
EXTREMIS: Static Frequency Switching
for Battery-less Devices

Veronica Rovelli
Politecnico di Milano

Italy
veronica.rovelli@mail.polimi.it

Andrea Maioli
Politecnico di Milano

Italy
andrea1.maioli@polimi.it

Luca Mottola
Politecnico di Milano

Italy
luca.mottola@polimi.it

ABSTRACT

We present EXTREMIS, a compile-time pipeline that improves en-
ergy consumption of battery-less devices by ensuring that memory
operations occur at the most efficient device frequency setting.
Different memory operations incur different energy consumption
depending on a device’s current operating frequency. Volatile mem-
ory operations, for example, are generally most efficient at the
highest frequency, whereas non-volatile memory operations may
require wait cycles that make lower frequency setting more energy
savvy. EXTREMIS reorders the instructions without violating data
dependencies and inserts instructions to change the operating fre-
quency depending on program flow and memory access patterns,
reconciling their energy overhead with the gains they possibly
enable. This is achieved by solving a series of optimization prob-
lems at compile-time. Our evaluation shows that, compared to a
static frequency setting, EXTREMIS reduces a program’s energy
consumption by up to 11%, without incurring in any extra cost.

CCS CONCEPTS

• Computer systems organization→ Embedded software.

KEYWORDS

Frequency scaling, non-volatile memory, intermittent computing.

ACM Reference Format:

Veronica Rovelli, Andrea Maioli, and Luca Mottola. 2024. EXTREMIS: Static
Frequency Switching for Battery-less Devices. In Proceedings of ACM Con-
ference (Conference’17). ACM, New York, NY, USA, 7 pages. https://doi.org/
10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Battery-less embedded sensing devices unlock new deployment
scenarios [3, 14, 21, 37] while reducing environmental impact and
maintenance costs [7]. However, ambient energy sources are ir-
regular and provide limited energy [12] and devices frequently
experience unpredictable energy failures. Computations become
intermittent [7]: executions unfold between periods of active com-
putation and periods to recharge energy buffers.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2024 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Energy failures cause devices to lose the content of volatile mem-
ories. To ensure forward progress, devices must periodically save
their computational state onto Non-Volatile Memory (NVM) and
restore it after energy failures [10, 11, 13, 27, 28, 34, 41]. Mixed-
volatile platforms [22] facilitate state-retention operations, as they
feature directly addressable NVMs.
Problem. Ensuring battery-less devices operate in the most energy-
efficient setting is crucial. One key operating parameter is operating
frequency [5]. Existing approaches dynamically scale this parameter
depending on available energy [4, 8, 9, 17]. As we shown in Sec. 2,
they consider the highest operating frequency as optimal, as this
generally results in lower energy consumption per clock cycle.

Existing works, however, overlook the difference between MCU
execution and accesses to peripherals and NVM. MCUs generally
run faster than the latter. Accesses to peripherals or NVM while
the MCU runs faster require wait cycles, wasting time and energy.
Consequently, the highest operating frequency is not always the
most efficient setting, as a lower operating frequency that incurs no
wait cycle may improve energy consumption for specific operations.

We focus on NVM accesses. Battery-less devices can execute
three types of memory operations: volatile memory accesses, non-
volatile memory accesses, and operations on registers. These oper-
ations have different energy consumption due to different access
speeds. Consider the MSP430FR2355 [23] MCU, which features a
register-configurable operating frequency up to 24𝑀𝐻𝑧 and FeRAM
as built-in NVM. Accesses to SRAM complete within the same cycle
they execute. The 24𝑀𝐻𝑧 setting is the most efficient operating fre-
quency for this, consuming 201𝑝𝐽 per access at 3𝑉 . Instead, FeRAM
has a maximum access speed of 8𝑀𝐻𝑧 and accesses at higher fre-
quencies require wait cycles, as the FeRAM controller lacks a data
cache to mitigate access latency [24]. At 24𝑀𝐻𝑧, one access to
FeRAM costs 604𝑝 𝐽 in contrast to 320𝑝𝐽 at 8𝑀𝐻𝑧.

Statically selecting a single operating frequency for the entire
program thus results in sub-optimal performance, as some oper-
ations necessarily execute at a non-optimal setting. In contrast,
dynamically adapting the frequency setting requires information
on the operation being executed, which existing techniques do
not account for, as they mainly focus on available energy. Further,
switching frequency at runtime introduces an energy overhead, as
the device needs to execute additional instructions necessary to
alter the value of frequency-regulating registers. For example, the
MSP430FR2355 requires three operations to do so.
Contribution. We design EXTREMIS (Efficient eXplorations and
Ttransformations for fREquency optiMizations in Intermittent
Systems): a compile-time pipeline that analyzes the program’s
instructions, evaluate all possible instructions reorderings, and
group together the instructions with the same optimal operating

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Veronica Rovelli, Andrea Maioli, and Luca Mottola

frequency without altering data dependencies. The key idea is
maximizing the number of instructions executed at their optimal
frequency while minimizing the number of frequency-switching
operations. Sec. 3 describes how we achieve this by means of a
series of integer linear programming (ILP) problems that account
for available operating frequencies and their energy consumption,
NVM access latency, and switching costs.

We implement a prototype of EXTREMIS and we evaluate its
performance in energy consumption and workload completion time
using ScEpTIC [30, 32], a state-of-the-art emulation environment
for intermittent systems. We compare EXTREMIS against two static
frequency configurations; one minimizes the energy consumption
of NVM accesses and the other does the same for volatile memory
accesses. As we articulate in Sec. 4, EXTREMIS demonstrates to
energy gains by up to 11%, while reducing the time to complete the
given workload and without introducing extra costs.

2 RELATEDWORK

Research in intermittent computing concentrates on efficiently en-
suring forward progress, either using checkpointing techniques [10,
11, 13, 25, 29, 34] or task-based programming abstractions [16, 27, 28,
41]. Techniques to slice or reduce the size of program state [6, 29, 40]
or efficiently map memory accesses to different memory types also
exist [31]. Our work complements these efforts, as it reduces energy
consumption during program execution.

Works improving the energy consumption of running code also
exist. These are not necessarily specific to intermittent computing
but may be applied in this domain nonetheless. They vary device
duty cycles and MCU operating modes [33, 38, 39], use maximum
power point tracking to maximize harvested energy [9, 36], or
dynamically tune devices operating voltage and frequency to en-
sure optimal performance [8, 17]. Other techniques [26, 33, 38]
ensure devices achieve energy-neutrality by tuning sensors sam-
pling rates [33] and data transmit rates [38].

Closest to our efforts are dynamic frequency and voltage scaling
techniques for intermittent computing [4]. Because of the rapid
sweeps of the MCU voltage operating range that occur at every
active cycle, better energy efficiency may be achieved if the MCU
operates at the most efficient frequency setting based on the current
capacitor voltage [5]. Custom hardware is necessary to achieve
this functionality, coupled with a dedicated software driver, to
compensate the lack of built-in hardware support [4].

The unique trait of our work is to capture how the most efficient
frequency setting changes depending on the kind of memory op-
eration, independent of current capacitor charge. This orthogonal
dimension is not considered in other works and makes our efforts
largely complementary compared with existing literature.

3 EXTREMIS

As we argue in Sec. 1, the optimal program operating frequency
changes throughout the computation, depending on memory access
patterns. We call 𝑓base the operating frequency that, when statically
set for the entire program execution, results in best energy per-
formance, whereas we call 𝑓perf the operating frequency that can
possibly produce a performance gain for specific instructions, yet is

globally sub-optimal. EXTREMIS sets 𝑓base as the default frequency
and temporarily switches to 𝑓perf whenever convenient.

3.1 Problem

We express the energy required to execute a sequence of instruc-
tions 𝑆 at frequency 𝑓 as

𝐸 (𝑆, 𝑓) =
∑︁

𝑥∈{vm,nvm,reg}
𝑛𝑥 · 𝑒𝑥 (𝑓) · (1 +𝑤𝑐 (𝑥, 𝑓)) (1)

where 𝑥 represents the operation type, that is, 𝑣𝑚 and 𝑛𝑣𝑚 for in-
structions accessing volatile and non-volatile memory, respectively,
and 𝑟𝑒𝑔 for register operations; 𝑛𝑥 is the number of instructions
of type 𝑥 in sequence 𝑆 ; 𝑒𝑥 (𝑓) is the energy for executing an op-
eration of type 𝑥 at frequency 𝑓 ; and 𝑤𝑐 (𝑥, 𝑓) is the number of
additional wait cycles required to execute an operation of type 𝑥 at
frequency 𝑓 . Usually,𝑤𝑐 (𝑥, 𝑓) > 0 only if 𝑥 = 𝑛𝑣𝑚 and 𝑓 is greater
than the maximum frequency supported by NVM, as battery-less
devices usually lack a data cache for non-volatile memory [22, 24].

Given a sequence of instructions 𝑆 executing at 𝑓base , we execute
it at 𝑓perf only if the performance gain exceeds the energy costs of
frequency switching. This requires setting a series of registers and
can be computed as 𝑒𝑠𝑤𝑖𝑡𝑐ℎ (𝑓) = 𝑛𝑠𝑤𝑖𝑡𝑐ℎ · 𝑒𝑟𝑒𝑔 (𝑓), where 𝑛𝑠𝑤𝑖𝑡𝑐ℎ

is the number of operations required to switch the frequency and
𝑓 is the frequency when the switch occurs. This cost is paid twice,
one to set the frequency to 𝑓perf and one to set it back to 𝑓base , as
this is the default frequency the programs run at. Therefore, we
switch the operating frequency whenever

𝐸 (𝑆, 𝑓base) − 𝐸 (𝑆, 𝑓perf) > 𝑒𝑠𝑤𝑖𝑡𝑐ℎ (𝑓perf) + 𝑒𝑠𝑤𝑖𝑡𝑐ℎ (𝑓base) (2)

Evidence shows that programs include very short sequences of
operations of the same type [40], and sequences containing oper-
ations of different types may result in sub-optimal performance
when executing either at 𝑓base or 𝑓perf , as a frequency is optimal
for only one operation type. Despite the simplicity of Eq. 2, isolat-
ing sequences of instructions that lead to a performance increase
through frequency switching is non-trivial.

We reorder instructions and place frequency switching opera-
tions to maximize the number of instructions executing at their
optimal setting. Next, Sec. 3.2 describes the EXTREMIS compile-
time pipeline; Sec. 3.3 and Sec. 3.4 illustrate step⟨2⟩ and step⟨3⟩.

3.2 Compile-time Pipeline

Fig. 1 shows the compile-time pipeline of EXTREMIS, which is in-
dependent of forward progress mechanisms and target architecture.
EXTREMIS only requires support for dynamic frequency switching
through dedicated instructions, such as altering registers [22]. It
takes two inputs: a platform model and a program. The platform
model specifies the supported operating frequencies, the instruc-
tions controlling the operating frequency setting, the maximum
speed of each memory type, and an energy model of the different

Profile Tag Meaning

𝐸_𝐿𝑂𝑂𝑃 (𝑛) The loop usually executes at least 𝑛 times.
𝐸_𝐵𝑅𝐴𝑁𝐶𝐻 (𝑟) The branch execution ratio is 𝑟 .
𝐸_𝑆𝐴𝑉𝐸 (𝑛𝑎𝑚𝑒, fixed) The function 𝑛𝑎𝑚𝑒 saves the program state; fixed specifies

if basic blocks containing the routine can be reordered.
𝐸_𝑅𝐸𝑆𝑇𝑂𝑅𝐸 (𝑛𝑎𝑚𝑒) The function 𝑛𝑎𝑚𝑒 restores the program state.

Table 1: EXTREMIS profile tags.

EXTREMIS: Static Frequency Switching for Battery-less Devices Conference’17, July 2017, Washington, DC, USA

STEP 2

Code
Reordering

+
Frequency
Groups

Partitioning
+

Identification
of Potential
Switching
Locations

STEP 0

Translation to
Intermediate

Representation
+

Basic Block
Partitioning

+
Creation of

Control Flow
Graph

STEP 1

Identification
of

fbase and
fperf
+

CFG
Augmentation

STEP 3

Consolidation
of Switching
Locations

STEP 4

Replacement
of Frequency
Placeholders

+
Compilation

of Final
Binary

.C
EXTREMIS
Profile Tags

Platform
Model

FGi FGi

Figure 1: EXTREMIS compile-time pipeline.

device operations for every supported operating frequency. This
information is normally found in platform data sheets.

We ask developers to instrument the source codewith EXTREMIS
profile tags, shown in Tab. 1. These are macros to specify program-
specific information, consisting of the minimum number of ex-
pected iterations of a loop (𝐸_𝐿𝑂𝑂𝑃) and the execution ratio of
each branch of conditional statements (𝐸_𝐵𝑅𝐴𝑁𝐶𝐻). This informa-
tion may be obtained through code profiling or static analysis [5].

At step⟨0⟩, EXTREMIS transforms the program source code into
an intermediate representation close to machine code, yet with no
architecture-specific elements, such as register names. During this
step, EXTREMIS partitions the program into basic blocks, consisting
of sequences of operations with a single entry and exit point and
builds the program control flow graph (CFG).

At step⟨1⟩, we determine 𝑓reg_vm as the most efficient frequency
for register operations and volatile memory accesses, and 𝑓nvm as
the maximum operating frequency for NVM accesses with no wait
cycles. EXTREMIS analyzes the energy cost of each basic block at
𝑓reg_vm or 𝑓nvm, and uses platform model information and Eq. 1 to
determine the default program operating frequency 𝑓base between
𝑓reg_vm or 𝑓nvm. The other frequency is set to 𝑓perf and is used
to improve performance. If 𝑓base is higher (lower) than 𝑓perf , the
next steps evaluate whether decreasing (increasing) the operating
frequency. Based on this, EXTREMIS augments the program CFG
with metadata including the cost of each instruction at 𝑓base or 𝑓perf
and profiling information retrieved from profile tags.

Step⟨2⟩ identifies potential locations for frequency switch opera-
tions. For every basic blocks, we maximize instructions executing
at their most efficient operating frequency while minimizing fre-
quency switching costs. Fig. 2 shows an example, where 𝑓perf is the
optimal frequency of blue instructions, whereas 𝑓base is the optimal
frequency of the red ones. For simplicity we only show memory
accesses. EXTREMIS reorders instructions to group together those
with the same optimal operating frequency without affecting data
dependencies. In Fig. 2, EXTREMIS moves instruction 2 before in-
struction 4 and instruction 7 after instruction 4, retaining the data
dependencies between instructions 1 − 8 and 5 − 6.

Next, EXTREMIS partitions the reordered instructions into fre-
quency groups (𝐹𝐺1, ..., 𝐹𝐺𝑛), consisting of instructions that execute
at the same operating frequency. In Fig. 2, EXTREMIS partitions the
instructions into three frequency groups. Any two successive fre-
quency groups 𝐹𝐺𝑖 and 𝐹𝐺𝑖+1 execute at two different frequencies,
or their instructions would be in the same frequency group. Be-
tween 𝐹𝐺𝑖 and 𝐹𝐺𝑖+1, EXTREMIS inserts a frequency switch place-
holder 𝑝𝑖 , which indicates a location where to switch the frequency.
Frequency 𝑝𝑖 is the optimal frequency of the subsequent frequency

group 𝐹𝐺𝑖+1. In Fig. 2, EXTREMIS inserts two placeholders, 𝑝1 and
𝑝2 to switch the frequency to 𝑓perf and 𝑓base , respectively.

To ensure each basic block starts and ends at the default oper-
ating frequency 𝑓base , EXTREMIS ensures there is an odd number
of frequency groups. When the optimal frequency of the first fre-
quency group 𝐹𝐺1 is 𝑓perf , EXTREMIS inserts a placeholder before
𝐹𝐺1 to switch to 𝑓perf . After the last frequency group 𝐹𝐺𝑛 when
𝑓base is not its optimal operating frequency, EXTREMIS similarly
inserts a placeholder to switch back to 𝑓base . This ensures each basic
block always starts at 𝑓base . The resulting partitioning ensures that
each frequency group 𝐹𝐺𝑖 execute at 𝑓base (𝑓perf) if 𝑖 is odd (even).

EXTREMIS achieves the result in Fig. 2 by solving an ILP problem
that evaluates all possible reorderings of basic block’s instructions
that do not invalidate data dependencies, inserts placeholders at pro-
gram’s locations where a frequency switch increases performance
using Eq. 2, and computes the resulting execution cost using Eq. 1.
For each basic block, EXTREMIS keeps the solution that minimizes
the execution energy, consisting of the most efficient frequency
configuration. Further details are available in Sec. 3.3.

Step⟨3⟩ aims at fine-tuning the output of step⟨2⟩, removing re-
dundant placeholders. To do so, we analyze the program at a higher
granularity than step⟨2⟩ and target all pairs of frequency groups
(𝐹𝐺𝑥 , 𝐹𝐺𝑦) such that 𝐹𝐺𝑥 is the last frequency group of a basic
block 𝐵𝐵𝑖 and 𝐹𝐺𝑦 is the first frequency group of the subsequent
basic block 𝐵𝐵𝑖+1. Both 𝐹𝐺𝑥 and 𝐹𝐺𝑦 necessarily execute at 𝑓base .
The reasoning here is opposite compared to step⟨2⟩: we remove the
frequency switch operations after 𝐹𝐺𝑦 and before 𝐹𝐺𝑥 whenever
they produce a cost higher than the additional energy of executing
𝐹𝐺𝑥 and 𝐹𝐺𝑦 at 𝑓perf instead. This entails checking that

2 ∗ 𝑐𝑠𝑤𝑖𝑡𝑐ℎ (𝑓base) > 𝐶 (𝐹𝐺𝑥 , 𝑓perf) −𝐶 (𝐹𝐺𝑥 , 𝑓base) +
+𝐶 (𝐹𝐺𝑦, 𝑓perf) −𝐶 (𝐹𝐺𝑦, 𝑓base)

(3)

Fig. 3 shows an example of a program after step⟨2⟩. The start of
basic block 𝐵𝐵2 has a better performance at 𝑓perf and therefore its
frequency group 𝐹𝐺1 is empty. We consider 𝐹𝐺3 of 𝐵𝐵1 as 𝐹𝐺𝑥 and
𝐹𝐺1 of 𝐵𝐵2 as 𝐹𝐺𝑦 . As a result, in step⟨3⟩ we remove the switching
placeholders 𝑝2 of 𝐵𝐵1 and 𝑝1 of 𝐵𝐵2, as their cost is higher than
executing the instructions contained in 𝐹𝐺3 of 𝐵𝐵1 and 𝐹𝐺1 of 𝐵𝐵2
at 𝑓perf . Further details are in Sec. 3.4.

At the end of step⟨3⟩, the placeholders left in the code represent
the final locations of frequency switching. At step⟨4⟩, EXTREMIS
replaces the placeholders with the actual frequency switching in-
structions and compiles the program.

Conference’17, July 2017, Washington, DC, USA Veronica Rovelli, Andrea Maioli, and Luca Mottola

1. bNVM = aVM + 1;
2. eVM = cVM − dNVM;
3. aVM = eVM + fNVM;

Source code
1. READ aVM

2. WRITE bNVM

3. READ cVM

4. READ dNVM

5. WRITE eVM

6. READ eVM

7. READ fNVM

8. WRITE aVM

IR
1. READ aVM

3. READ cVM

< switch fPERF >
2. WRITE bNVM

4. READ dNVM

7. READ fNVM

< switch fBASE >
5. WRITE eVM

6. READ eVM

8. WRITE aVM

start: fBASE

end: fBASE

FG1 (fBASE)

P1 fPERF

FG2 (fPERF)

P2 fBASE

FG3 (fBASE)

Figure 2: Code reordering example at step⟨2⟩.

3.3 Identifying Frequency Groups

We formulate the ILP problem that identifies the location of fre-
quency switch operations for every basic block.
Problem formulation. Each frequency group 𝐹𝐺𝑖 executes at 𝑓base
(𝑓perf) if 𝑖 is odd (even) and no two consecutive frequency groups
execute at the same frequency. Without loss of generality, the ILP
problem is formulated to create the even-indexed frequency groups
𝐹𝐺𝑥 , accounting for one frequency switch before their execution to
set the frequency to 𝑓perf and another one after their execution to
set the frequency back to 𝑓base . The odd-indexed frequency groups
consequently execute at 𝑓base . We consider the following quantities:

• n: number of instructions in the basic block.
• k: number of data dependencies in the basic block.
• dep: data dependency tuples; a tuple (𝑥,𝑦) indicates that
instruction 𝑦 requires data computed by 𝑥 .

• evi: energy variation of instruction 𝑖 when executed at 𝑓perf
or 𝑓base computed as 𝑒 (𝑖, 𝑓perf) - 𝑒 (𝑖, 𝑓base).

• sc: cost of one switch operation to set 𝑓perf and one to set it
back to 𝑓base computed as 𝑒switch (𝑓base) + 𝑒switch (𝑓perf).

Consider how a negative (positive) value of evi indicates an
increase (degrade) in performance when switching frequency from
𝑓base to 𝑓perf for that specific instruction, excluding the cost for
switching frequency that represents the overhead necessary to this
end. We define the following decision variables:

(1) fgi: index of the frequency group where the i-th instruc-
tion belongs to, which represents the output of the ILP that
EXTREMIS uses to partition a basic block into frequency
groups and place frequency switch operations accordingly.

(2) 𝑛_even_fg: the number of even frequency groups, that is

𝑛_𝑒𝑣𝑒𝑛_𝑓 𝑔 =
∑︁
𝑖

1,∀𝑖 = 1, ..., 𝑛 | 𝑓 𝑔𝑖 𝑚𝑜𝑑 2 == 0 (4)

(3) total_ev: performance variation for the basic block, that is

total_ev =
∑︁
𝑖

ev𝑖 + 𝑛_𝑒𝑣𝑒𝑛_fg · sc,∀𝑖 = 1, ..., 𝑛 | fg𝑖 𝑚𝑜𝑑 2 == 0

(5)

Being cvi negative when cost decreases, our goal is to iden-
tify the lowest possible total_cv, provided data dependencies are
respected. Therefore, the ILP problem objective function is:

minimize total_cv
subject to fg𝑥 ≤ fg𝑦,∀(𝑥,𝑦) ∈ 𝑑𝑒𝑝

fg𝑖 ≥ 1 ∀𝑖 = 1, ..., 𝑛
(6)

Special cases. Additional care is required with function calls. They
may access global variables or data in the callee stack frame, poten-
tially introducing data dependencies with the instructions in the

BB1

FG1(fBASE)

P1

SWITCH

fPERF

FG2(fPERF)

P2

SWITCH

fBASE

FG3(fBASE)

BB2

FG1(fBASE)

P1

SWITCH

fPERF

FG2(fPERF)

P2

SWITCH

fBASE

FG3(fBASE)

BB1

FG1(fBASE)

P1

SWITCH

fPERF

FG2(fPERF) FG3(fPERF)

BB2

FG1(fPERF) FG2(fPERF)

P2

SWITCH

fBASE

FG3(fBASE)

SWITCH COST: 3 COST(fBASE): 15

COST(fPERF): 19 COST: 0

(empty)

REMOVE

GAIN: +3

REMOVE

GAIN: +3

LOSS: −4
FINAL GAIN: +2

STEP 3

Figure 3: Consolidation example at step⟨3⟩.

basic block of the function call. We account for this when comput-
ing the dep array by analyzing functions’ body and propagating
the resulting data dependency information.

Function calls also alter the execution flow. After a call, the
next instruction to execute is in a different basic block, whose
start frequency is 𝑓base . To ensure the frequency is set to 𝑓base for
function execution, we include the cost of switching to 𝑓base before
a function call executing at 𝑓perf and for the cost of switching back
to 𝑓perf after function returns. This ensures the frequency switch
happens only if it produces an increase of performance, despite the
frequency requirements of function execution.

A similar problem arises with checkpointing, where saving the
program state occurs through a function call. We do not alter the
location of the checkpoint routine and, if specified with the cor-
responding profile tag, also do not reorder basic blocks contain-
ing these operations, so not to invalidate the placement strate-
gies [13, 34, 40]. For just-in-time approaches [10, 11], EXTREMIS
collects the current frequency, switches to 𝑓base if necessary, exe-
cutes the checkpoint, and restores the frequency to 𝑓perf .
Complexity. Given a basic block of 𝑛 instructions, in principle, the
ILP problem considers 𝑛! possible instruction reorderings and 2𝑛+1
different frequency switch configurations for each possible reorder-
ing. Therefore, the complexity of the ILP problem is 𝑂 (𝑛! · 2𝑛). In
practice, data dependency greatly limit the number of valid instruc-
tion reorderings. To further reduce complexity, we introduce two
additional constraints. These constraints are only instrumental to
avoid checking solutions that are necessarily sub-optimal; therefore,
they do not impact the optimality of the solution.

The first constraint limits the number of frequency switching
operations that may occur in a single basic block, therefore lim-
iting the number of frequency groups considered. The previous
ILP formulation, indeed, considers frequency switching to poten-
tially happen after any instruction, leading to 𝑛 different frequency
groups per instruction. Due to switching overhead, the maximum
number of switching operations is limited by the energy cost re-
duction. Therefore, the maximum number of switching operations
corresponds to themaximum possible energy cost reduction divided
by the cost of switching, that is

𝑛_max_switch = ⌈ |
∑
𝑖 ev𝑖 |
𝑠𝑐

⌉ · 2,∀𝑖 | evi < 0 (7)

The 2 factor is necessary as sc includes the cost of two switch-
ing operations. The maximum number of frequency groups is
𝑚𝑎𝑥_fg = 𝑛_max_switch + 1, as frequency switch happens after
every frequency group except the last one.

EXTREMIS: Static Frequency Switching for Battery-less Devices Conference’17, July 2017, Washington, DC, USA

BB1

BB2 BB3

r2 r3

(a) Branch

BB2 BB3

BB4

r2 r3

(b) Join

Figure 4: Examples of splits in control flow.

We also add a constraint that limits the maximum value of
fg𝑖 to 𝑚𝑖𝑛(max_fg, 𝑛). This entails limiting the maximum num-
ber of frequency groups to 𝑛 to address cases where 𝑒𝑣𝑖 is higher
than 𝑠𝑐 , which would result in max_fg > 𝑛, that is, an essentially
meaningless solution. We finally introduce an extra parameter,
independenti, which indicates if instruction 𝑖 is dependent on an-
other instruction, that is, independenti is 1 if � 𝑗 𝑠 .𝑡 . (𝑗, 𝑖) ∈ 𝑑𝑒𝑝 , or
0 otherwise. Independent instructions are instructions with no data
dependencies can be placed anywhere in a basic block. To reduce
the number of possible instruction reorderings, we conventially
place all independent instructions 𝑖 with 𝑒𝑣𝑖 ≥ 0 in the first fre-
quency group, and limit all independent instructions 𝑖 with ev𝑖 < 0
to the first two frequency groups, as they may improve performance
when run at 𝑓perf . The analytical formulation is available [35].

3.4 Consolidating Frequency Groups

Programming structures like branches and loops split the control
flow. This means different basic blocks may execute after or before
others, as Fig. 4 shows for 𝐵𝐵2 and 𝐵𝐵3. We refer to these basic
blocks as parallel basic blocks.

This affects the analysis to evaluate the removal of frequency
switching placeholders according to Eq. 3. In fact, removing the last
frequency switch to 𝑓base before a split in the control flow affects
the starting frequency of all parallel basic blocks, but this may may
increase performance at 𝑓perf only in a few of them. This is the case
of 𝐵𝐵2 and 𝐵𝐵3 in Fig. 4(a). Further, removing the last frequency
switch to 𝑓base before parallel basic blocks re-join creates a situation
where the frequency setting of following basic block depends on
what branch the execution is coming from, as for 𝐵𝐵4 in Fig. 4(a).

To avoid reducing program performance, EXTREMIS evaluates
control flow structures with parallel basic blocks together, consid-
ering the execution ratio of parallel basic blocks provided through
profile tags. Consider a split as in Fig. 4(a). EXTREMIS removes the
last frequency switching placeholders from the basic block before
the parallel ones and the first frequency switching placeholders
from all parallel basic blocks if:

(1 + 𝑛𝑝) ∗ 𝑒switch (𝑓base) >
𝐸 (𝐹𝐺entry, 𝑓perf) − 𝐸 (𝐹𝐺entry, 𝑓base) +

+
∑︁
𝑖

𝑥 · (𝐸 (𝐹𝐺1𝑖 , 𝑓perf) − 𝐸 (𝐹𝐺1𝑖 , 𝑓base)), 𝑖 ∈ 𝑃

(8)

where 𝑛𝑝 is the number of parallel basic blocks; 𝑃 is the set of
parallel basic blocks; 𝑥𝑖 is the execution ratio of the parallel basic
block 𝑖; 𝐹𝐺𝑒𝑛𝑡𝑟𝑦 is the last frequency group of the basic block before
the parallel basic blocks; and 𝐹𝐺1𝑖 is the first frequency group of
the parallel basic block 𝑖 . The situation of Fig. 4(b) where parallel
basic blocks joins into a single basic block is dual to Eq. 8.

We apply a similar reasoning to loops, where we consider the
minimumnumber of loop iterations. Further details are available [35].

4 EVALUATION

In the following, Sec. 4.1 discusses our experimental setup and
Sec. 4.2 illustrates the experiment results.

4.1 Setup

Reproducing energy harvesting conditions is difficult [15, 19]. There-
fore, we opt for system emulation and we evaluate our technique
using ScEpTIC [30, 32], an open-source emulation environment
for intermittent devices. ScEpTIC emulates the execution of LLVM
IR [1], an intermediate representation of the program’s source code,
and is widely used in existing literature [31].
Platform and tools.We consider the MSP430FR2355 [23] as target
platform, a mixed-volatile MCU from the popular MSP430 fam-
ily [22], equipped with a 100𝜇𝐹 capacitor. We use Hibernus [11]
as forward progress technique. We set 𝑛𝑠𝑤𝑖𝑡𝑐ℎ to 3, as the MSP430
mixed-volatile platform allows developers to regulate the operating
frequency using 3 registers [23].

We consider two energy patterns, RF and Discharge. The for-
mer represents energy sources that supply short bursts of energy
during device active cycles. We reproduce this behavior using the
RF energy source used in Mementos [34]. The latter is a synthetic
energy source that represents energy sources with a scarce energy
throughput, such as kinetic energy from vibrations [3], which does
not supply energy to devices during their active periods [31]. We
reproduce this behavior by modeling a synthetic energy source that
supply 3.6𝑉 when the emulated device is powered off.

We model the ILP problem of Sec. 3.3 using MiniZinc [2]. Our
prototype analyzes the intermediate representation exposed by
ScEpTIC, interfaces withMiniZinc to retrieve the solution of the ILP
problem, and places frequency switching operations as described
in Sec. 3. In all our experiments, MiniZinc returns a solution in less
than 5 minutes, which we set as an upper bound.
Baselines and metrics. We compare EXTREMIS against static
frequency configurations, which is how existing system support
for intermittent computing operates [11, 27, 34, 40]. We consider
static configurations at 24𝑀𝐻𝑧 and 8𝑀𝐻𝑧, which are the maximum
MCU operating frequency and the maximum frequency supported
by the NVM of the MSP430FR2355 [23], respectively. These are the
most efficient configurations developers can choose. EXTREMIS
considers 8𝑀𝐻𝑧 as 𝑓nvm and 24𝑀𝐻𝑧 as 𝑓vm.

We mainly focus on the energy consumed to complete a given
workload. To gain deeper insights, we also collect the number of
energy failures occurred before workload completion and the work-
load completion time. The former helps us understand if a reduction
in energy consumption produces a tangible effect, consisting in a
reduction of the active cycles required to complete a given work-
load. The latter provides a numerical indication to understand the
impact of this reduction in terms of completion time.
Benchmarks. We use benchmarks from MiBench2 [20], a popular
benchmarking suite for intermittent techniques [28, 29, 31]. We
consider three benchmarks: basic math that runs mathematical
operations not directly supported in hardware; FFT that computes
the discrete Fourier transformation of signals, and Dijkstra, which

Conference’17, July 2017, Washington, DC, USA Veronica Rovelli, Andrea Maioli, and Luca Mottola

baseline 8MHz baseline 24MHz EXTREMIS

FFT
Discharge

Dijkstra
Discharge

Basic math
Discharge

FFT
RF

Dijkstra
RF

Basic math
RF

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

N
or

m
al

iz
ed

 E
ne

rg
y

Co
ns

um
pt

io
n

(a) Energy consumption

FFT
Discharge

Dijkstra
Discharge

Basic math
Discharge

FFT
RF

Dijkstra
RF

Basic math
RF

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

N
or

m
al

iz
ed

 #
 E

ne
rg

y
Fa

ilu
re

s
(b) Number of energy failures

FFT
Discharge

Dijkstra
Discharge

Basic math
Discharge

FFT
RF

Dijkstra
RF

Basic math
RF

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e

(c) Workload completion time

Figure 5: Experiment results with Discharge and RF energy patterns.

runs the Dijkstra algorithm to identify the shortest path between
nodes in a graph. We execute 500 iterations of each benchmark.

We produce the LLVM IR of each benchmarks using Clang
v8.0.1 [1] with the default optimization level. We consider the mem-
ory layout of popular compilers for embedded systems [18, 28],
which promote local variables to global variables. Following state-
of-the-art solutions [27, 31, 32, 40], we allocate global variables onto
NVM and the stack segment onto volatile memory. Instructions
are stored onto NVM. The MSP430FR2355 [23] FeRAM controller
has a 64-bit instruction cache but no data cache [24]. Therefore,
considering the limited cache size and benchmarks’ structure, we
set ScEpTIC to simulate an instruction cache hit rate of 85% [24].

4.2 Results

Fig. 5 shows the experimental results normalized to EXTREMIS.
Most trends depend on the energy pattern.
Discharge. The left side of Fig. 5(a) reports the energy consumption
of EXTREMIS and selected baselines with the Discharge energy
pattern. The ability of EXTREMIS to execute memory instructions
at their most efficient frequency yields a lower energy consumption.
On average, this is 7% lower for EXTREMIS compared to the most
efficient baseline of 8𝑀𝐻𝑧, with a peak of 11% when running FFT.

The Discharge energy pattern does not supply energy during
active cycles. Compared to the baselines, the energy saved allows
EXTREMIS to execute more instructions, resulting in fewer energy
failures and a lower workload completion time, as the left side of
Fig. 5(b) and Fig. 5(c) show, respectively. EXTREMIS experiences
11% fewer energy failures and complete benchmarks up to 13%
faster than the static 8𝑀𝐻𝑧 frequency setting.
RF. Experiments with the RF energy pattern show a similar trend in
energy consumption, as the right side of Fig. 5(a) shows. EXTREMIS
demonstrates up to a 11% lower energy consumption than the most
efficient baseline, which here the 24𝑀𝐻𝑧 static frequency setting.

Compared to experiments with Discharge, the trends change
in the number of energy failures and workload completion time,
as the right side of Fig. 5(b) and Fig. 5(c) show, respectively. The
performance difference between the baselines is higher compared
to the Discharge scenario, with 8𝑀𝐻𝑧 experiencing up to 2𝑥 more
energy failures and a 2𝑥 higher completion time than the 24𝑀𝐻𝑧

static setting. This is caused by the additional energy that energy
sources with the RF energy pattern supply during active cycles.

Wait cycles cause the 24𝑀𝐻𝑧 static setting to consume 88%more
energy than the 8𝑀𝐻𝑧 one to access NVM, while taking the same
amount of time [23]. The 24𝑀𝐻𝑧 static setting uses the additional
energy available during active cycles to cover the cost of NVM op-
erations, while executing volatile memory accesses and register op-
erations more efficiently than the 8𝑀𝐻𝑧 static setting. EXTREMIS
executes these accesses at 8𝑀𝐻𝑧, saving energy but not time, and
requiring additional operations and time to switch to 24𝑀𝐻𝑧. Com-
pared to 24𝑀𝐻𝑧, EXTREMIS executes fewer instructions during
active cycles when frequency groups contain a heterogeneous mix
of volatile and non-volatile memory operations.

This is the case of FFT and basic math, where EXTREMIS expe-
riences 20% more energy failures than the 24𝑀𝐻𝑧 static setting, re-
sulting in a 24% longer workload completion time. In Dijkstra, EX-
TREMIS can create more homogeneous frequency groups, reaching
a performance comparable to the 24𝑀𝐻𝑧 static setting. Compared
to the 8𝑀𝐻𝑧 static setting, on average, EXTREMIS experiences 55%
fewer energy failures and a 65% shorter workload completion time.

We conclude that EXTREMIS performance is linked to the amount
of ambient energy provided during active cycles. The less there
is, the more crucial is not to pay for the energy overhead due to
wait cycles, if any. Energy sources are irregular and the scenario
may switch from something akin to RF to something similar to
Discharge [3]. EXTREMIS inherently adapt to such changes.

5 CONCLUSION

We presented EXTREMIS, a compile-time pipeline that instruments
battery-less devices’ code to ensure memory operations occur at
the most energy-efficient frequency setting. To do so, we reconcile
the energy overhead due to executing frequency changes with the
gains they possibly enable. EXTREMISworks at compile-time based
on the solution to ILP problems that determine where and how
to insert instructions to change frequency. Compared to the most
energy-efficient static frequency setting, EXTREMIS reduces energy
consumption up to 11%, while reducing workload completion time.
Acknowledgments.Thiswork is partially supported by the Swedish
Science Foundation (SSF) and by the National Recovery and Re-
silience Plan (NRRP), Mission 4 Component 2 Investment 1.3 - Call
for tender No. 1561 of 11.10.2022 of Ministero dell’Università e della
Ricerca (MUR); funded by the European Union - NextGenerationEU.

EXTREMIS: Static Frequency Switching for Battery-less Devices Conference’17, July 2017, Washington, DC, USA

REFERENCES

[1] The LLVM Compiler Infrastructure. https://llvm.org/ (last access: September 9th,
2024).

[2] MiniZinc high-level constraint modelling language and solver. https://www.
minizinc.org/ (last access: September 9th, 2024).

[3] M. Afanasov, N. A. Bhatti, D. Campagna, G. Caslini, F. M. Centonze, K. Dolui, A.
Maioli, E. Barone, M. H. Alizai, J. H. Siddiqui, and L. Mottola. 2020. Battery-Less
Zero-Maintenance Embedded Sensing at the Mithræum of Circus Maximus. In
Proceedings of the 18th Conference on Embedded Networked Sensor Systems (SenSys
’20).

[4] S. Ahmed, Q. Ain, J. H. Siddiqui, L. Mottola, and M. H. Alizai. 2020. Intermittent
Computing with Dynamic Voltage and Frequency Scaling. In Proceedings of the
2020 International Conference on Embedded Wireless Systems and Networks (EWSN
’20).

[5] S. Ahmed, A. Bakar, N. A. Bhatti, M. H. Alizai, J. H. Siddiqui, and L. Mot-
tola. 2019. The Betrayal of Constant Power × Time: Finding the Missing
Joules of Transiently-powered Computers. In Proceedings of the 20th ACM SIG-
PLAN/SIGBED International Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES).

[6] S. Ahmed, M. H. Bhatti, N. A. Alizai, J. H. Siddiqui, and L. Mottola. 2019. Efficient
Intermittent Computing with Differential Checkpointing. In Proceedings of the
20th ACM SIGPLAN/SIGBED International Conference on Languages, Compilers,
and Tools for Embedded Systems (LCTES 2019).

[7] Saad Ahmed, Bashima Islam, Kasim Sinan Yildirim, Marco Zimmerling, Prze-
mysław Pawełczak, Muhammad Hamad Alizai, Brandon Lucia, Luca Mottola,
Jacob Sorber, and Josiah Hester. 2024. The Internet of Batteryless Things. Com-
mun. ACM (2024).

[8] D. Balsamo, A. Das, A. S.Weddell, D. Brunelli, B. M. Al-Hashimi, G. V. Merrett, and
L. Benini. 2016. Graceful Performance Modulation for Power-Neutral Transient
Computing Systems. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (2016).

[9] D. Balsamo, B. J. Fletcher, A. S. Weddell, G. Karatziolas, B. M. Al-Hashimi, and
G. V. Merrett. 2019. Momentum: Power-Neutral Performance Scaling with In-
trinsic MPPT for Energy Harvesting Computing Systems. ACM Transactions on
Embedded Computing Systems (2019).

[10] D. Balsamo, A. S. Weddell, A. Das, A. R. Arreola, D. Brunelli, B. M. Al-Hashimi,
G. V. Merrett, and L. Benini. 2016. Hibernus++: A Self-Calibrating and Adap-
tive System for Transiently-Powered Embedded Devices. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (2016).

[11] D. Balsamo, A. S. Weddell, G. V. Merrett, B. M. Al-Hashimi, D. Brunelli, and L.
Benini. 2015. Hibernus: Sustaining Computation During Intermittent Supply for
Energy-Harvesting Systems. IEEE Embedded Systems Letters (2015).

[12] N. A. Bhatti, M. H. Alizai, A. A. Syed, and L. Mottola. 2016. Energy Harvesting and
Wireless Transfer in Sensor Network Applications: Concepts and Experiences.
ACM Transactions on Sensor Networks (2016).

[13] N. A. Bhatti and L. Mottola. 2017. HarvOS: Efficient Code Instrumentation for
Transiently-powered Embedded Sensing. In Proceedings of the 16th ACM/IEEE
International Conference on Information Processing in Sensor Networks (IPSN).

[14] Q. Chen, Y. Liu, G. Liu, Q. Yang, X. Shi, H. Gao, L. Su, and Q. Li. 2017. Harvest
Energy from the Water: A Self-Sustained Wireless Water Quality Sensing System.
ACM Transactions on Embedded Computing Systems (2017).

[15] A. Colin, G. Harvey, B. Lucia, and A. P. Sample. 2016. An Energy-interference-
free Hardware-Software Debugger for Intermittent Energy-harvesting Systems.
SIGOPS Operating Systems Review (2016).

[16] A. Colin and B. Lucia. 2016. Chain: Tasks and Channels for Reliable Intermittent
Programs. In Proceedings of the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA).

[17] Benjamin J. Fletcher, Domenico Balsamo, and Geoff V. Merrett. 2017. Power
Neutral Performance Scaling for Energy Harvesting MP-SoCs. In Proceedings of
the Conference on Design, Automation & Test in Europe (DATE).

[18] D. Gay, P. Levis, R. Von Behren, M.Welsh, E. Brewer, and D. Culler. 2003. The nesC
language: A holistic approach to networked embedded systems. Acm Sigplan
Notices (2003).

[19] J. Hester, T. Scott, and J. Sorber. 2014. Ekho: Realistic and Repeatable Experi-
mentation for Tiny Energy-harvesting Sensors. In Proceedings of the 12th ACM
Conference on Embedded Network Sensor Systems (SenSys ’14).

[20] M. Hicks. MiBench2 - MiBench porting to IoT devices. https://github.com/
impedimentToProgress/MiBench2 (last access: September 9th, 2024).

[21] N. Ikeda, R. Shigeta, J. Shiomi, and Y. Kawahara. 2020. Soil-Monitoring Sensor
Powered by Temperature Difference between Air and Shallow Underground
Soil. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies (IMWUT) (2020).

[22] Texas Instruments. MSP430 family of MCUs. https://www.ti.com/msp430 (last
access: September 9th, 2024).

[23] Texas Instruments. MSP430-FR2355 datasheet. https://www.ti.com/lit/ds/
symlink/msp430fr2355.pdf (last access: September 9th, 2024).

[24] Texas Instruments. MSP430 FRAM controller datasheet. https://www.ti.com/lit/
an/slaa498b/slaa498b.pdf (last access: September 9th, 2024).

[25] H. Jayakumar, A. Raha, W. S. Lee, and V. Raghunathan. 2015. QuickRecall: A
HW/SW Approach for Computing Across Power Cycles in Transiently Powered
Computers. ACM Journal on Emerging Technologies in Computing Systems (2015).

[26] Aman Kansal, Jason Hsu, Sadaf Zahedi, and Mani B. Srivastava. 2007. Power
Management in Energy Harvesting Sensor Networks. ACM Transactions on
Embedded Computing Systems (2007).

[27] B. Lucia and B. Ransford. 2015. A Simpler, Safer Programming and Execution
Model for Intermittent Systems. In Proceedings of the 36th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI).

[28] K. Maeng, A. Colin, and B. Lucia. 2017. Alpaca: Intermittent Execution Without
Checkpoints. Proceedings of the ACM Programming Languages (2017).

[29] K. Maeng and B. Lucia. 2018. Adaptive dynamic checkpointing for safe efficient
intermittent computing. In 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI).

[30] A. Maioli. ScEpTIC documentation and source code. http://sceptic.neslab.it/ (last
access: September 9th, 2024).

[31] A. Maioli and L. Mottola. 2021. ALFRED: Virtual Memory for Intermittent
Computing. In Proceedings of the 19th ACM Conference on Embedded Networked
Sensor Systems (SenSys ’21).

[32] A.Maioli, L. Mottola, M. H. Alizai, and J. H. Siddiqui. 2021. Discovering theHidden
Anomalies of Intermittent Computing. In Proceedings of the 2021 International
Conference on Embedded Wireless Systems and Networks (EWSN 2021).

[33] S. Peng and C. P. Low. 2012. Throughput optimal energy neutral management for
energy harvesting wireless sensor networks. In Proceedings of the IEEE Wireless
Communications and Networking Conference (WCNC).

[34] B. Ransford, J. Sorber, and K. Fu. 2011. Mementos: System Support for Long-
running Computation on RFID-scale Devices. ACM SIGARCH Computer Archi-
tecture News (2011).

[35] Veronica Rovelli. Energy Eciency in Intermittent Computing Systems through
Static Frequency Scaling Techniques. https://hdl.handle.net/10589/223509 2024.

[36] M. M. Sandhu, K. Geissdoerfer, S. Khalifa, R. Jurdak, M. Portmann, and B. Kusy.
2020. Towards Optimal Kinetic Energy Harvesting for the Batteryless IoT. In IEEE
International Conference on Pervasive Computing and Communications Workshops
(PerCom Workshops).

[37] N. Saoda and B. Campbell. 2019. No Batteries Needed: Providing Physical Context
with Energy-Harvesting Beacons. In Proceedings of the 7th International Workshop
on Energy Harvesting & Energy-Neutral Sensing Systems (ENSsys).

[38] V. Sharma, U. Mukherji, V. Joseph, and S. Gupta. 2010. Optimal energy manage-
ment policies for energy harvesting sensor nodes. IEEE Transactions on Wireless
Communications (2010).

[39] L. Spadaro, M. Magno, and L. Benini. 2016. Poster Abstract: KinetiSee - A Perpet-
ual Wearable Camera Acquisition System with a Kinetic Harvester. In Proceedings
of the 15th ACM/IEEE International Conference on Information Processing in Sensor
Networks (IPSN).

[40] J. Van Der Woude and M. Hicks. 2016. Intermittent Computation Without
Hardware Support or Programmer Intervention. In Proceedings of the 12th USENIX
Conference on Operating Systems Design and Implementation (OSDI).

[41] K. S. Yildirim, A. Y. Majid, D. Patoukas, K. Schaper, P. Pawelczak, and J. Hester.
2018. InK: Reactive Kernel for Tiny Batteryless Sensors. In Proceedings of the
16th ACM Conference on Embedded Networked Sensor Systems (SenSys ’18).

https://llvm.org/
https://www.minizinc.org/
https://www.minizinc.org/
https://github.com/impedimentToProgress/MiBench2
https://github.com/impedimentToProgress/MiBench2
https://www.ti.com/msp430
https://www.ti.com/lit/ds/symlink/msp430fr2355.pdf
https://www.ti.com/lit/ds/symlink/msp430fr2355.pdf
https://www.ti.com/lit/an/slaa498b/slaa498b.pdf
https://www.ti.com/lit/an/slaa498b/slaa498b.pdf
http://sceptic.neslab.it/
https://hdl.handle.net/10589/223509

	Abstract
	1 Introduction
	2 Related Work
	3 EXTREMIS
	3.1 Problem
	3.2 Compile-time Pipeline
	3.3 Identifying Frequency Groups
	3.4 Consolidating Frequency Groups

	4 Evaluation
	4.1 Setup
	4.2 Results

	5 Conclusion
	References

