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Abstract—We present Acoustic Inertial Measurement (AIM), a one-of-a-kind technique for indoor drone localization and tracking.
Indoor drone localization and tracking are arguably a crucial, yet unsolved challenge: in GPS-denied environments, existing
approaches enjoy limited applicability, especially in Non-Line of Sight (NLoS), require extensive environment instrumentation, or
demand considerable hardware/software changes on drones. In contrast, AIM exploits the acoustic characteristics of the drones to
estimate their location and derive their motion, even in NLoS settings. We tame location estimation errors using a dedicated Kalman
filter and the Interquartile Range rule (IQR) and demonstrate that AIM can support indoor spaces with arbitrary ranges and layouts. We
implement AIM using an off-the-shelf microphone array and evaluate its performance with a commercial drone under varied settings.
Results indicate that the mean localization error of AIM is 46% lower than that of commercial UWB-based systems in a complex
10m×10m indoor scenario, where state-of-the-art infrared systems would not even work because of NLoS situations. When distributed
microphone arrays are deployed, the mean error can be reduced to less than 0.5m in a 20m range, and even support spaces with
arbitrary ranges and layouts.

Index Terms—Drone, Indoor Tracking, Microphone Array, Acoustic Signal

✦

1 INTRODUCTION

Location information is crucial for drone operation [1], [2],
regardless of the application and target deployment envi-
ronment [3], [4], [5]. For example, in an indoor warehouse
like the one of Fig. 1, a drone for cargo inventory needs
location information to determine the position of the cargo
relative to its own. When performing cargo deliveries, a
drone must follow the predefined route and land at the right
target location for the drop-off.

Location information must be accurate. Errors in location
estimates may not just degrade system performance, but
represent a safety hazard as the drone’s own movements
are largely determined by location information. In outdoor
settings, GPS is arguably the mainstream to provide ac-
curate location. The indoor setting, however, represents a
completely different ballgame.

There have been many different approaches and solu-
tions for drone localization and tracking [6], [7], [8], [9], [10].
Radar-based approaches [7], [11], for example, work both
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Figure 1: An example of AIM’s application scenario.

indoors and outdoors. Their spatial resolution is limited so
that it is generally difficult to localize small-size drones.
Further, objects in the target environment easily interfere
with the radar signals, degrading the accuracy. RF-based
localization approaches [9], [12] require installing wireless
transceivers on the drone and reengineering the flight con-
troller. Inertial measurement methods [13], [14] are useful
when absolute localization is unavailable, but the accu-
mulation of errors likely becomes an issue. Infrared-based
systems require dedicated hardware and corresponding
software changes on both drones and control stations [10].

A low-cost and accurate localization approach is arguably
still missing on drones. Inspired by our observation on the
dynamics of drones [15], [16], [17] and the existing work
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Figure 2: AIM workflow.

that utilizes the propellers to produce audio [18], we present
Acoustic Inertial Measurement (AIM), a completely passive
approach to localize the drones with a single microphone
array. The term passive means AIM requires no additional
hardware and no software changes on the drones, only using
the acoustic signals naturally produced by the drone itself.
AIM works with only a single microphone array but may be
extended with ease to support spaces with arbitrary ranges
and layouts by deploying distributed arrays.

To achieve this, we must tackle three key challenges:
1) A single microphone array can only acquire one direction

of arrival (DoA), which denotes the drone’s direction
relative to the array; this information alone is insufficient
for location calculation.

2) The only input to AIM is the propellers’ sound of the
drone; how to infer the drone’s location and motion from
this single acoustic signal is an open problem.

3) In complex indoor environments, the acoustic channel
between the drone and the microphone array is easily
interfered by ambient noise and obstacles, or travels
along NLoS paths as Fig. 1 illustrates.

AIM. We address these issues based on the fundamental
observation that the rotating propellers create a dual acoustic
channel: from the microphone array’s view, the propellers are
regarded as the sound source, so the DoA of sound denotes
the orientation of the drone. At the same time, the propellers
are also high-speed rotating machinery, so the frequency
properties of the sound actually correspond to the rotating
state of the propellers, which in turn determines the drone’s
motion. Obtaining orientation and motion information allows
us to track the drone’s location continuously.

Fig. 2 illustrates AIM’s workflow. The raw acoustic signal
captured by the microphone array is first pre-processed to
extract the characteristics of the acoustic signal, for example,
DoA, frequencies, and Mel-Frequency Cepstral Coefficients
(MFCC). DoA and frequencies help deduce the drone’s
current motion, whereas MFCC is utilized for identifying
the specific drone structure, for example, a quadcopter as
opposed to an octocopter, and then loading the correspond-

ing profile information (e.g., mass) from a database.
By feeding the drone’s profiles into a set of dynamic

equations we formulate, we estimate its dynamic parame-
ters, that is, acceleration and velocity. The drone’s location
is calculated consequently. To reduce error, we adopt a
dedicated Kalman filter and the Interquartile Range rule
(IQR). We further show how AIM can be extended to support
indoor spaces with arbitrary ranges and layouts by deploy-
ing distributed microphone arrays.

Our contribution can be summarized as follows:
1) We design AIM, a completely passive drone tracking ap-

proach that can work with a single microphone array. At
the core of AIM is exploiting the dual acoustic channel to
perceive the drone’s motion and estimate its location.

2) We exploit the acoustic characteristics of the drones to
derive their motion and estimate their location, even in
NLoS settings. We combine this with a dedicated Kalman
filter and the Interquartile Range rule (IQR) to reduce
the error, and demonstrate that AIM can support indoor
spaces with arbitrary ranges and layouts.

3) We implement AIM using off-the-shelf microphone arrays
and perform an evaluation using a commercial drone
under varied settings. Results indicate that the mean
localization error of AIM in a complex 10m×10m indoor
scenario is 1.89m, 46% lower than that of commercial
UWB-based systems, where state-of-the-art infrared sys-
tems would not even work. Further, AIM can be extended
to support indoor spaces with arbitrary ranges and lay-
outs by deploying distributed microphone arrays.

Works close to our efforts are summarized in Sec. 2. Sec. 3
introduces the unique acoustic features of different drone
motions. Then, Sec. 4 presents methods to distinguish differ-
ent drone motions and drone structures. Sec. 5 elaborates on
the core algorithm of AIM for drone trajectory tracking and
Sec. 6 unfolds how to use distributed microphone arrays to
extend the operating range. The implementation and eval-
uation results are presented in Sec. 7. We discuss practical
issues in Sec. 8 and conclude the paper in Sec. 9.

2 RELATED WORK

The distinctive feature of our work is to perform drone
localization and tracking using acoustic signals. We briefly
survey existing efforts in either field.

2.1 Drone Localization and Tracking

RF-based methods. RF signals are extensively explored
for drone localization [9], [19], [20], [21], [22]. In outdoor
scenarios, mmWave and WiFi are usually used. For example,
mmHawkeye [20] exploits commercial mmWave radars to
capture the feature of drone’s periodic micro-motion (PMM)
and achieve less than 10cm tracking error within 30m.
Nguyen et al. [9] explore a passive approach to localize
both the drone and its controller in 2.4GHz WiFi frequency
channel. They show an average error of around 10m in the
30m to 150m distance.

In indoor scenarios, Ultra Wide Band (UWB)-based ap-
proaches are mainstream. UWB techniques [21], [23] achieve
decimeter accuracy for drone tracking. To improve accuracy,
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UWB may integrate with other techniques, such as visual
SLAM [24], RGB-D camera [25] and optical flows [26]. The
errors of these methods are usually lower than 20m. How-
ever, the performance of RF-based methods will degrade
in complex NLoS scenarios, especially in the presence of
equipment that absorbs or scatters RF signal [27].

Acoustics-based methods. AIM enjoys the fact that acous-
tic signals may be fruitfully employed also in NLoS
settings [28], [29]. For example, Mao et al. [30] attach
two speakers on the drone to emit Frequency-Modulated
Continuous-Wave (FMCW) signals, used to estimate the
distance between the drone and a mobile phone. As for
AIM, it does not install any extra equipment on the drone.
Other efforts [31], [32] only regard the drone as a mobile
sound source and deploy 3D or large microphone arrays
to estimate its location. Compared with these techniques,
we explore the theoretical connection between the drone’s
sound and its motions, deduce the drone’s dynamic param-
eters, such as velocity and acceleration, from its sound and
track the drone by using only a small 2D microphone array.
Data-driven methods and other. AIM is a model-driven
technique for drone tracking and localization. Various data-
driven methods exploiting machine learning or deep learn-
ing exist [33], [34], [35], [36]. However, these methods may
require complex algorithms and pose challenges in trans-
ferring a specific model to another drone or environment,
which makes them arguably impractical.

GPS is a mature approach widely used for drone local-
ization and offers meter-level accuracy, but its application
indoors is extremely difficult [37]. Methods based on optics
and vision [10], [38], [39], [40] can provide much more
accurate results for indoor drone localization, whose errors
are even less than 1mm as reported [38]. However, these
methods vastly assume line-of-sight (LoS) conditions and
are sensitive to lighting conditions.

2.2 Acoustics-based Tracking

Indoor tracking. Several works demonstrate the use of
acoustic signals for localization and tracking [41], [42]. With
a single microphone array, Voloc [43] aligns the multi-
path DoA estimation for accurate localization of indoor
acoustic sources; Symphony [44] extends this method to
localize multiple sources by leveraging the prior-known
layout of the array. PACE [45] localizes multiple mobile
users simultaneously by leveraging structure-borne and air-
borne footstep impact sounds. These works assume that
the localization target and the microphone array are on the
same plane or that the target’s altitude is known, to solve a
bi-dimensional localization problem. Differently, we exploit
the signal feature in both the spatial and frequency domains,
achieving three-dimensional localization with a single array.

Short-range tracking. Recent works adopt wearable devices
for tracking, such as smartwatches and earphones. SoM [46]
tracks the wrist using a smartwatch with IMUs and employs
the smartphone to send beacons for error calibration. Ear-
AR [47] uses the IMU in earphones and smartphones to
track the indoor user’s location and gazing orientation.
When the embedded microphone and speaker in the wired
or wireless earphones have already formed a transceiver
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Figure 3: Quadcopter drone structure.

2

5

1

4

6 3

2

5

1

4

6 3

3

1

4

2

3

1

4

2

8

4

6

2

7

3

5

1

8

4

6

2

7

3

5

12

5

1

4

6 3

3

1

4

2

8

4

6

2

7

3

5

1

(a) (b) (c) (d)

Figure 4: Typical structures of four drone types: (a) quadcopter;
(b) hexacopter; (c) octocopter; (d) Y6. Different colors represent
different directions of rotation.

pair, EarphoneTrack [48] proposes to track either the mi-
crophone or speaker with this pair. Unlike what we do
with AIM, these approaches are effective only in the short
range, specifically between wearable devices and users’
smartphones.

3 THE SOUND OF DRONES

In this section, we explore the features of a drone’s sound
signals and how they relate to motion.

3.1 Key Features

Drone propellers are designed to displace the air around
them. The resulting pressure gradient creates a force vector.
We model the connection between the sound of the drone’s
propellers and its physical structure.

Fig. 3 illustrates the most common drone structure, that
is, a quadcopter composed of two orthogonal arms. A pro-
peller is mounted at either end of each arm. The force vector
obtained by the propeller rotation can be decomposed into
a vertical component T v

i and a horizontal component Th
i .

The vertical component lifts the drone and can be calcu-
lated as T v

i = kvf2i , where fi is the rotation frequency of
the ith propeller and kv is a constant related to the lift coef-
ficient. The drag force Th

i horizontally controls the rotation
of the body and can be calculated as Th

i = khf2i , where kh

is a constant related to drag coefficient [49]. The lift forces
of all propellers follow the same direction, while the drag
forces of adjacent propellers are opposite to compensate for
the torque otherwise generated, which induces spinning.

The sound produced by the propellers is highly corre-
lated with the frequency fi of each motor. Because each
propeller has multiple blades, two in most cases, the funda-
mental frequency of the sound is not the rotation frequency
fi, but the blade passing frequency (BPF). The BPF is defined
as fBPF

i = nfi, where n is the number of blades. In addition
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to the BPF, harmonic frequencies may also be observed as
an integer multiple of the BPF [50].

If we can capture the drone’s sound and obtain the BPF
as well as its harmonics, we may then estimate the rotation
frequencies fi, and thus the forces exerted by each propeller.
Using a model of the drone’s physical dynamics, which is
necessarily a function of its mechanical structure, we may
also estimate its direction and motion. This is the essence of
the frequency-based localization and tracking in AIM.

3.2 Sound and Motion

We analyze here the inner relationship between the drone’s
sound and its physical motion.

We theoretically analyze the acoustic properties of four
common drone structures, shown in Fig. 4. Drone flights are
composed of four basic motions: hovering, yaw, horizontal
linear motion and vertical linear motion, as depicted in
Fig. 5. Interestingly, we find that these basic motions exhibit
different acoustic properties in the frequency domain be-
cause they are performed by changing each motor’s rotation
frequency fi differently. In the following, N = 4, 6 or 8
depending on the drone structure among the ones in Fig. 4.

Hovering: in the absence of environmental effects requiring
compensation, all propellers rotate at the same fre-
quency to maintain the vertical and horizontal balance,
so the drone remains stationary. Therefore, we have
fi = fj , 1 ≤ i, j ≤ N .

Yaw: propellers operate in pairs, shown by different colors
in Fig. 4. Each pair rotates at the same frequency,
creating a rotational momentum while maintaining the
vertical balance, which makes the drone rotate around
the center. Thus, we have f2i−1 = f2j−1 ̸= f2i =
f2j , 1 ≤ i, j ≤ N

2 .
Horizontal motion: propellers operate in pairs again, this

time to tilt the body while maintaining the vertical bal-
ance. Then the drone moves horizontally. We use paren-
theses to indicate equal frequencies for brevity. When
the drone tilts forwards or backwards, that is, it pitches,
we have (f1f2) (f3f4) for quadcopters, (f1f2) (f3f6)
(f4f5) for hexacopters, (f1f2) (f3f8) (f4f7) (f5f6) for
octocopters and (f3f4f5f6) (f1f2) for Y6 structures.
Symmetric observations apply when the drone tilts
leftwards or rightwards, that is, it rolls.

Vertical motion: all propellers rotate at the same speed
to generate thrust greater or lower than the force of
gravity on the drone. Accordingly, the drone moves up-
wards or downwards, so we have fi = fj , 1 ≤ i, j ≤ N .

In the following, we illustrate how these observations
may be a stepping stone to achieving accurate drone local-
ization and tracking.

4 MOTION AND STRUCTURE

We use the features of the sound signal in the frequency,
spatial, and time domains to estimate the drone’s motion
and identify its structure. These two components are the
basis of our system.

4.1 Motion Detection
Based on the analysis of Sec. 3, we conduct a proof-of-
concept experiment to check whether the four basic motions
can be distinguished by the sound characteristics. In this ex-
periment, we use a DJI Mini 2 quadcopter and a microphone
to receive the acoustic signal.

Fig. 6 shows the spectrum of the acoustic signal cor-
responding to the motions of Fig. 5 and conforms to our
understanding of the drone’s dynamics. Specifically, we
observe two peak fundamental frequencies in the case of
yaw and horizontal motion. In comparison, there is only
one peak fundamental frequency in the case of hovering
and vertical motions.

Exclusively based on frequency domains, we can only
classify the four motions into two categories, depending on
the number of peak fundamental frequencies. To resolve this
ambiguity, we leverage the spatial information of the sound.
Crucially, we note that the drone spatial coordinates are
stable during hovering or yaw, while they change during
vertical or horizontal motion. The change in position may
be detected by the sound’s DoA, as elaborated in Sec. 5.1.
By combining the information obtained from the number of
peak fundamental frequencies and DoA as shown in Tab. 1,
AIM can correctly discern the four basic motions.

Detecting the four basic motions is vastly sufficient to
localize and track drones in a multitude of indoor drone
applications, including most of those we mention in the
Introduction. In indoor settings, for example, warehouses
or smart factories, planning of robot movements—not just
drones—is most often achieved by sequentially combining
the four basic motions. This is beneficial in at least two
respects: i) it matches the regular physical layout of the
target deployment scenarios; in a warehouse, for example,
shelves are side-by-side horizontally laid and goods are
stacked vertically; and ii) it greatly simplifies path planning,
yielding much more scalable systems.

To further improve the accuracy in detecting the four
basic drone motions, we further observe that high-frequency
harmonics share similar characteristics with the fundamen-
tal frequencies. Because the noise in the low-frequency band
is usually stronger than that in the high-frequency band, the
harmonics may experience less noise than the original BPF.
Thus, we estimate the BPF from the weighted average of
both the fundamental frequencies and the harmonics, which
are weighted by their amplitudes. For hovering, a single
band is present on the spectrogram.

4.2 Drone Structure Identification
There exist several types of drones apt to support distinct
applications. For instance, drones with high load-carrying
capacity can be designated to transport goods, while drones

Table 1: Classification scheme of the four motions.

Single-Peak Multiple-Peak

Unstable
DoA

Vertical linear
motion

Horizontal linear
motion

Stable
DoA

Hovering
motion

Yaw
motion
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(a) Hovering motion. (b) Yaw motion. (c) Horizontal linear motion. (d) Vertical linear motion.

Figure 5: Force analysis of basic drone motions.
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Figure 6: Acoustic spectrum of basic drone motions.
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Figure 7: MFCC of different drones: (a) spectrum of DJI Avata
in yaw motion; (b) spectrum of DJI FPV in hovering motion; (c)
MFCC of a yawing DJI Avata; (d) MFCC of a hovering DJI FPV.

with large-capacity of batteries can be employed for en-
vironmental surveillance. Each such type of drone uses a
different physical structure, expressly designed to optimize
the aerodynamics features required to carry out a specific
task. For AIM to work accurately, it is crucial to precisely
recognize the particular drone structure once it is detected
by the microphone array. In the following, we illustrate a
technique to do so, even in case different drone types co-
exist in the same area.

We design specific band-pass filters for each type of

drone, based on their distinctive BPF and harmonic frequen-
cies. For example, the BPF of the DJI Avata, which uses
five blades rotating at ≈ 300Hz, is approximately 1500Hz,
while that of the DJI FPV, which uses three blades rotating
at ≈ 185Hz, is around 555Hz, as illustrated in Fig. 7(a) and
Fig. 7(b), respectively.

We first process the captured acoustic signal through the
band-pass filters of each possible drone structure, to form
multiple filtered narrow-band acoustic signals. Then, we
calculate the Mel-Frequency Cepstral Coefficients (MFCC)
for each filtered signal. MFCC carries information that can
effectively represent a drone’s sound characteristics in both
frequency and time domains [51], so we utilize it to differ-
entiate between drones. Fig. 7(c) and Fig. 7(d) demonstrate
the distinct MFCC features of the DJI Avata and FPV, whose
energy distributions vary among MFCC vectors, especially
where their BPF and harmonic frequencies are located, as
shown by the MFCC vectors in red frames.

Finally, we normalize the MFCC vectors of all the filtered
signals and borrow the method proposed in DronePrint [51]
to train a Long Short-Term Memory (LSTM) neural network
for drone identification. If multiple drones are located in
the same area, we can identify them according to their
corresponding filtered signals.

The profiles of drone structures that cater to a ware-
house are pre-archived in a database. Upon identification
of a drone, the corresponding profile is fed to dynamics
equations for position estimation, which we discuss next.

5 DRONE TRAJECTORY TRACKING

We articulate here how to combine information from the
drone dynamics with the input from acoustic signals to
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achieve accurate drone localization and tracking. We further
illustrate our system’s operation in NLoS settings and how
we use a dedicated Kalman filter to tame tracking errors.

5.1 Tracking Model

We first derive a dynamic drone model, which we use as a
basis for tracking. We consider a quadcopter as an example
for intuitive analysis, but the analytical process would be
exactly the same for other drone structures.

Yaw. In this case, (Th
1 + Th

3 ) − (Th
2 + Th

4 ) ̸= 0, which
causes the rotation of the fuselage, as shown in Fig. 5(b), and
two BPF peaks. During the rotation process, the moment of
inertia I reflects the magnitude of inertia and is regarded as
a constant. We can thus obtain the angular acceleration βt at
time t by solving the equation:

kh

n2

∣∣∣∣∣∣
N/2∑
i=1

(fBPF
2i−1 )2 −

N/2∑
i=1

(fBPF
2i )2

∣∣∣∣∣∣ = Iβt (1)

Thus, in a known time interval τ , the rotation angle
∆ψ =

∫ τ
0 βtt dt. However, as mentioned in Sec. 4.1, ambigu-

ity exists if we only rely on the frequency characteristics. To
solve this ambiguity, we regard the drone as a mobile sound
source and leverage the microphone array to obtain spatial
information. Due to the limited resolution of commercial
microphone arrays, the drone is always in the far-field [44],
so that we can hardly obtain accurate location information
but only a DoA, including azimuth α and elevation ϕ.
Even in this case, DoA information is sufficient for AIM
to function. For instance, DoA information captured by a
uniform 4-microphone array in a squared configuration istanα =

τ∗
42

τ∗
31

sinϕ = c
2d

√
τ∗42

2 + τ∗31
2

(2)

where c is the sound velocity and τ∗ij is the time delay
between microphones Mi and Mj . We calculate the latter
with the GCC-PHAT algorithm [52].

Horizontal motion. The rotation frequencies of two motors
on the same side increase simultaneously to generate a lift
force, for example T v

1 and T v
4 in Fig. 5(c), so that the sound

contains two groups of BPF peaks, fBPF
1 = fBPF

4 and
fBPF
2 = fBPF

3 . Then the drone tilts with an angle γ, as
shown in Fig. 5(c), so that we can decompose T v

i into vertical
and horizontal directions. The vertical component of T v

i is
balanced with the drone’s gravity, so we can solve γ with
the knowledge of the drone’s mass m and the acceleration
of gravity g, which are known. The horizontal component
of T v

i works against the resistance Ff = λh(vht )
2 to make

the drone move horizontally, where λh can be regarded as
a constant related to γ. We solve the horizontal velocity vht
and acceleration aht at time t with the γ by the following
dynamics equations:


kv

n2

∑N
i=1(f

BPF
i )2 sin γ = mg

kv

n2

∑N
i=1(f

BPF
i )2 cos γ − λh(vht )

2 = maht

(3)

Vertical motion. Consider the case of climbing as an exam-
ple: fi, i = 1, 2, 3, 4 increase simultaneously to work against
the gravity and downward resistance Ff = λv(vvt )

2, where
λv can be regarded as a constant, illustrated in Fig. 5(d).
Thus, only one BPF peak is captured. Vertical velocity vvt
and acceleration avt at time t can be determined by solving
the equation:

kv

n2

N∑
i=1

(fBPF
i )2 −mg − λv(vvt )

2 = mavt (4)

Finding coordinates. Consider the situation shown in Fig. 9,
where a drone flies from St to St+1. A single 4-microphone
array with elements M1,M2,M3,M4 is deployed to capture
the acoustic signals. The coordinate of the drone at time t are
St(ht tanϕt cosαt, ht tanϕt sinαt, ht), where the height ht
is now the only unknown quantity. Fortunately, determining
ht is not difficult. For two adjacent coordinates St and St+1,
in the case of horizontal motion, ht = ht+1, so that

|ht+1 tanϕt+1 − ht tanϕt| = vht τ +
1

2
aht τ

2 (5)

where τ is a predefined interval for location updating. In
the case of vertical motion, we have

|ht+1 − ht| = vvt τ +
1

2
avt τ

2 (6)

We solve these equations in ht and determine the com-
plete coordinates of the drone during the flight.

5.2 Tracking in NLoS
Indoor scenarios likely include objects that create NLoS
settings, for example, in busy warehouses. Here, the DoA
information captured by the microphone array may be
deviated. For instance, the yellow dashed curves in Fig. 8
depicts the estimated DoA information in NLoS settings.
The severe deviation occurs in NLoS no matter whether
the drone moves. In this case, traditional triangulation with
distributed microphone arrays cannot work, yet alternative
indoor localization systems such as UWB- and infrared-
based systems may be equally prevented from working
altogether in such settings.

In contrast to the state of the art, AIM can recognize
if the LoS is blocked and continue to track the drone in
NLoS. Despite a few outliers, the dominated diffraction or
reflection path with the highest signal energy is stable when
the location of the drone is unchanged, while it is irregular
when the drone moves. Thus, we employ the Interquartile
Range rule (IQR) [53] to eliminate outliers and smooth the
estimated DoA information in a sliding window.

When the drone is hovering or yawing, the estimated
DoA is smooth, as in Fig. 8(a) and Fig. 8(c), even if the
observations slightly deviate from the ground truth. Instead,
the smoothed DoA information is erratic when the drone is
moving, as in Fig. 8(b) and Fig. 8(d). As described in Tab. 1,
we use the stability of DoA information rather than the
absolute values to determine the kind of drone motion in
LoS. Fig. 8 provides evidence that we can employ the same
criteria for the NLoS case.

To detect the NLoS setting in the first place, AIM sets
a threshold to evaluate the variance of smoothed azimuth
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Figure 8: DoA estimation results in LoS and NLoS.
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Figure 9: Schematic diagram of AIM in action.

information in a time window. If the variance is beyond the
threshold, we consider the LoS to be blocked, because even
if smoothed, the DoA in NLoS is still unstable, which is
especially evident in azimuth estimation, as shown by the
green curve in Fig. 8(b).

5.3 Error Calibration

We employ a dedicated Kalman filter to tame the inaccura-
cies in the estimation of orientation after yawing and in ab-
solute localization following horizontal or vertical motion.

The drone location is described by a state vector At =
[xt, yt, zt]

T , with A0 being initialized with the first few
points at the beginning of the flight. Then processing un-
folds as follows:
1) We predict the subsequent state vector Â−

t , that is, the
a priori state estimate, according to the state transition
matrix;

2) We estimate the drone’s current motion following the
rules in Tab. 1 as well as the current coordinate according
to the dynamic equations and identified motion;

3) Based on the variance of the smoothed azimuth, we
identify whether the LoS exists. If not, the estimated DoA
information is discarded;

4) With yaw motion, possible trajectories caused by the
ambiguous orientations are tracked until the LoS is re-
gained. If the LoS exists now, the current coordinates can
be updated with DoA, eliminating the ambiguity;

5) No matter whether in LoS or NLoS, the measured coor-
dinates are fused with Â−

t to output the optimal estimate
Ât, that is, the a posteriori state estimate.

Drone 1
Drone 2

Figure 10: Example scenarios of tracking with multiple arrays.

6 EXTENDING OPERATING RANGE

Despite the ability of AIM to operate with a single micro-
phone array, in realistic indoor settings such as a warehouse,
the coverage may be insufficient. As a result, we extend
our tracking scheme using distributed microphone arrays
to accommodate indoor environments with variable ranges
and configurations.

6.1 Basic Model
An example of a warehouse employing distributed mi-
crophone arrays is depicted in Fig. 10. In this scenario,
the arrays are positioned at regular intervals among the
shelves to facilitate tracking of the drone through relaying.
As the drone traverses these zones, we use neighboring
microphone arrays to calculate its location and subsequently
refine the results reported by acoustic inertial measurement,
thereby enhancing localization accuracy.

Our approach involves computing the time difference
of arrival (TDoA) between each pair of microphone arrays.
We uniformly orient all arrays in the same direction and
number their elements according to consistent rules. If we
designate the m-microphone arrays Arrp and Arrq to have
elements Mp

1 ...M
p
m and Mq

1 ...M
q
m, respectively, the TDoA

Tpq between the two arrays is determined as:

Tpq =
Σm

i=1τ
∗(Mp

i ,M
q
i )

m
(7)
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Figure 11: TDoA between two microphone arrays.

where τ∗(Mp
i ,M

q
i ) is the time delay between the corre-

sponding elements of two arrays.
It follows that the locations of the drone that satisfy

this TDoA form a hyperboloid, as depicted in Fig. 11. Here,
we denote the drone’s location at time t as St(xt, yt, zt)
and the positions of the two arrays as Arrp(xp, yp, 0) and
Arrq(xq, yq, 0). The shape of the hyperboloid is derived
from the calculated TDoA as follows:

F (Arrp, Arrq) =
x2

a2
− y2

b2
− z2

c2
− 1 (8)

where a = 1
2 · abs (||St Arrq|| − ||St Arrp||) = 1

2c · Tpq and

b = c =
√

1
2 · ||Arrp Arrq||2 − a2.

With at least three microphone arrays, say Arrp, Arrq ,
and Arrs, we can estimate the drone’s location at time t by
solving the following set of equations:

St(xt, yt, zt) =


F (Arrp, Arrq) = 0;

F (Arrp, Arrs) = 0;

F (Arrq, Arrs) = 0;
...

(9)

To synchronize the microphone arrays involved in lo-
cation estimation, we employ commercial speakers to in-
termittently emit an acoustic beacon, which consists of a
pre-defined pseudo-random noise. During drone tracking,
the microphone arrays detect this beacon to align with one
another [54]. The beacon frequency ranges from 16kHz to
20kHz, as depicted in Fig. 12, and is distinct from the signals
used for localization, making it separable via band-pass
filters. As shown in Fig. 13(a) and Fig. 13(b), the beacon is
accurately detected also when the drone is present.

There may be cases where a drone can establish line of
sight with only two microphone arrays, as for drone 2 in
Fig. 10. If so, Eq. (9) becomes negative definite or non-full
rank, rendering it unsolvable and it becomes impossible to
obtain the 3D coordinates of the drone. To address this issue,
we no longer treat each microphone array as a whole, as in
Eq. (8), and instead choose multiple individual microphone
elements for localization.

Say we can only rely on two microphone arrays1. In this
case, we choose two elements from each array, respectively,
and consider each of them as a new two-microphone array.
The distance between two elements in the same array must
be the largest, and furthermore, the selected four elements
must not be collinear. We can then employ the model in

1. If there are multiple arrays arranged on a single line, we select the
two nearest to the drone.
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Figure 12: Spectrum when the beacon and drone sound exist
simultaneously.

Sec. 6.1 to calculate the drone’s location using the four
selected microphone elements.

6.2 Selecting Microphone Arrays for Localization

Although there may be several microphone arrays located
near the drone that can receive the acoustic signal with a
high amplitude, some of them may be in NLoS or sur-
rounded by multiple reflectors. If these arrays are chosen
to perform TDoA and location calculation, the resulting
localization information may be inaccurate. To mitigate this
issue, we execute a dedicated array selection algorithm,
which is depicted in Algorithm 1.

We perform a preliminary screening using the method
outlined in Sec. 5.2 to filter out microphone arrays that
report unstable or inaccurate results. If the number of the
remaining arrays is enough to determine the 3D coordinates
of the drone, that is, there are at least 3 arrays that show
reliable DoA estimation, we proceed to the following fine-
grained selection process. Otherwise, if all arrays are in a
line or only two arrays can be used, we calculate the location
as described above.

Next, we apply an additional filtering process to further
refine the selected microphone arrays. Let dpq denote the
distance between two microphone arrays Arrp and Arrq .
We select the first three microphone arrays as the initial
set, where the product of the distance between them is the
largest. This is because TDoA estimates tend to be more
accurate when microphone arrays are more dispersed.

With the selected three microphone arrays, we obtain an
initial estimation of the drone’s coordinates. This estimation
may not be stable enough as it is based on only three mi-
crophone arrays. If there is any other candidate microphone
array providing preferable DoA estimation, we add this to
the processing to improve the accuracy, choosing the one
with the most stable DoA estimations. To further enhance
the accuracy, results reported by the distributed microphone
arrays are fused with those obtained from acoustic inertial
measurement, as explained next.

6.3 Fusing Data

After obtaining the drone location from Eq. (9), we fuse this
result with that of the acoustic inertial measurement. We use
the complementary filter for this, because of two reasons.
First, location estimations output by distributed microphone
arrays can exhibit jitter, which results in high-frequency
noise, while estimations of acoustic inertial measurement



IEEE TRANSACTIONS ON MOBILE COMPUTING 9

0 0.25 0.5 0.75 1.0
Time (s)

-1

0

1
N

o
rm

a
liz

e
d

 C
ro

s
s
-C

o
rr

e
la

ti
o
n

0 0.25 0.5 0.75 1.0
Time (s)

-1

0

1

N
o

rm
a
liz

e
d

 C
ro

s
s
-C

o
rr

e
la

ti
o
n

(a) (b)

Figure 13: Detecting the presence of the beacon: (a) when the
drone does not take off; (b) when the drone is hovering.

Algorithm 1: Array Selection Algorithm.

1 for t = 1, 2, 3, ... do
2 Determine the set of microphone arrays CArr;
3 if COUNT(CArr)> 3 then
4 for Arrp ∈ CArr do
5 if Variance V arα̂p

< Threshold then
6 Add Arrp to the candidate set

Cselected;
7 end
8 end
9 Load the distance dpq between every

microphone array in Cselected;
10 Initial set Cinitial = argmax

(p,q,s)

dpq ∗ dps ∗ dqs;

11 for Arrp ∈ Cselected − Cinitial do
12 Find the Arr

′

p with the minimum V arα̂p ;
13 end
14 Add Arr

′

p to Cinitial;
15 end
16 Output Cinitial;
17 end

are smooth in a short period of time, which can therefore
effectively compensate for this problem. On the other hand,
both distributed microphone arrays and acoustic inertial
measurements produce fairly accurate results so we can em-
ploy the lightweight complementary filter to avoid nesting
of two Kalman filters, greatly reducing processing times.

Let s(∆t) denote the true trajectory of the drone over a
time period ∆t, so we have

zM (∆t) = s(∆t) + n1(∆t)

zA(∆t) = s(∆t) + n2(∆t)
(10)

where zM (∆t) and n1(∆t) are the estimation results and
noise of the distributed microphone arrays, and zA(∆t) and
ns(∆t) are those of the acoustic inertial measurement. Then
we perform a data fusion process based on

Ŝ(f) = ZM (f)G(f) + ZA(f) [1−G(f)] (11)

where Ŝ(f) is the Fourier transform of the fused result
ŝ(∆t), ZM (f) and ZA(f) are the Fourier transform of
zM (∆t) and zA(∆t), and G(f) and 1−G(f) is the low-pass
filter and the complementary high-pass filter.

Finally, we can obtain the fused result ŝ(∆t) by perform-
ing inverse Fourier transform for Ŝ(f).

7 EVALUATION

We report evaluation results of AIM using off-the-shelf
microphone arrays and a commercial drone. We describe
first the implementation and evaluation settings in Sec. 7.1.
Next, our investigation of AIM performance is two-pronged:
Sec. 7.2 compares our system with the state-of-the-art indoor
drone tracking systems and reports on their performance
under different scenarios; in Sec. 7.3, we dissect the impact
on tracking accuracy of environment noise, flight range and
velocity, as well as of the deployment configurations of
distributed microphone arrays and of the beacon volume.
We discuss the real-world performance of AIM in Sec. 7.4.

Our results indicate that:
1) The mean localization error of AIM in NLoS settings,

arguably most realistic for indoor drone applications, is
46% lower than a UWB-based baseline;

2) Unlike an infrared-based baseline, AIM constantly pro-
vides location updates, even in NLoS settings;

3) AIM is robust to moderate noise sources in the environ-
ment, such as someone speaking;

4) Flight range and velocity of the drone influence AIM’s
performance differently, yet the absolute accuracy never
degrades drastically.

5) With distributed microphone arrays, AIM can be ex-
tended to support indoor spaces with arbitrary ranges
and layouts without loss of accuracy.

7.1 Implementation and Settings

AIM works with any layout of bidimensional microphone
array to track drones of various structures. Without loss of
generality, here we consider a quadcopter and two types of
microphone arrays.

Drones and microphone arrays. We use a DJI Mini 2 quad-
copter [55], shown in Fig. 14(a). The DJI Mini 2 weighs 249g;
as such, flying the DJI Mini 2 in most countries does not
require a professional drone piloting license, which makes
it ideal for indoor use. Each propeller is equipped with two
blades. When the drone is hovering, the sound pressure
level measured at a 1m distance is empirically determined
to be around 77dB and motors run at 164Hz, so the BPF is
around 328Hz. By default, the DJI Mini utilizes the built-
in GPS for horizontal localization and an infrared time
of flight (ToF) sensor to obtain vertical altitude. However,
in the indoor experimental environment we use, shown
in Fig. 14(b), GPS cannot work and only the ToF sensor
provides useful altitude information.

We use two types of commercial off-the-shelf micro-
phone arrays for our AIM prototype: a Seeed Studio ReS-
peaker 6-mic circular array [56] and Seeed Studio ReSpeaker
4-mic array [57], shown on the upper left of Fig. 14. The
inter-distance between two single microphones is 5cm and
6.5cm, respectively. Each microphone array is set on a Rasp-
berry Pi 4 Model B, using a 48kHz sampling rate. Unless
stated otherwise, the results we discuss next are obtained
with the 6-mic circular microphone array.

Baselines. To obtain ground-truth information, we take
the readings of the built-in ToF sensor on the DJI Mini 2
as vertical altitude. As for the horizontal coordinates, we
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employ a method often used in indoor drone testbeds [58]:
we lay down distance markers on the ground at intervals
of 10cm, as shown in Fig. 14(b) and Fig. 14(c). Using the
downward-facing camera of the drone, we examine its view
of the ground-level markers during the flight. Fig. 14(c)
shows an example image captured by the drone during
the experiments. Once the tick of the marker matches the
centerline of the image, this reading of the corresponding
maker is regarded as the real-time horizontal coordinates.

We compare AIM with LinkTrack [59], an UWB-based
indoor localization system, and OptiTrack [38], an infrared-
based motion tracking system, both of which are shown on
the upper right of Fig. 14. LinkTrack localizes the target via
triangulation. We fix a UWB tag on the drone and four UWB
anchors on four tripods, then record the tracking results on
a base station. OptiTrack localizes the target by convert-
ing the drone positions in bidimensional photos captured
at high frequency by multiple infrared cameras to three-
dimensional coordinates. We fix reflective markers on the
drone and four infrared cameras on four tripods, and also
record the tracking results on a base station. Whenever the
drone carries a UWB tag or reflective markers, we accord-
ingly update its tracking model and dynamic parameters.

Note that the OptiTrack system is vastly considered as

state of the art in indoor testbeds. Because of its cost, diffi-
culty in installation, and inability to work in NLoS settings,
however, it is rarely employed for real applications [58].

Scenarios and drone mobility. We select three scenarios.
In Line-of-Sight (LoS), nothing is deployed in the middle of
the experiment area shown in Fig. 14(b) and every device
involved in localization can establish LoS with each other
and with the drone. Note how this scenario, while common
in indoor drone testbeds that are in fact designed to isolate
drones from their surroundings, is quite unlikely in real
applications. In Partial Line-of-Sight (PLoS), several steel
shelves stacked with various objects such as books and
bricks are deployed in the middle of the experiment area. As
shown in Fig. 15(a), depending on the relative position of the
drone with respect to the rest of the experiment area, the LoS
is blocked at times. In None-Line-of-Sight (NLoS), the shelves
are deployed in front of every tripod hosting infrastructure
node for localization. Every LoS path is thus blocked, as
depicted in Fig. 15(b). No matter where the drone flies in
the experiment field, it can not establish LoS connection to
any device on any of the tripods.

We tested varied combinations of drone motions. For hor-
izontal motions, we control the drone to fly along the distance
maker, shown in Fig. 14(c), and keep vertical coordinates
unchanged. For vertical motions, once the drone is hovering,
we control the drone to climb or descent to a certain height,
while keeping horizontal coordinates unchanged.

7.2 General Performance

We fly a 10m×10m squared trajectory comparing AIM with
LinkTrack and OptiTrack in LoS, PLoS and NLoS scenarios.
Fig. 16 reports the performance of the three systems.

Fig. 16(a) indicates that in LoS scenarios, the mean error
of AIM is 1.43m while those of LinkTrack and OptiTrack
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Figure 17: Impact of environment noise on accuracy.

are 0.37m and 0.03m, respectively2. AIM is, therefore, the
least accurate system in LoS scenarios, which are, however,
arguably rare in real applications.

Fig. 16(b) illustrates the performance in PLoS scenarios.
Here AIM outperforms LinkTrack with a mean error of
1.89m, which is 46% less than LinkTrack. The increase of
error is caused by the lack of DoA calibration for AIM and by
signal attenuation for LinkTrack. In that case, AIM can only
calibrate the location with the opportunistic clean DoA.

Fig. 16(c) offers a closer view on this specific experiment
by showing an accuracy comparison during a 10s flight,
including about 2s of NLoS. LinkTrack is heavily influenced
by the obstacles, which absorb UWB signals. When the LoS
is obstructed, OptiTrack simply does not work and produces
no output. Thus, although its mean error does not increase
in PLoS scenarios, OptiTrack is plainly inapplicable as com-
pletely losing the drone position even for a short among
of time would be unacceptable for safe and dependable
operation. Instead, the localization error of AIM suddenly
increases at the beginning of the NLoS sting, but gradually
decreases later, without ever losing the target.

In NLoS scenarios, shown in Fig. 16(d), we only compare
AIM with LinkTrack because OptiTrack produces no output
for the entire duration of the experiments, because of the
aforementioned reasons. The mean error of AIM increases to
2.08m but it is still lower than that of LinkTrack, which is
almost twice as much at around 4m.

Note how the progression through different scenarios in

2. Note that for OptiTrack, we note a difference between the error
measured in our experiments and what is advertised by the manu-
facturer, which is below 1mm. The reason for this is that OptiTrack
sometimes temporarily recognizes LEDs on the drones as the markers,
affecting the measurements. We cannot turn off or cover these LEDs,
as the drone would refuse to take off, raising exceptions in the control
software.

our discussion, from LoS in Fig. 16(a) to NLoS in Fig. 16(d),
reflects increased realism in indoor drone applications.
NLoS settings are indeed expected to abound when drones
fly in complex physical environments. These settings are
precisely where AIM reaps the greatest benefits compared
to the baselines: its performance degradation, indeed, is
much less pronounced compared to LinkTrack, whereas it
can supply continuous location updates, unlike OptiTrack.

7.3 Factors Influencing Accuracy
We analyze the impact of three different factors on localiza-
tion accuracy, that is, noise in the environment, the flight
range and velocity, and the number of microphones.

Environment noise. We examine the performance of AIM in
noisy conditions. We place a noise source 2m away from the
microphone array. To study different degrees of interference,
we set the volume of the noise source to 50dB, 55dB, 60dB
and 65dB. We broadcast Gaussian white noise with 100Hz
bandwidth in three different center frequencies, that is, at
300Hz, 600Hz and 900Hz, to simulate interference on the
BPF and its harmonic frequency.

The results in Fig. 17 indicate that, as expected, the local-
ization accuracy degrades as the frequency of the noise or
the SPL of the noise increases. This is because AIM weights
the BPF and its harmonics according to their amplitude
and sums them up to obtain the final frequency, which is
the input of dynamic equations. In general, BPF and lower
harmonics exhibit higher energy and thus are given higher
weights. However, if the noise is at high frequency, peaks in
this frequency band gain much higher weights. Therefore,
the results are polluted.

Importantly, results show that AIM still maintains rela-
tively stable performance under noisy conditions, which is
sufficient to deal with common noise environments such as
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Figure 20: Deployment of mics.
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Figure 21: Volume of beacon.

someone speaking, which is around 53.7dB at 1m distance.
We also demonstrate that AIM can cope with narrowband
noise, whose frequency band does not violate all the BPF
and harmonic frequencies simultaneously. Even faced with
broadband noise (e.g., music), AIM still provides accurate
localization results as long as the noise intensity is lower
than that of the drone signals. If not, multiple options exist
to resist noise in practice. We may, for example, introduce
a band-pass filter to filter out the noise band and continue
tracking using the uncontaminated frequency band. AIM is
also flexible in the deployment of the microphone array,
as no specific requirements must be fulfilled to during
installation. We may simply alter its position to lessen the
impact of nearby noise sources.

Flight range and velocity. First, we investigate the perfor-
mance of AIM depending on the distance between the drone
and the microphone array. We specifically test three flight
paths, composed of 5m×5m, 10m×10m, and 15m×15m
square trajectories. The drone is controlled to fly at a velocity
of 1.5m/s in both horizontal and vertical motions. Fig. 18
shows the results.

When the drone flies along the 5m×5m square, the mean
errors are 0.95m in LoS and 1.52m in PLoS. When the drone
flies along the 10m×10m square, the mean errors are 1.43m
in LoS and 1.89m in PLoS. If the drone flies over a larger
area, the signal attenuation worsens so the error increases.
Correspondingly, the results show that the mean errors in
both LoS and PLoS are over 2m as the drone flies along a
15m×15m field.

Based on these results, we define 10m as the operational
range for the pair DJI Mini 2/ReSpeaker 6-mic. The opera-
tional range is an empirical value, which sets a limit on the
acceptable tracking error. Note that this value may be differ-
ent between different drones and microphone arrays, as it
is mainly determined by the SPL of the sound produced by
the drone’s propellers and the sensitivity of the microphone
array. The higher the drone’s SPL and the array’s sensitivity,
the lower the tracking error in a given field and the larger
the operational range.

We also conduct experiments to evaluate if the drone’s
velocity has an impact on accuracy. These experiments are
conducted in the LoS scenario, and both horizontal and
vertical motion are evaluated, respectively. In the horizontal
motion, we control the drone to fly along a 10m×10m
square. The results are shown in Fig. 19. For horizontal
motion, the drone’s velocity influences the accuracy in that
the mean error decreases as the velocity increases, while for
vertical motion, the change of velocity does not significantly

impact accuracy. The reason is two-fold. On the one hand,
two frequency peaks must be captured for horizontal mo-
tion. Higher velocity results in larger intervals between the
two frequency peaks, hence they are easier to separate out.
In contrast, only one peak must be captured during vertical
motion. On the other hand, every two propellers contribute
to the energy of one frequency peak with horizontal mo-
tion, while all propellers generate the signal at the same
frequency with vertical motion. The energy of the frequency
peak in vertical motion is higher than that in horizontal
motion and, therefore, results in more stable performance.

Deployment of microphone arrays and beacon volume.
We evaluate the localization accuracy in continuous drone
tracking by varying the deployment of microphone arrays
and the volume of the beacon.

Firstly, we deploy several microphone arrays in two
different configurations: ZigZag and straight lines. Then, we
compare the localization accuracy of these two deployments
in the 10m and 20m range. In the straight line setting, we
place several arrays in a line, and to simulate the corner of
the warehouse, we also place one array at the end of the
line that is not colinear with the others. This arrangement
provides the opportunity to perform error calibration with
at least three microphone arrays. In the ZigZag setting, the
arrays are placed in two lines as a form of ZigZag and
the distance between the two lines is 10m. The drone is
controlled to fly along the center line of two lines, so the hor-
izontal distance between the drone and each microphone is
around 5m. The drone velocity is 1.5m/s and all microphone
arrays can establish a LoS with the drone.

The results in Fig. 20 show that the ZigZag configuration
provides much better accuracy, with errors less than 0.5m,
in both the 10m and 20m range. As the horizontal distance
between the drone and each microphone array during flight
is around 5m, and the flight height is 2m, the relative error
in this setting is less than 9.28%

(
0.5/

√
52 + 22

)
. In contrast,

the errors in the straight line setting are around 1.5m, even
with the opportunity for calibration. Thus, we recommend
deploying distributed microphone arrays as in the ZigZag
configuration for better performance, if conditions permit.

We also investigate the impact of varying the volume
of the time synchronization beacon. The experiments are
conducted with microphone arrays deployed in the ZigZag
configuration, while the drone flies in the 10m range with
the velocity of 1.5m/s. As Fig. 21 shows, increasing the
volume of the beacon leads to a reduction in localization
error. Specifically, the error decreases from 1.43m at 40dB
to 0.45m and 0.44m, at 60dB and 70dB, respectively. How-
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Figure 23: Accuracy.

ever, noise can also exist in the band of the beacon, even
with high frequency, and therefore, higher volumes may
not always result in better performance. Moreover, some
industrial settings may have strict regulations on sound
volume, including those in the frequency range that is not
audible to humans. To address these limitations, we may
extend the length of the beacon, instead of increasing the
volume, which can compensate for the reduction in volume
without affecting the performance.

7.4 Performance in Realistic Settings

We offer further evidence on the real-world applicability of
AIM. The instrument we use to this end is a real deploy-
ment in a warehouse, whose layout is shown in Fig. 22. At
three different regions in the warehouse we compare the
localization accuracy of AIM with that of LinkTrack and
triangulation using distributed microphone arrays, which
is usually used in many acoustics-based localization meth-
ods [60], [61], [62].

Fig. 23 reports the results. In Region A, triangulation
achieves a fair accuracy with a mean error of 0.85m. In
comparison, AIM reports shows more accurate results with
a mean error of 0.46m. The reason is that AIM can fuse the
results from distributed microphone arrays to output more
precise and stable results. When the drone enters Region B
and Region C, triangulation becomes inapplicable, as it
returns an error above 5m, but AIM’s performance is not
affected. This is because our system only requires one LoS to
disambiguate or not even that, whenever the drone does not
perform yaw motion in NLoS. In contrast, for triangulation
to work, LoS from all microphone arrays is mandatory.

As for LinkTrack, we set the four UWB anchors at the
corners of the area to cover the whole warehouse, as shown
in Fig. 22. In such a deployment configuration, LinkTrack
performs poorly in all three regions because of the signal
loss caused by the obstacles in the warehouse.

8 DISCUSSION

We complete the discussion of AIM by articulating practical
issues of applicability and general use. Two aspects are
worth considering here.
Sensor fusion for indoor tracking. Different techniques
have their unique advantages and disadvantages. Multiple
techniques could be combined to improve performance.

Most existing commercial drones are already equipped
with multiple sensors, including ToF, IMU and cameras,

for accurate indoor localization. In the context of passive
drone tracking, sensor fusion is also feasible. For example,
one may deploy UWB nodes or cameras at the corner to
calibrate the drone’s location, while exploiting microphone
arrays in other places to reduce cost. Besides, in PLoS indoor
scenarios like Fig. 15(a), the drone can establish LoS paths
with at least two sensors in most cases. Therefore, a real-time
sensor fusion algorithm can be applied to achieve accurate
localization results. However, strict time synchronization
between different sensors and quick identification of LoS
paths are required.
Multi-drone tracking. When multiple drones enter the
same area, AIM can still track them separately if their BPF
are different. Otherwise, frequency aliasing happens. We
may handle this problem by borrowing ideas from exist-
ing works to discriminate different sound sources along
different propagation paths [44] or to modulate the unique
acoustic signature in the drone motor sound [18].

9 CONCLUSION

We presented AIM, a one-of-a-kind passive indoor drone
tracking technique that works with a single microphone
array, but may also be extended to support spaces with any
range and layout by deploying distributed microphone ar-
rays. AIM innovates the acoustic tracking technique in that it
fully exploits the dual acoustic channel from the drone to the
microphone array, based on an in-depth understanding of
the drone’s dynamics and the characteristics of its acoustic
signal. Through extensive experiments, we demonstrate that
AIM offers strikingly better performance than state-of-the-
art solutions, especially in NLoS settings, and enjoys stable
performance across complex indoor environments.
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