition diagrams for: (a) system profile and (b)

task state. System profiles model configurations that EAM enforces

depending on the situation, for example, in case of an energy attack.

Fig. 7(a) shows the transition diagram for system profile. The
application manager selects the system profile based on available
energy 𝐸 and the energy attack parameter 𝑎𝑟𝑡 . When an attack is
ongoing, that is, as long as 𝑎𝑜 = 1, if the remaining time of the
attack is greater than a configuration parameter 𝛼 , that is, 𝑎𝑟𝑡 ≥ 𝛼 ,
then the LA profile is selected; or else the SA is selected. The energy
level thresholds Ω0 and Ω1, Ω1 > Ω0, are used to select between
the NML, LP, and CTL profiles. When the attack is not ongoing,
that is, as long as 𝑎𝑜 = 0, if 𝐸 > Ω1 then the application manager
selects the NML profile; or else if 𝐸 < Ω0 then the CTL profile is
selected. If none of these applies, the LP profile is selected. The
system state, including energy level and energy attack information,
is periodically updated and profile selection happens based on the
system current state.
Energymanager.We consider a multi-capacitor energy storage ar-
chitecture [23], which allows the system to strike an efficient trade-
off between charging times and energy efficiency. The lightweight
tasks consume energy from the smaller capacitors that charge more
quickly, whereas more energy-intensive tasks are executed using
the energy stored in the larger capacitors [17].

We consider a parallel resistor-capacitor circuit with the equiv-
alent storage capacitor, 𝐶𝑖 in parallel to the resistor equivalent to
the rest of the circuit, 𝑅𝑝 . Hence the voltage of the capacitor, 𝐶𝑖 at
time instance 𝑡 , during charging, is given as:

𝑉𝑖 (𝑡) =
√︂
𝑃 (𝑡) · 𝑅𝑝 − 𝑒

−2𝑡
𝐶𝑖 ·𝑅𝑝 ·

(
𝑃 · 𝑅𝑝 −𝑉 2

0

)
(1)

where 𝑉0 is the capacitor voltage at 𝑡 = 0 and 𝑃 (𝑡) is the power
from the energy source at time 𝑡 . The energy buffer, B(𝜏) ∈ N,
B(𝜏) ≤ 𝑚 is the capacitor that supports execution of task 𝜏 .

The energy manager module in Fig. 3 directs the incoming en-
ergy towards different capacitors depending on the task energy
requirements in the different system profiles. It stores energy pro-
portionally in the capacitors that sustain the operation of tasks
that are ready to execute, that is, they have data in their input
queues, and are closer to the deadline indicated in the application
specification. This means that the energy manager dynamically
changes the amount of energy going towards different capacitors
depending on the instantaneous system needs. This is achieved
by periodically checking the state of all tasks, the corresponding
timing requirements given the active system profile, and the current
energy content of all capacitors.
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suspended in the mean time and its capacitor does not charge until

the attack is over and the system transitions back to NLM.

Task scheduler and peripheral control.We co-design task sched-
uling with energy management. Tasks may be in one of the four
states of Fig. 7(b). Tasks are ready when there is data in their in-
coming queues. One of them is selected for execution using a form
of real-time periodic task scheduling (RTS) [33], subject to suffi-
cient energy availability in the corresponding capacitor. This means
that a task that is ready to execute, but has no sufficient energy to
complete, is deferred until sufficient energy is available.

Tasks are set to be in a blocked state if they depend on another
task that is yet to be executed, that is, they consume its output.
Suspended tasks are those waiting for low-level I/O operations to
complete, for example, obtaining a sensor reading, or are waiting
for sufficient energy to start the execution.
Example. Fig. 8 shows a timing diagram for an example applica-
tion that has two tasks, 𝑇1 (light weight) and 𝑇2 (energy-intensive),
that are executed using the energy stored in capacitors 𝐶1 and 𝐶2,
respectively. Here, 𝐶1 < 𝐶2, thus 𝐶1 has shorter charging and dis-
charging times as compared to 𝐶2. Task 𝑇2 depends on the input
from𝑇1 and can only execute after completion of𝑇1. The capacitors
are charged proportionally with input power based on the state of
the tasks that each supports. A higher proportion of power is used
to charge the capacitor that must support a ready task.

Initially, the profile is set to NML. A short attack happens from
𝑡1 to 𝑡2 and the energy available for charging the capacitors greatly
reduces during this time. When the energy attack starts at 𝑡1, the
profile is set to SA. During the energy attack, the tasks are executed
as many times as possible while maintaining dependency using the
remaining energy in the capacitors until they both fall below the
threshold. When the energy attack ends at time 𝑡2, the capacitors
start charging proportionally based on the task state. As soon as
the voltage in 𝐶1 reaches 𝑉𝑜𝑛 , EAM is executed and the profile is
set back to NML and the periodic execution of the tasks resumes.
Energy attack mitigation algorithm. Algorithm 1 shows EAM’s
operation through psuedocode. The inputs include the applica-
tion specification M and energy attack parameters A. The outputs
include the system profile 𝜌 , task states S, and energy stored in
capacitors 𝐸𝑖 , 1 ≤ 𝑖 ≤ 𝑚. EAM includes three core functionality,
operating as follows.

• Function AppTaskManager implements the application man-

ager. It selects the system profile 𝜌 based on the available
energy and energy attack parameters 𝑎𝑜 and 𝑎𝑟𝑡 . Thereafter,
it creates the task set T and assigns the task rate R(𝜏),∀𝜏 ∈ T
using the profile-specific application specification (M).

• Function TaskScheduler implements task scheduling and

peripheral control. It sets the task state S(𝜏) as ready if there is
sufficient energy in the buffer B(𝜏) to support the execution
of task 𝜏 . In the event of an energy attack, a task state is set
to ready if the remaining time of the attack is estimated to
be greater than the task execution time, that is, 𝑎𝑟𝑡 > 1/R(𝜏)
while the capacitor supporting its execution has sufficient
energy. Otherwise the task state is set to blocked. A ready
task is selected to be the current execution task 𝜏𝑒 when its
supporting capacitor has sufficient stored energy.

• Function FederatedHarvesting implements the energyman-

ager. It proportionally stores the harvested energy in sepa-
rate capacitors based on the state of the task it supports. If
the task 𝜏 is ready then a higher proportion of energy Λ𝜏 is
stored in the corresponding buffer, else a lower proportion
of energy 𝜆𝜏 is stored.

4 EVALUATION

We illustrate the experimental setup in Sec. 4.1 and split the dis-
cussion of the results in three parts. In Sec. 4.2, we investigate the
improvement enabled by EAM in the application execution rate, that
is, the number of times an application manages to complete the data
pipeline. Next, in Sec. 4.3, we study the task scheduling behavior
to gain a deeper understanding of how EAM enables the improve-
ments in application execution rate, and conclude the discussion
with an analysis of the run-time energy overhead imposed by EAM.
4.1 Setting

We use the application in Fig. 2(a) to experimentally measure the
performance of EAM and of the baselines. This is the most chal-
lenging case in Fig. 2, especially in terms of task execution rates.
We describe next the metrics we use to evaluate EAM performance,
along with the baselines we compare with and the tools we use.
Metrics. We consider five performance metrics

• The application execution rate is the number of times per
time unit an application completes the data pipeline, while
meeting all task dependencies. This is a function of the in-
dividual task execution rates, indicated in the application
specificationM depending on the current system profile, and
of the way the system manages available resources.

• The task schedulability measures the percentage of time that
tasks in the system have sufficient resources to execute: in
our specific setting, this means that the capacitor(s) in the
system store sufficient energy for the task to execute and
produce the corresponding output.

• The component availability is the percentage of time that
the MCU (for computation) or the attached peripherals (for
sensing, wireless transmissions, or actuation) have sufficient
resources to execute. This metric essentially represents the
hardware counterpart of the task schedulability figure.

• The time and energy overhead is the time or energy spent
for running the given scheduling technique, which essen-
tially measures how much time or energy is subtracted from
application processing to manage system resources.
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Algorithm 1: EAM: Energy-attack Mitigation
Input: A, M
AppTaskManager(A,M):

1) Select profile 𝜌 :

if 𝑎𝑜 = 1 then
if 𝑎𝑟𝑡 > 𝛼 then 𝜌 = LA;
else 𝜌 = SA;

else

if 𝜔𝑜 < 𝐸 ≤ 𝜔1 then 𝜌 = LP;
else if 𝐸 < 𝜔0 then 𝜌 = CTL;
else 𝜌 = NML;

2) Select task set:

Include task 𝜏 in task set T ifM(𝜏, 𝜌 ) > 0
3) Assign task rate: R(𝜏 ) = M(𝜏, 𝜌 )

return 𝜌 , T, R
TaskScheduler(𝜌 , T, R, A):

1) Set task state (when there is no energy attack):

for each task 𝜏 ∈ T do

if ((𝐸B(𝜏 ) ≥ 𝜀 (𝜏 )) and (𝜏 = 1 or S(𝜏 − 1) =‘running’))
then set S(𝜏 ) =‘ready’;
else set S(𝜏 ) =‘blocked’;

2) Defer/ execute task in event of energy attack, 𝑎𝑜 = 1:
for each task 𝜏 ∈ T do

if 𝑎𝑟𝑡 > (1/𝑅 (𝜏 ) ) and 𝐸B(𝜏 ) > 𝜀 (𝜏 ) then
set S(𝜏 ) =‘ready’;

else set S(𝜏 ) =‘blocked’;
3) Execution task 𝜏𝑒 from the task set T:

for each task 𝜏 ∈ T do

if S(𝜏 ) =‘ready’ and 𝐸B(𝜏 ) ≥ 𝜀 (𝜏 ) then
Set 𝜏𝑒 = 𝜏

Set S(𝜏 ) =‘running’
Remove 𝜏 from T

return S, 𝜏𝑒
FederatedHarvesting(𝜌 , T, R, S):

1) Proportion of harvested energy to buffers

for each buffer 𝑖 = 1 to𝑚 do

for each 𝜏 ∈ T do

if S(𝜏 ) =‘ready’ or ‘running’ then
Set 𝐸B(𝜏 ) = Λ𝜏 · 𝐸;

else Set 𝐸B(𝜏 ) = 𝜆𝜏 · 𝐸;

return 𝐸𝑖 (𝑛)
Output: 𝜌, S, 𝐸𝑖 , 1 ≤ 𝑖 ≤ 𝑚

The application execution rate represents the primary metric, be-
cause it measures the level of service provided to end users. Ideally,
the scheduler should at least meet the application specification M,
while any other improvement is welcome as it indicates the system
operates above the minimum requirement. The other metrics, but
the run-time energy overhead, are instrumental to understand the
trends we observe in application execution rate. For example, a
higher execution rate should be enabled by higher task schedulabil-
ity and/or component availability. The run-time energy overhead
is the cost we pay for managing system resources in a given way.
Measuring this quantity is necessary to weigh the possible improve-
ments in application execution rate against the needed energy cost.
Baselines and tools. We compare EAM with federated energy
harvesting (FH) [24] and a centralized architecture (Central) [23].
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Figure 9: Application execution rate for (a) outdoor and (b)

indoor traces using EAM, FH, or Central.

Both use the same real-time energy-aware periodic task scheduling
(RTS) [33, 52] as EAM. FH is a multi-capacitor architecture that
statically directs incoming energy to the multiple capacitors, in a
way proportional to capacitor size. This means it does not take into
account possibly varying task execution rates. FH uses the same
number and type of capacitors we use in EAM. Comparing with FH
allows us to measure the gains enabled by making the scheduler
aware of changing application requirements, based on the currently
active system profile. The Central baseline, instead, allows us to
study the benefits brought by combining a multi-capacitor architec-
ture with application-aware energy management and scheduling.

To obtain quantitative results, we use a combination of numerical
simulations and emulation. We use Matlab to evaluate the perfor-
mance of EAM and the baselines in application execution rate, task
schedulability, component availability, and component availability
latency. We implement accurate models of energy harvesting and
energy consumption, based on the operation of a staple MSP430-
based intermittent computing platform [24]. We compute the run-
time energy overhead using MSPSim, which provides time-accurate
emulation of binary code for the MSP430 platform, considering a
3V capacitor supply as in existing literature [3].

We feed the numerical models with real-world energy traces.
The traces are time series obtained from the actual output volt-
age across a 30kΩ resistor in a solar harvesting system using a
monocrystalline high-efficiency solar panel that is partly stationary
and partly moving, and operates indoor or outdoors [3]. To investi-
gate the performance during an attack, we also emulate different
types of energy attacks, either short- or long-term, by completely
zeroing the input voltage trace for a variable time period [45].

4.2 Application Execution Rate

Fig. 9 shows an example trace across a few minutes of execution
demonstrating how the application execution rate enabled by EAM
is systematically higher than the baselines we consider. This obser-
vation applies to both traces. The plot also demonstrates how EAM
can capture energy fluctuations more effectively than the baselines.
For example, at 2 and 4 minutes in Fig. 9(a), the system ends up
with an excess of energy and the application execution rate en-
abled by all solutions accordingly increases. However, the relative
improvement is much higher for EAM than for the baselines.

Fig. 10 provides a closer look at the system behavior in case of
the scenarios that correspond to the supported application profiles

 

40



Application-aware Energy Attack Mitigation
in the Battery-less Internet of Things MobiWac ’23, October 30-November 3 2023, Montreal, QC, Canada

Figure 10: Application execution rate and active system profile.
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Figure 11: Application execution rate in case of an energy

attack for (a) outdoor and (b) indoor traces.

including a short and a long energy attack. The application exe-
cution rate enabled by EAM is higher than the baselines in the
absence of an energy attack. At time 11175 sec (186.25 min) a short
attack begins and EAM maintains a higher application execution
rate, resuming normal operation right after the attack is over and
maintaining better performance than the baselines throughout. The
same observation applies at time 11268 sec (187.81 min) when a
long attack occurs.

Most importantly, Fig. 11 plots the application execution rate
when we emulate an energy attack of variable duration at a random
point in the energy trace, which is the same for EAM and the base-
lines. As expected, the performance degrades with longer energy
attacks, in that the energy budget available for system operation
accordingly reduces. However, EAM shows better and more robust
performance: the gains over the baselines are retained regardless of
the duration of the energy attack. As before, this observation applies
to both traces, demonstrating the generality of the conclusion.

As Fig. 9 and Fig. 10 demonstrate that EAM performs better than
the baselines already in the absence of an attack, onemay conjecture
that the better resilience to energy attacks shown in Fig. 11 is not
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Figure 12: Application execution rate when an attack com-

mences and all solutions have the same energy budget for (a)

outdoor and (b) indoor traces.
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Figure 13: Task schedulability depending with variable en-

ergy attack duration for (a-b) outdoor and (c-d) indoor traces.

due to EAM’s design, but comes from an energy excess gained
beforehand that is eventually spent during the attack. To investigate
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Figure 14: Component availability using outdoor trace.
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Figure 15: Component availability using indoor trace.

this specific aspect, we run experiments where both EAM and the
baselines are given the same energy budget right before the attack
commences, hence nullifying any energy excess that EAM may
accumulate beforehand. Fig. 12 shows the results. Even when EAM
is given the same initial energy budget than the baselines and
an attack commences, EAM enables up to twice the application
execution rate compared to the baselines.

4.3 Scheduling

The better performance in application execution rate comes from
better resource management, which leads to more efficient task
scheduling. Fig. 13 depicts the results we obtain in task schedula-
bility, as a function of the type of task being scheduled, the attack
duration, and the energy trace. Regardless of the setting, EAM con-
stantly ensures higher schedulability for both types of tasks and
for both traces. The result is thus arguably general.

Fig. 14 and Fig. 15 report the component availability of EAM and
the baselines in the first few minutes of a sample execution and

Task Duration Energy

Sensing 12.030 msec 19.066 𝜇J
Decision 10.182 msec 15.731 𝜇J
Control 60.150 msec 92.931 𝜇J

Figure 16: Energy cost of application tasks.

overall, for either energy trace. Using outdoor trace, we observe
that FH yields a higher availability for the MCU than Central, yet
a lower availability for the peripherals necessary for actuation.
The situation is different in indoor trace, where FH improves the
availability of both compared to Central. Regardless of the Trace,
EAM yields higher component availability than any other baseline.

We use MSPSim to ascertain the energy consumption overhead
due to EAM, compared to the energy cost of running the actual
application logic. A single execution of EAM requires 1.781 nJ and
takes 1.237 𝜇sec. The energy cost and execution time of a single
application execution is reported in Fig. 16 depending on the single
task [27, 28, 52]. The execution time and energy consumption of
EAM are orders of magnitude smaller than any application task.
The overhead is thus negligible.

5 CONCLUSION

We presented EAM, an application-aware energy attack mitiga-
tion system. EAM tunes the task execution rates and steers the
charging of multiple capacitors to meet programmer-provided ap-
plication requirements, specified as a function of system profiles.
We illustrated the co-design of scheduling and energy manage-
ment in EAM and quantified its performance against two baselines.
We experimentally demonstrated that EAM produces higher ap-
plication execution rates before, during, and after energy attacks,
compared to the baselines we consider. It ensures the execution of
23.3% additional application cycles compared to the baselines we
consider and increases task schedulability by at least 21%, while
enabling a 34% higher component availability.
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