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ABSTRACT
We study how ambient energy harvesting may be used as an at-
tack vector in the battery-less Internet of Things (IoT). Battery-less
IoT devices rely on ambient energy harvesting and are employed
in a multitude of applications, including safety-critical ones such
as biomedical implants. Due to scarce energy intakes and limited
energy buffers, their executions become intermittent, alternating pe-
riods of active operation with periods of recharging energy buffers.
We reveal how, by exerting limited control on ambient energy one
can create situations of livelock, denial of service, and starvation,
without physical device access. We call these situations energy at-
tacks. We detail, analyze, and quantitatively demonstrate how these
attacks can be applied to battery-less IoT devices, and illustrate
their consequences on a system’s regular operation.
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1 INTRODUCTION
Ambient energy harvesting allows Internet of Things (IoT) devices
to eliminate their dependency on traditional batteries [12]. This
enables drastic reductions of maintenance costs and previously
unattainable deployments, even in safety-critical settings such as
biomedical implants [1, 18, 20, 25, 37].

Harvested energy is generally highly variable in time [12], yet
energy buffers, such as capacitors, need to be miniaturized as well
to limit device footprint, and therefore offer limited energy budgets.
System shutdowns due to energy depletion are unavoidable and
computing becomes intermittent [3]: periods of active execution
and periods of energy harvesting are unpredictably interleaved.
Computing intermittently. Fig. 1 shows an example execution.
The ambient charges the onboard capacitor until voltage 𝑉on is
reached that causes the device to power on. The device senses, com-
putes, and communicates as long as the capacitor charge remains
above a threshold𝑉off . The device then switches off, waiting for the
capacitor to reach 𝑉on again. This pattern may occur on tiny time
scales; computing simple error correction codes on a battery-less
IoT device may require as many as 16 active cycles [13].
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Figure 1: Example intermittent execution. Periods of active
computation and periods of charging the energy buffer alternate,
leading to an intermittent computing pattern.

Due to resource constraints, applications run with no operating
system support [3]. When the device powers off at 𝑉off , the system
state would normally be lost. Intermittently-computing IoT systems
use checkpointing [2, 9, 10, 13, 40, 53, 54, 61, 68] or task-based
programming [21, 51, 52, 56, 62, 70] to create persistent state on
non-volatile memory (NVM). These systems operate as the device
approaches 𝑉off , allowing devices to retain the application state
across energy failures.

Operations on NVM, however, are extremely energy hungry [55].
Their energy cost may reach up to 350% the cost of the application
processing, mainly due to the use of energy-hungry NVM technol-
ogy [68]. Using persistent state to cross energy failures has further
implications. When using FRAM as NVM, for example, wait cycles
may be necessary to synchronize read/write operations with the
MCU, further increasing energy consumption [64]. If the system
employs stateful peripherals, their state is also to be retained across
energy failures too [7, 11, 15, 54]. This increases the size of persis-
tent state that must include information that may not be reflected
in the system’s main memory, adding to the energy overhead.
Energy harvesting as attack vector. This paper is about a largely
unexplored direction: we study how a limited control on ambient
energy may steer intermittent executions in unintended ways.

The straightforward scenario consists, for example, in physically
blocking the solar radiation arriving at a solar panel that powers
the device, eventually impeding forward progress. Crucially, we
demonstrate that much more subtle situations exist. We generally
call these situations energy attacks. While such attacks are more
difficult to perform than just physically blocking a solar panel, they
are much harder to detect. Attackers using these methods gain
fine-grained control over their effects, which may help circumvent
or bypass defense and detection mechanisms.

We define the attack model and systematically analyze possible
energy attacks in Sec. 3. We experimentally demonstrate that en-
ergy attacks can exploit these vulnerabilities to create situations of
livelock, starvation, and denial of service. Unlike the straightforward
scenario above, we provide quantitative evidence that these attacks
create situations that are deceptively similar to legitimate execu-
tions. In Sec. 4, we provide real-world evidence of how practical are
energy attacks. We show that it takes no more than a few weeks for
M.Sc. students with no specific training to exercise energy attacks.

https://doi.org/10.1145/3642974.3652283
https://doi.org/10.1145/3642974.3652283


EuroSec ’24, April 22, 2024, Athens, Greece Luca Mottola, Arslan Hameed, and Thiemo Voigt

The evidence we provide in this paper is a stepping stone to
design detection and defense mechanisms, thus inspiring additional
efforts in this area.We end the paper with a discussion of our work’s
limitations and of the feasibility of energy attacks in Sec. 5, and
with pointers to follow-up research in Sec. 6 . Next, we illustrate
necessary background information and survey related work.

2 BACKGROUND AND RELATEDWORK
Our work intersects multiple areas. We provide here background
information and survey related works.
Power attacks in data centers. Our work resonates with power
attacks in data centers. With the increasing number of physical
servers, their power distribution systems tend to approach peak
capacities and power oversubscription is used to handle power pro-
visioning. This works as long as servers do not peak simultaneously.

Malicious workloads may generate power spikes on multiple
servers at the same time, which causes branch circuit breakers
to trip, leading to power outages [31, 48]. Virtual machine provi-
sioning [19] and side channels [19] are used to create abnormal
behaviors. Detection techniques include machine learning applied
to performance logs [19] and modeling user behaviors [48].

Common with our problem is that energy is part of the attack
vector. However, the technology is extremely different, for example,
in terms of workloads and hardware platforms. In contrast to the
attack model we describe in Sec. 3, attackers do not directly manip-
ulate the energy provisioning channel and need access to the target
data center or must be informed of its layout. The attacks we study,
however, do not require physical access to the target device.
Security in battery-powered IoT. Resource-constrained IoT de-
vices are difficult to secure due to resource constraints, which com-
plicates the use of mainstream security mechanisms [65].

Battery-powered IoT devices enable peculiar attacks, for example,
in an attempt to drain batteries [44, 59]. Low-power radios make IoT
devices vulnerable to denial of service attacks, for example, due to
intentional jamming [43]. Multi-hop networks require specialized
network stacks that open to new kinds of attacks, in particular at
the routing layer, motivating new security mechanisms ranging
from hardware-based solutions [60] to methods for attack detection
and mitigation that rely on machine learning [24, 63].

These approaches, unfortunately, falls short of expectations for
battery-less IoT devices, where energy constraints are way more
severe. Moreover, intermittent executions add a new dimension to
the problem that requires specialized solutions.
Intermittent computing. The prevailing architecture includes a
mixed-volatileMCU [64] with built-in NVM, and a capacitor to tame
fluctuations of energy intake. Such device configuration is seen in
both available platforms [36, 39] and concrete deployments [18, 26].

Specialized architectures also exist that use separate capacitors
of different sizes as energy buffers [23]. This allows the system
to strike a better trade-off between charging times and available
energy. Smaller capacitors are the first to reach𝑉𝑜𝑛 ; as this happens,
tasks that consume little energy, such as probing low-power sensors,
are immediately executed. Bigger capacitors take longer to reach
𝑉𝑜𝑛 ; their energy is eventually consumed by energy-hungry tasks,
such as controlling actuators or radio operations.

i-th
device  Vn,i(t), In,i(t)

energy 
harvesterambient

Va,i(t)

Ci(t)

Figure 2: System and attack model.

Checkpointing [2, 9, 13, 53, 54, 61, 68] or task-based program-
ming [21, 51, 56, 62, 70] is used to deal with energy failures. The
former consist in replicating the application state on NVM, where
it is retrieved back once the system resumes with sufficient energy.
The latter offer abstractions to define and manage persistent state,
while taking care of data consistency in case of repeated executions
of non-idempotent code [68]. Software techniques are also used to
handle peripheral states across energy failures [15] and to estimate
energy consumption of intermittent programs [4].
Security and intermittent computing. The security scenario
becomes uncharted territory here. The few existing solutions focus
on securing persistent state.

As an example, Krishnan et al. [45] demonstrate that persistent
state is vulnerable to sniffing, spoofing, or replay attacks. An at-
tacker may simply sniff persistent state by reading the contents
of the NVM using a debug port. Sniffing may be prevented by en-
crypting data on NVM, thus ensuring confidentiality, but does not
prevent an attacker from spoofing, that is, tampering encrypted
data, which threats the checkpoint integrity. By collecting several
checkpoints, attackers may also replicate the application execution.

To secure persistent state, Asad et al. [8] experimentally evaluate
the use of different encryption algorithms and ARM TrustZone pro-
tection. Krishnan et al. [47] build on this and propose a configurable
checkpoint security setting that leverages application properties to
reduce overhead. Ghodsi et al. [30] use lightweight algorithms [14]
for securing checkpoints, ensuring confidentiality. Valea et al. [67]
propose a SECure Context Saving hardware module inside the MCU.
In contrast, Grisafi et al. [32] present a hypervisor to manage and
protect checkpoints. Khrishnan et al. [46] present a generic secure
protocol and apply Authenticated Encryption with Associated Data
to protect checkpointing data.

Unlike the works above, we study new types of attacks realized
by exerting control on ambient energy provisioning.

3 ENERGY ATTACKS
We present first the system and attack model we adopt. Then we
present and analyze three novel energy attacks.

3.1 System and Attack Model
Fig. 2 illustrates the system and attack model we adopt. A resource-
constrained intermittently-computing IoT device is equipped with
multiple sensors and/or actuators, an MCU, a radio, and an energy
management circuitry attached to the output of the energy har-
vester and used to charge the local energy buffer. Such configuration
is seen in multiple battery-less IoT deployments [1, 18, 20, 37].

We model the energy coming from the ambient 𝑎 and arriving
at the energy harvester of node 𝑖 as a continuous signal of volt-
age 𝑉𝑎,𝑖 (𝑡). This describes the energy content made available by
the ambient to node 𝑖 at time 𝑡 . For simplicity, our description here
considers a single energy source. The corresponding analysis, how-
ever, applies no matter the number of energy sources, as long as
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the attack model is applicable to each of them. Relying on multiple
energy sources [49] may be, nonetheless, a way to defend against
energy attacks, as we hint in Sec. 6.

The energy harvester of node 𝑖 takes 𝑉𝑎,𝑖 (𝑡) as input and trans-
forms it into an energy signal of voltage 𝑉𝑛,𝑖 (𝑡) and current 𝐼𝑛,𝑖 (𝑡).
The latter is a function of 𝑉𝑛,𝑖 (𝑡) and of the equivalent resistance
offered by the charging circuitry at node 𝑖 . The energy signal de-
scribed by 𝑉𝑛,𝑖 (𝑡) and 𝐼𝑛,𝑖 (𝑡) charges the local energy buffer, even-
tually discharged while sensing, computing, or communicating. We
model the charge available in the energy buffer of node 𝑖 as 𝐶𝑖 (𝑡).

The attacker has no physical access to the devices and no knowl-
edge of the relation between 𝑉𝑎,𝑖 (𝑡) and 𝑉𝑛,𝑖 (𝑡) or 𝐼𝑛,𝑖 (𝑡). She can,
however, sniff packets, inspect their content, and intervene along
the path from the energy source to the energy harvester attached
to the device, including directly controlling the energy source. This
means the attacker can alter the value of 𝑉𝑎,𝑖 (𝑡) taken as input by
the energy management circuitry at node 𝑖 . We model this as a
function 𝑎𝑖 (𝑉𝑎,𝑖 (𝑡)), that is, a transformation 𝑎 from the voltage
domain to the same domain, specific to node 𝑖 .

An elementary example to cause a denial of service at node 𝑖 from
𝑡 ′ onwards is 𝑎𝑖 (𝑉𝑎,𝑖 (𝑡)) = 0, 𝑡 > 𝑡 ′, that is, the harvester at node 𝑖
receives no energy after 𝑡 ′. The energy buffer at node 𝑖 progressively
discharges because of application processing and capacitor leakage,
until the device persists the state before entering the charging phase,
as shown in Fig. 1. However, because 𝑎𝑖 (𝑉𝑎,𝑖 (𝑡)) = 0, 𝑡 > 𝑡 ′, that
is, there is no energy arriving at node 𝑖 later than 𝑡 ′, 𝐶𝑖 (𝑡) never
reaches 𝑉𝑜𝑛 again, and node 𝑖 never resumes the operation.

The attacker has access to application’s source code or can
reverse-engineer that from the binaries [66]. Codebases for battery-
less IoT systems, including and especially the ones used in real
deployments [1, 18, 25], are often public [6], including hardware
drivers [7, 11, 15]. Compilers [28] often require the entire source
code to perform full-program optimizations.

3.2 Evidence of Vulnerabilities
We systematically analyze and experimentally demonstrate three
vulnerabilities. Two target single devices; their individual placement
in space is therefore immaterial. The third one affects a whole
network. Energy attacks exploiting these vulnerabilities may lead
to livelocks, starvation, or denial of service.

Unless otherwise specified, we consider a TI MSP430FR5969
running at 1 MHz as target MCU and set 𝑉on to 3.3 V and 𝑉off
to 1.8 V, which is the most energy-efficient setting [5]. Whenever
communication is required, we employ a CC1101 transceiver. We
use different methodologies and tools, including real hardware,
numerical simulations, and time-accurate emulation.
Attack #1: static activation thresholds ⇒ livelock. The first
vulnerability is based on how working parameters of system soft-
ware for intermittent computing are determined. That allows an
attacker to create a situation of livelock, that is, a condition where
the system keeps repeating the same set of operations, and yet
makes no progress in the long run [22].

Established design processes for intermittent systems recom-
mend setting the activation threshold 𝑉on by striking a balance
between charging times and energy content when the system is
at 𝑉on [2, 10, 13, 23, 36, 40, 54, 61]. The former suggests a lower
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Figure 3: Generating an opposing RF energy signal by using a
second Powercast transmitter-receiver pair. The opposing signal
creates destructive interference at the device under attack, canceling
out the energy contribution of the legitimate Powercast transmitter.

𝑉on, whereas the latter pushes for a higher 𝑉𝑜𝑛 . In most existing
systems [2, 10, 13, 40, 54, 61], 𝑉on is statically set before deploy-
ment and does not necessarily guarantee that the energy content is
sufficient to make progress in the application logic and persist the
new state before an imminent energy failure. The ambient is sup-
posed to provide some energy also during the active times, partially
replenishing the energy buffer while the system progresses [42].

An attackermay, however, systematically block the energy source
at a node 𝑖 while the device is computing, that is, he creates a trans-
formation 𝑎 such that 𝑎𝑖 (𝑉𝑎,𝑖 (𝑡)) = 0, 𝑡 ′ > 𝑡 > 𝑡 ′′, where 𝑡 ′ and 𝑡 ′′
are the points in time where the system reaches𝑉on and𝑉off , respec-
tively. As this transformation targets the individual device, it does
not require any specific placement of a node with respect to the oth-
ers or to the energy source. We demonstrate this situation using a TI
MSP430FR5969 Launchpad and two Powercast transmitter-receiver
pairs, running HarvOS [13], an existing checkpointing system for
intermittent computing. The same situation can be achieved, for
example, by controlling the incident solar radiation [12].

While the first Powercast transmitter normally powers the device,
the attacker implements function 𝑎 by generating an opposing sig-
nal with the second Powercast receiver-transmitter pair, as shown
in Fig. 3. We achieve this by generating a signal in phase opposition
with the regular one, yielding destructive interference [50, 58]. We
describe in Sec. 4 how phase alignment can be empirically achieved.
By doing so, the attacker cancels out the energy contribution of the
legitimate Powercast transmitter. The attacker identifies 𝑡 ′ and 𝑡 ′′
by correlating wireless traffic to different points in the code.

Fig. 4 shows an example execution once the phase alignment is
achieved. Without any contribution of energy during the active
times and a 𝑉on setting that does not account for this, the system
approaches 𝑉off with insufficient energy to persist state, that is,
no new checkpoint is created. When the system reaches 𝑉on again,
HarvOS resorts to the previous checkpoint, that is, the one that
does not include the progress achieved between 𝑡 ′ and 𝑡 ′′. The
previous operations are then executed again, and with the attacker
replaying the same function 𝑎 once more, the system approaches
𝑉off again with insufficient energy to persist the state. As long as
the attacker keeps doing so, the system continues to restart from
the same checkpoint, each time executing the same operations, and
yet making no progress in the long run.

Note that in the case of RF energy harvesting, this attack may
occur not just without physical access to the device, but also without
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pattern is identical every time the device is computing: it always
resumes from the same checkpoint and repeats the same set of instruc-
tions, without ever making progress since there is no energy left to
persist the state when reaching 𝑉off .
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Figure 5: A case of starvation generated by purposely sus-
pending energy provisioning. The largest capacitor 𝐶3 is never
fully charged and the associated task never executes. This task stops
consuming data from a non-volatile queue that eventually overflows.

being anywhere close to it. As long as the attacker is in the (wireless)
range of both the legitimate Powercast transmitter and of the device
under attack, as shown in Fig. 3, she may detect both the incoming
energy wave and regular network packets. With this information,
the attacker may eventually generate the canceling energy signal
using the procedure outlined in Sec. 4. In our setup, we manage
to achieve this as long as the attacker is on either the same, or on
adjacent floors than the device under attack, in a regular university
building occupying approximately a 120m x 50m horizontal surface.
Situations when the ambient provides no energy during executions
may happen, yet not systematically [22, 61].
Attack #2: skewed energy management⇒ starvation.When
applied to a multi-capacitor architecture, this attack creates a sit-
uation we characterize as starvation. An attacker may ration the
energy arriving at the harvester so that the smaller capacitors reach
𝑉𝑜𝑛 more often than the bigger ones, while relying on the larger
leakage of the latter to further slow down their charging.

This makes producer tasks, such as probing low-power sensors
usually powered by the smaller capacitors, push data in the local
data buffers more rapidly than tasks powered by larger capacitors,
such as radio transmissions, which consume the data. The local
buffers eventually overflow. To tune this attack, one can use simple
energy profiling tools [2]. From an outsider perspective, the loss of
data due to this attack is indistinguishable from other data losses,
for example, due to packet losses during wireless transmissions.

To gain a precise understanding of the execution, we investigate
this attack using a custom version of the Siren MSP430 emula-
tor [27] we develop, which implements a multi-capacitor hardware

architecture [23] and can re-play existing energy traces from an RF
energy source [61]. The entire codebase of the simulator and the
data enabling the study that follows are available [34]. We use three
different capacitors 𝐶1, 𝐶2, and 𝐶3, with 𝐶3 > 𝐶2 > 𝐶1. We use
𝐶1 for sensing from a low-power temperature sensor, 𝐶2 to locally
process the data, and 𝐶3 for radio operation.

Fig. 5 shows the voltage levels at the three capacitors in an exam-
ple execution. By periodically interrupting energy provisioning for
sufficiently long that𝐶3 is never fully charged, the local data buffer
eventually overflows. To achieve this in practice, the same tech-
nique as in the previous attack is applicable, which only requires
generating a canceling signal that prevents RF energy harvesting to
happen. The same considerations about the location of the attacker
compared to the device under attack apply here as well.

A situation where buffers between tasks overflow is surprisingly
easy to reach, due to technology limitations. Currently available
NVMs are extremely limited in size; therefore, the local data buffers
are normally dimensioned to store just a handful of entries and it
does not take long until they fill up. These occurrences are some-
times reported also for systems that operate normally [1], yet this
attack accelerates the likelihood of these occurrences.
Attack #3: unwanted synchronization⇒ denial of service.We
investigate whether vulnerabilities exist that impact the network
as opposed to single devices. We eventually figure out that energy
attacks may be setup so that the transmissions of two or more
devices systematically collide, degrading system performance.

In most IoT applications [1, 18, 20, 37], homogeneous devices
are deployed in large numbers with identical hardware and execute
the same sense-process-transmit loop [1, 18, 20, 37]. Co-located
devices are therefore subject to almost identical energy patterns
from the ambient [12, 38, 57]. An example is when relying on light
sources [38, 57]. In these settings, 𝑉𝑎,𝑖 (𝑡) is the same for all 𝑖 .

The simplest way of taking advantage of this configuration is
first to block the energy intake for the nodes under attack, that is,
𝑎𝑖 (𝑉𝑎,𝑖 (𝑡)) = 0,∀𝑡 > 𝑡 ′. Eventually, 𝐶𝑖 (𝑡 ′′′) = 0 for some 𝑡 ′′′ > 𝑡 ′

for all nodes 𝑖 under attack, because even if the devices do not
compute, capacitors self-discharge because of leakage currents. At
this point the attacker removes the blockage, restoring the original
energy intake with 𝑎𝑖 (𝑉𝑎,𝑖 (𝑡)) = 1, ∀𝑡 > 𝑡 ′′′. All capacitors start
charging in the same way and devices start operating simultane-
ously when they reach 𝑉𝑜𝑛 . At this point, they are synchronized.

To investigate this situation, we develop a custom discrete-event
simulator using SimPy. The simulator includes accurate numerical
models of the essential electronics, including the energy harvester,
the energy management circuitry attached to the output of the
energy harvester, the capacitor with its leakage, and a load that
models the IoT device. The input to the simulator is a real-world
voltage trace from a solar panel deployed indoor [4]. As for the
second attack, the entire codebase of the simulator, along with the
data enabling the study that follows, is available [35].

Fig. 6(a) shows an execution of two devices 1 and 2 where the
green curve represents 𝑉𝑛,1 (𝑡) = 𝑉𝑛,2 (𝑡), whereas the red and blue
curves represent 𝐶1 (𝑡) and 𝐶2 (𝑡), respectively. The attacker blocks
the energy source at time 𝑡 ′ = 1 s; both 𝐶1 and 𝐶2 decrease rapidly
while the devices continue the execution. When device 2 dumps the
state on NVM and switches off at time 𝑡 ′′ = 7 s, being 𝑎1 (𝑉𝑎,1 (𝑡)) =
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Figure 6: Denial of service created by artificially synchroniz-
ing nodes. By exploiting capacitor leakage, an attacker synchronizes
nodes so their packet transmissions systematically collide.

𝑎2 (𝑉𝑎,2 (𝑡)) = 0, 𝑡 ′ < 𝑡 < 𝑡 ′′′, 𝑡 ′′′ = 35 s, and provided the duration
of the blockage Δ𝑡 = 𝑡 ′′′ − 𝑡 ′ is sufficiently large, capacitor leakage
eventually leads to 𝐶1 (𝑡) ≈ 𝐶2 (𝑡) ≈ 0.

At time 𝑡 ′′′, the attacker removes the blockage, thus𝑎1 (𝑉𝑎,1 (𝑡)) =
𝑎2 (𝑉𝑎,2 (𝑡)) = 1, 𝑡 > 𝑡 ′′′. From now on, the two capacitors charge
up in the same way, as they are subject to the same ambient energy:
the red and blue curves in Fig. 6(a) almost perfectly overlap. The
two devices reach 𝑉𝑜𝑛 at the same time and restart their execution
by going through the same operations at the same times, leading
to transmitting simultaneously, generating a packet collision.

The attacker has no information on 𝐶1 or 𝐶2. The attack may
be unsuccessful if Δ𝑡 is too small; for example, because 𝐶1 and
𝐶2 do not arrive at roughly the same energy content, which is a
prerequisite for generating the synchronous execution afterwards.
The attacker may use increasing Δ𝑡 until successful. Even if the
nodes are not perfectly synchronized, moving their transmissions
closer in time puts increasing pressure on collision avoidance and
backoff techniques, which are confronted with an artificial situation
that would otherwise be extremely rare. Network throughput and
packet latency are consequently degraded.

Many traits of this scenario are found in real deployments [1, 18,
20, 37]. Relying on the assumption that energy intakes at co-located
nodes are similar is not just common, but even used as a basis to
implement communication protocols in networks of intermittently-
computing IoT devices [29]. With this condition, playing this attack
in practice may be as simple as blocking the single energy source
that the nodes under attack rely on. As an example, in an indoor
setting that uses light sources to harvest energy, controlling the
lights by tapping into any of the modern building management
systems [41, 69] may provide a suitable entry point.

Two key parameters that determine the probability of success
are Δ𝑡 and capacitor size. Using our simulation tool, we evaluate

their impact on the attack’s success probability with two nodes.
The results are shown in Fig. 6(b). As expected, the probability of a
successful attack increases with Δ𝑡 . This is because the longer is
the time the attacker blocks the energy source, the higher are the
chances that eventually𝐶1 (𝑡) ≈ 𝐶2 (𝑡) ≈ 0. With a smaller capacitor,
smallerΔ𝑡 are sufficient for a successful attack, as𝐶1 (𝑡) ≈ 𝐶2 (𝑡) ≈ 0
is reached faster. Further quantitative data is available [35].

4 ENERGY ATTACKS IN PRACTICE
Although energy attacks on real deployments have, to the best of
our knowledge, not been observed, we provide here evidence that
such attacks could occur in practice and offer an indication of the
skills required and corresponding level of expertise.
Setting. Prior to the systematic study presented earlier, we recruit
eight computer engineering M.Sc. students1. They attended courses
in low-power wireless networks, embedded programming, and IoT
but have no earlier training on battery-less IoT devices. We hand
them reading material on existing techniques [13, 52] and provide
a TI MSP430FR5969 Launchpad attached to either a 40 x 40 mm
polycrystalline silicon solar panel or to a Powercast receiver, plus
a two-capacitor energy subsystem [23] that we emulate using an
Arduino Uno board as energy controller. Each Powercast receiver is
paired to a single Powercast transmitter. Each students can choose
which energy harvester to use.

We give the students the C implementation of a typical sense-
process-transmit loop [1, 18, 20, 37]. After a single day of training,
the students can run the code on the Launchpads. Six students use
HarvOS [13] and only minimally refactor the original application
code. Out of the six students, four use the solar panel and the other
two use the Powercast system. The remaining two students use the
solar panel and and split the code in tasks, using Alpaca [52], an
existing task-based programming abstraction.

We challenge the students with the following goal:without chang-
ing the code, disrupt the application without completely halting the
system or physically accessing the device. The students work indepen-
dently and are not allowed to exchange ideas, information, or code.
We also make sure they cannot rely on backchannel information
from each other, for example, by sniffing wireless transmissions. Be-
sides observing their work, we conduct semi-structured interviews
at the end of every day. The transcripts are available [33].
Outcome. The students recognize that, without physical access
to the device, energy harvesting is a potential attack vector. What
they eventually setup are, interestingly, rudimentary instances of
some of the energy attacks we demonstrate in Sec. 3.

After two full days of experimentation, five of the six students
using HarvOS figure out they can break the system by creating a
livelock, similar to attack #1. During the interview, four students
explicitly mention“livelock”, while the fifth student intuitively de-
scribes what is, in fact, a livelock. They spend the following days
trying to create the conditions that lead to the livelock. Depending
on the harvesting technology, they end up conceiving different
techniques to achieve this.

Two students using the solar panel succeed halfway through the
third day by intentionally alternating periods of blocking the energy
source with periods of regular operation, based on information from
1We obtained IRB approval from their institution. They are not compensated.
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sniffed packets indicating at what stage is the execution. The third
student using the solar panel succeeds using a similar technique
half a day later. After two weeks, one student succeeds in making
the attack automatic. Using a light sensor on a separate device, he
estimates the amount of energy harvested by the target device and
accordingly tunes the periods of energy blockage.

After about five days of work, the other two students using
HarvOS and the Powercast system create a setup with a second
Powercast receiver-transmitter pair generating a signal in phase
opposition with the regular one, yielding destructive interference
similar to Sec. 3. To identify the “right” phase, they attach the second
receiver to a laptop that controls the second Powercast transmitter.
The laptop replicates the regular signal obtained from the attached
Powercast receiver with a variable phase within a [−_/2, _/2] in-
terval, at small increments of 𝛿 . Sniffing packets from the target
device allows them to determine when to stop the process, which
corresponds to when they hit the “right” phase that almost cancels
out the original energy signal [50, 58]. By doing so periodically,
they eventually achieve the same effect as with the solar panel.

It takes a bit more for the two students using solar panels and
Alpaca to realize they can fiddle with the multiple capacitors. After
about two weeks, each of them creates a setup that blocks the
energy arriving at the largest capacitor to slow down the task that
takes energy from that. This, combined with the larger leakage
compared to the smaller capacitor, makes the task powered by the
larger capacitor progressively starve. As the tasks powered by the
smaller capacitors continue producing data almost at the regular
rate, yet the tasks powered by the larger capacitors do not consume
data at comparable pace, the buffers between the tasks eventually
overflow, creating an instance of attack #2.
Take-away. In amatter of weeks, seven computer engineeringM.Sc.
students out of eight, with no previous exposure to the technology
at stake, managed to successfully setup two of the energy attacks
described earlier. The students were randomly selected and had
no special equipment available other than what is normally found
in an embedded system lab of any technological university. Likely
because research efforts in intermittent computing concentrate on
issues such as maintaining forward progress, understanding the
related security issues is much less investigated. This includes both
investigating known attacks and exploring new types of threats.

5 DISCUSSION
The feasibility of energy attacks depends not just on the abilities of
the attacker, but also on the energy source.

Certain energy sources are simple to control, such as RF en-
ergy: a Powercast system can be hooked to a regular machine and
controlled programmatically. Other sources may be controlled un-
der given conditions. Light, for example, is controllable in indoor
environments: an attacker may gain control of the lighting infras-
tructure in a building, as it is often assumed in visible light com-
munications [41, 69], and use that to convey the attack. This setup
should, however, work in combination with other light sources that
cannot be as easily controlled, for example, solar radiation from the
outside. Energy sources also exist where the physical medium can-
not change sufficiently rapidly, for example, temperature gradients.
These sources are unlikely to be attack vectors.

An orthogonal dimension relates to time. Depending on the
source, the attacker may need a variable number of attempts before
an attack succeeds. For instance, how rapidly attack #1 using RF
energy is going to succeed depends on the choice of 𝛿 , which drives
the search of the phase corresponding to the opposing signal. If 𝛿
is too large, the procedure may never yield the conditions for the
attack to succeed; the attacker then chooses a smaller 𝛿 and repeats
the procedure. A similar consideration applies to attack #2 and Δ𝑡 .

Lacking source code information may make setting up certain
energy attacks extremely laborious, whereas the same information
is not as fundamental in other cases. For attack #3, for example, it
would suffice to know that the application logic is the same across
all devices and unfolds as the usual sense-process-transmit loop.

6 OUTLOOK
We studied how exerting limited control on ambient energy provi-
sioning to battery-less IoT devices may be used as an attack vector.
We detailed, analyzed and provided experimental evidence of three
types of novel energy attacks causing livelock, denial of service,
and starvation. We also provided evidence of the skills required
and corresponding expertise to exercise these attacks in practice.

Our work fosters follow-up efforts in at least two directions.
First, energy attacks must be detected. This means understanding
when ambient energy provisioning does not follow the “natural”
patterns, which appears as a case of anomaly detection [17]. Three
peculiar requirements exist: detecting energy attacks i) accurately
and ii) with low latency, while doing so iii) right on the IoT devices,
as opposed to an external system, to spare the energy overhead
of radio operations. The problem is difficult because, for example,
energy forecasting techniques [16] are not applicable, in that instead
of predicting future energy supplies, we are to understand when
current energy supplies follow abnormal patterns.

Second, the system should defend against energy attacks, which
is a manifold problem. For example, key performance metrics are in-
herently application-specific. Defense techniques may be designed
that generally tame the negative effects of energy attacks, indepen-
dent of their specific nature, or be tailored to specific attacks. As
the feasibility of energy attacks is tied to the energy source, com-
bining multiple energy sources [49] may be an option to defend,
for example. How exactly to combine energy-rich sources that may
be attack vectors, with energy-poor sources that are exceedingly
difficult to employ as such, looks however non-trivial.
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