
Enabling Location-aware Operation
in Decentralized IoT Communications

Matteo Visotto and Luca Mottola

Politecnico di Milano (Italy)

ABSTRACT
We present an efficient design to enable location-aware operation

in decentralized IoT communications. Large-scale IoT systems rep-

resent the backbone of a smart city functioning, allowing pervasive

environmental sensing across devices and networks. However, ex-

isting IoT communication systems are largely driven by data types

and miss out on embracing data location, which is fundamental in

environment sensing. To address this issue, we demonstrate it is

possible to efficiently embed a notion of location within the Zenoh

protocol. We make it possible to steer message routing based on

both data type and location, yet without altering the existing rout-

ing core and message forwarding, unlike most existing solutions.

We also present three encoding techniques for location data, each of

them representing a different trade-off between expressiveness and

performance overhead. Our evaluation uses a virtualized environ-

ment and real-world packet traces of heterogeneous networks. We

show, for example, that our design decreases the average message

latency by more than 50% when routing data also based on location,

while increasing throughput, compared to two different baselines.

CCS CONCEPTS
• Networks → Network protocol design; Location based ser-
vices; • General and reference→ Design.

KEYWORDS
Location-awareness, IoT, Pub/Sub, Req/Resp, Protocol, Zenoh

ACM Reference Format:
Matteo Visotto and Luca Mottola, Politecnico di Milano (Italy). 2024. En-

abling Location-aware Operation in Decentralized IoT Communications. In

The 2nd Workshop on Advances in Environmental Sensing Systems for Smart
Cities Workshop Chairs (EnvSys ’24), June 3–7, 2024, Minato-ku, Tokyo, Japan.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3661813.3661817

1 INTRODUCTION
Large-scale Internet of Things (IoT) systems form the backbone of

a smart city operation. Embedded sensors and edge devices enable

fine-grained sensing of the city environment and are instrumental

to improve the use of resources and assets, to investigate the impact

of human activities, and to understand climate changes [6].

Problem. Compared to the complexity of environment sensing

in smart cities, the underlying IoT network support falls short

of expectations. Most IoT protocols, indeed, only support quite

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

EnvSys ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0659-2/24/06

https://doi.org/10.1145/3661813.3661817

Figure 1: Air quality sensing in Milano (Italy). Existing IoT
protocols incur in large network overheadwhen the locations of interest
arbitrarily intersect the existing logical slicing, as in the red rectangle.

straightforward communication paradigms, which may often result

in suboptimal performance, as we further articulate in Sec. 2.

Consider for instance an air quality sensing application for

the city of Milano (Italy): a setting we have first-hand experience

with [4]. An example air quality map is shown in Fig. 1. Milano is

split into different municipalities. Air quality sensors throughout

the city are characterized by their GPS coordinates and the mu-

nicipality they belong to. Existing protocols, for instance, those

supporting the Publish/Subscribe (Pub/Sub) paradigm, suffice as

long as data is pulled from air quality sensors belonging to a specified
subset of municipalities, as is the case for the three colored munici-

palities in Fig. 1. Similar considerations equally apply to protocols

providing Request/Response (Req/Resp) forms of interaction.

Most existing protocols, however, offer no native support to

reason on the actual location of data, besides some coarse-grained

logical location. Pulling data from a programmer-defined area that
intersects the logical slicing in arbitrary ways, such as the red

rectangle of Fig. 1, is extremely complex. Existing solutions force

developers to obtain data from the three colored municipalities

anyway and discard messages originating outside of the red rec-

tangle, but within the three considered municipalities. This incurs

additional programming effort and, most importantly, potentially

generates unnecessary network load.

Solution.We present a design that enables location-aware operation
in an existing IoT protocols without changing the routing core and
message forwarding, as described in Sec. 3. Such a feature is crucial

because it lets us benefit from optimizations and testing of the

existing protocol implementation. We achieve this by modifying

the protocol architecture in a way that completely decouples the

location-specific functionality from the rest of the protocol. As a

by-product of this, we gain the freedom of deciding how to encode

location information. We present three example encodings with

different trade-offs between expressivity and overhead. We can also

make (non-)location-aware messages co-exist and retain backward

compatibility with the original protocol implementation.

We implement a prototype on top of Zenoh [19], one of the few

decentralized IoT protocols supporting both Req/Resp and Pub/Sub

interactions. We make both paradigms operate in a location-aware

https://doi.org/10.1145/3661813.3661817
https://doi.org/10.1145/3661813.3661817

EnvSys ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan Visotto and Mottola

manner. We use the prototype running in a virtualized environ-

ment and real-world packet traces to emulate different network

conditions and measure key performance metrics, as reported in

Sec. 4. We demonstrate, for example, that our design decreases the

average message latency by more than 50% in scenarios akin to

Fig. 1, while increasing throughput.

2 BACKGROUND AND RELATEDWORK
Existing efforts tackle the problem of IoT location-aware communi-

cations separately for Req/Resp or Pub/Sub systems.

Several designs exist that extend the Pub/Sub paradigm with

location-aware functionality when using the content-based message
model [7]. Examples include systems to provide customized services,

mainly for advertisement, based on user location [3, 5, 8, 10, 13, 16].

In smart city applications, on the other hand, data flows are usually

specified based on data types. Pub/Sub systems using the topic-
based message model [7] provide efficient network support for this,

with the MQTT protocol being the most representative example.

Several works extend MQTT with location-aware functionality.

MQTT-G [2] extends the original MQTT design by adding loca-

tion data between the message header and the payload. Unlike what

we do, this requires modifying the core functionality of the MQTT

broker, which must retain location information for subscribers, a

new message type, and new APIs that replace the original MQTT

interface. Backward compatibility is achieved by switching between

the two implementations based on a flag in the message header.

Similarly, MQTT5 [11] requires new message types to manage lo-

cation information, transmitted in addition to the regular MQTT

messages, placing additional strain on the network.

In other works, GeoMQTT [9] presents an MQTT extension that

adds both spatial and time information. The design includes a new

indexing structure at broker side to store and retrieve client infor-

mation. Location information are embedded within the message

payload, which therefore requires parsing each and every single

message at the broker, adding processing overhead. LA-MQTT [14]

relies on an external software component to manage location in-

formation, leaving the original MQTT implementation unchanged.

The external component is deployed on a backend and coordinates

with the original MQTT broker by subscribing to dedicated control

topics that allows it to receive and dispatch messages with location

information. This solution adds a new single point of failure in

addition to the existing MQTT broker.

IoT communication systems based on Req/Resp interactions

rarely offer location-aware functionality. Existing works focus on

frameworks to handle location information at the servers. For ex-

ample, LAISYC [1] presents a design using UDP to manage location-

based information for HTTP applications, mainly applicable to

real-time GPS-based mobile applications.

Zenoh [19] provides both Req/Resp and Pub/Sub interaction

paradigms using a topic-based approach. It supports fully decentral-

ized architectures, as exemplified in Fig. 2, enabling device intercon-

nections also over the public internet. Zenoh uses three different

device configurations. Peers are devices running the Zenoh protocol
and capable of sending or receiving messages; they can dynamically

discover and connect with other peers as needed. Routers manage

data flows across different endpoints; they can dynamically adjust

Router Consumer Source

/humidity /humidity

/humidity

/airquality

/airquality

/airquality

/airquality

Figure 2: Zenoh architecture.

.../.../dataType1/dataType2/.../locationKey/.../dataType3/...

Regular topic matching Regular

topic matching

Location

matching

Figure 3: Topic with location key.

Zenoh core

Zenoh API

 Wrapper

Location library

E1 E2 ...

Matching

component

Location API

Figure 4: Architecture design.

routes to ensure reliable and efficient message forwarding. Clients
are end devices that cannot route messages.

Zenoh has no built-in location-aware functionality. Because of

the unified support to both interaction paradigms and modular

design, we use it as a basis for our work, as described next.

3 DESIGN
We set two primary goals when enabling location-aware function-

ality in Zenoh: i) to leave the routing core and message forwarding

unchanged, and ii) to ensure co-existence and maintain backward

compatibility with the original version of the protocol.

We achieve both goals by introducing location informationwithin

a message topic, formatted in a way that allows us to interject when
this information does appear, as intuitively shown in Fig. 3. Upon

inspecting a topic and recognizing location information, we dele-

gate matching of that part of the topic to an additional component

we develop, shown within the complete architecture in Fig. 4. This

effectively decouples the location matching process from the origi-

nal topic matching functionality. The latter applies unchanged to

the remaining part of the topic. The outcomes of the two matching

processes are taken together to determine overall matching.

Our design brings several benefits. Matching of location infor-

mation is orthogonal to the routing functionality and becomes an

additional input to decide message forwarding. This happens with-
out altering the existing routing core and message forwarding, as

matching of location information is embedded within the overall

topic matching. Changes to the original protocol implementation

are minimal, only requiring modifications to 6 code lines. This al-

lows us to benefit from the optimizations and testing of the existing

protocol implementation. If location information does not appear
in a topic, the original topic matching applies, effectively ensuring

the co-existence of (non-)location-aware messages. Finally, making

an external component responsible for location matching provides

Enabling Location-aware Operation
in Decentralized IoT Communications EnvSys ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan

freedom in deciding how to encode this information. We describe

next three example encodings that strike different trade-offs be-

tween expressivity and overhead.

We target large distributed systems, akin to the air quality moni-

toring example presented in the Introduction. As we explain next,

consumer selection at the routers based on both topic and location

generally decreases the network traffic, which is advantageous also

in constrained and/or congested networks. However, applying our

design to other brokered architetures, like MQTT, would increase

the computational load on the broker, which still represents a single

point of failure, making our techniques less effective.

3.1 Location Matching Component
We call location key the specific topic level where location informa-

tion appears, if any, as shown in Fig. 3. Regardless of the encoding

of location information, the location key includes three parts: a

prefix, the actual encoded location information, and an optional

flag space to specify additional information. While parsing a topic

name, upon recognizing the prefix, we extract and forward the

location key to the location matching component.

The location matching component exposes a single operation

that takes as input two location keys and returns a Boolean value

representing the possible match. From the prospective of the origi-

nal Zenoh implementation, the location matching component oper-

ates as a black box with a well-defined Boolean interface.

Upon receiving two location keys through its interface, the lo-

cation matching component first recognizes the specific encoding

technique employed among the supported ones; then it accordingly

decodes the location information. Matching of location information

is then performed based on the specific semantics, as dictated by

the encoding at hand, and the result is returned to Zenoh as part of

the complete topic matching process.

3.2 Encoding Location Information
We design three encoding techniques, each providing a different

tradeoff between expressiveness and processing overhead.

JSON+Base64. We employ a JSON object, then encoded in Base64,

to describe location information. This offers the highest expressive-

ness among the encodings we experiment with. One can describe

complex shapes, including both user-defined shapes and ego-centric

definitions [15]. Information sources, such as publishers, are asso-

ciated to single points in space, whereas information consumers,

such as subscribers, are associated to areas of interest. A match

occurs if the point associated to the source falls within the area

associated to the consumer.

For example, an information consumer defines a circular shape

centered on itself as

{c: {x: 10.10, y: 20.54}, r: 10}

where c indicates the circular shape centered on the consumer

position (x,y), with radius r. This JSON object requires 44 bytes

for its Base64 representation. Overall, this encoding incurs higher

network and processing overhead compared to the others, primarily

due to its high expressiveness.

MGRS. The Military Grid Reference System (MGRS) is a geoco-

ordinate system used to specify locations on the Earth’s surface,

originated in military applications. It is derived from the Universal

Transverse Mercator (UTM) coordinate system [12] and features

an easy to parse, compact representation. The MGRS is arranged

as a grid with 100000-meter squares, specified with Easting and

Northing values. It can represent areas from 6
◦ × 8

◦
grid zone

polygons down to 1𝑚2
squares, progressing by orders of magni-

tude. The matching semantics is similar to JSON+Base64. However,

sources can only be associated with the smallest location MGRS

can represent, that is, a 1𝑚2
square area, rather than single points.

MGRS does not allow for the definition of intersections.Matching

is therefore as simple as recursively checking the containment of

one coordinate into another. Fig. 5 shows an example where we

represent consumers with 100𝑚2
precision. The match is positive

because the two coordinates share both the grid zone (10S), the

100000-meter square (GJ), and Easting and Northing values. As for

the latter, the match occurs because the two coordinates share the

values of their shortest representation, indicating containment of

the source coordinates within the consumer coordinate.

MGRS evidently provides lower expressiveness compared to

JSON+Base64, because of the rigid representation of location in-

formation. This comes in exchange of a much more compact en-

coding and a simplified matching process, which come handy in

constrained networks, as we demonstrate in Sec. 4.

Bloom filters. A Bloom filter is a probabilistic data structure to
efficiently check the membership of an element in a set [18]. To use

Bloom filters to encode location information, we first partition the

space into a grid of given granularity. We incorporate each element

of the grid that falls within the consumer’s area of interest into a

filter and insert the resulting bit array in the location key. At the

source, we replicate the same process by only incorporating the

grid element corresponding to its location. Matching is performed

in a bitwise manner at the routers, as in Fig. 6. The 1 bits in the

source filter represent the outcome of the hash functions computed

for the single grid element of the source. In the consumer’s filter,

the 1 bits represent the grid elements covering the area of interest.

By design, Bloom filters may allow false positives to occur but

never produce false negatives. This makes them appropriate to en-

code location information in a producer-consumer communication

system. Because of the lack of false negatives, we ensure that mes-

sages are always delivered to the target consumers; in the worst

case, because of false positives, a consumer with a non-matching

area of interest may however receive spurious messages.

10S GJ 0683244683

10S GJ 068446

Source

Consumer

{

{

{

{ {

{

06832 44683
068 446

Match!

Easting Northing

Figure 5: MGRS match example.

Consumer

Filter

1 0 1 0 0 1 0 0 0 0

0 1 2 3 4 5 6 7 8 9

Source

Filter

Source

Filter

X

Match!

No Match!

1 0 1 1 0 1 0 0 1 0

0 1 2 3 4 5 6 7 8 9

1 0 0 0 1 0 0 0 0 1

0 1 2 3 4 5 6 7 8 9

X

Figure 6: Bloom filters match example.

EnvSys ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan Visotto and Mottola

3.3 Developer APIs
Our design is available to programmers through an additional API

exposed by a custom wrapper, as shown in Fig. 4.

Key to our design is for a device to provide its own location.

Programmers decide how often to update this information. We of-

fer an operation to indicate the current device position, together

with a corresponding lifetime [17]. If set to infinite, the device

is considered stationary. Otherwise, the behavior is different at

sources or consumers. Sources check a change in device location

whenever a message is generated, ensuring that the location infor-

mation attached to the message is most recent. Consumers check

for changes in the device location upon expiration, according to

the programmer-provided lifetime. If the location does change, any

current subscription that uses the device location, for example, the

ego-centric example for JSON+Base64, is updated accordingly.

All other operations in the additional API use the same oper-

ation names of the original APIs and extend them with location

parameters. The wrapper consists of a new class that replicates

the original Zenoh Session class, where we extend the parameter

set of each operation requiring a topic with the needed location

information. The wrapper generates the location key and calls the

equivalent Zenoh’s operation with the extended topic structure.

4 EVALUATION
Sec. 4.1 introduces our experimental setup, the metrics we consider,

and the baselines we compare with.We discuss the results we obtain

in Sec. 4.2, leading to three key conclusions:

(1) in a setting with logical partitions, our design decreases

message latency up to a 50% improvement compared to the

baselines, while increasing throughput;

(2) in a setting with no logical partitions, our design still reduces

the load on intermediate routers, yielding a 55% (20%) lower

latency compared to the Topic (Payload) baseline;

(3) MGRS encoding reduces message latency up to 40% of the

other two encoding techniques, due to a more compact rep-

resentation and more efficient matching.

4.1 Settings
The performance of a decentralized IoT communication protocol

depends on multiple factors, including network links and device

processing. Using a network simulator would only capture a few

of these, for example, lacking a model of local processing times,

which is however crucial to test different encoding schemes.

Setup.We opt to create a virtualized environment to realistically

measure performance. We create a variable number of virtual ma-

chines (VM) in a Proxmox cluster, each running Ubuntu Server

22.04.1 and equipped with 4 cores plus 4GiB of RAM. The number

of cores and their performance match an average IoT edge device,

such as a RaspberryPI. Each VM acts as a Zenoh client or router.

We meticulously select paradigmatic network topologies to un-

derstand the specific trade-offs at stake. To realistically model net-

work conditions and ensure repeatability across experiments, each

Zenoh client runs MahiMahi v0.98, a toolset for emulating dynamic

links, such as the one in cellular networks. We use the MahiMahi

TMobile-LTE-driving.down trace file emulating a 100Mbps LTE

connection. To place an additional stress factor, each Zenoh router

uses Wondersharper v1.4.1 to limit the bandwidth available along

the router backbones to only 5Mbps, representing a case where

Zenoh must co-exist with significant network traffic.

We carefully choose system configurations that may emulate

the behavior of wider networks. For instance, we replace a higher

number of sources with fewer sources with higher message rates,

which is effectively immaterial as long as the load on the links

is the same. To ensure fine-grained control of the experiments

and equal conditions against the baselines, we configure Zenoh

clients not to simultaneously act as routers. We also fix network

links forming the topology a priori, essentially skipping Zenoh’s

discovery phase, which may lead to different network topologies

being used in different experiments. Bloom filters are generated

with a 25% probability of false positives. We discuss this specific

parameter choice at end of the next section.

This setup does provide the greatest realism, as it is closest to

a real deployment. We also acknowledge that it comes at the cost

of making experiments more time consuming and less scalable:

the experiments run in real time and available hardware resources

allow us to virtualize only a limited number of nodes.

Metrics. We measure message throughput and system latency,
which are staple networking metrics and directly impact the end-

user’s perceived quality of service. In our design, they also help

identify how different location encoding techniques influence the

number of transmitted messages and their transmission times.

Clocks across VMs are synchronized as they are all virtualized

over the same Proxmox physical node, and hence virtual their clocks

are all attached to the same physical clock. We measure message

latency as 𝐿 = 𝑡𝑟 − 𝑡𝑝 , where 𝑡𝑝 is when the message is sent and

𝑡𝑟 is when the message is received. We measure throughput as the

number of messages matching a consumer’s interest are received
within a given time frame Δ𝑡 . We run each experiment 12 times for

a duration of 3 minutes each.

Baselines. We compare our design against two baselines, called

Topic and Payload, and representative of many of the existing

solutions discussed in Sec. 2. We implement both baselines on top

of the original Zenoh protocol v0.7.2-rc.

Topic incorporates location details right into the first two levels

of the topic structure. For example, it uses a topic

<latitude>/<longitude>/airquality

to generate air quality data from a sensor located at (<latitude>;
<longitude>). Message consumers use a wildcard in the first two

topic levels, such as

//airquality

and therefore receive every message carrying air quality data. Upon

receiving the message, the consumer extracts the coordinates from

the first two topic levels of the message and determines whether

to continue processing the message or to drop it, depending on

whether it falls within the geographical area of interest.

Payload embeds location information within the message pay-

load. The topic only includes information on the data type, as in

/airquality, and is used the same at sources and consumers. Upon

receiving a message, the same process as in the Topic baseline ap-

plies, with location data extracted from the payload.

Enabling Location-aware Operation
in Decentralized IoT Communications EnvSys ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan

14 2

34

5

C10

S13

C9

C8

C7

C6

C11

15

16

1

17

S12

Zone 01 Zone 02

Router Consumer Source

Figure 7: Logical partition network topology.

(a) Logical partition: latency.

(b) Logical partition: throughput.

Figure 8: Logical partition: results.

4.2 Results
We consider different scenarios of interest.

Logical partitions. We partition the network into two logical

zones, as depicted in Fig. 7, modeling the air quality scenario of the

Introduction. Each zone includes one source and three consumers.

Consumers in green match messages generated in the area of S13.

This is the area of interest for the application, that is, the colored

rectangle in Fig. 1. S13 injects 20 msg/sec. Consumers in red match

messages generated in the area of S12. S12 generates 3200 msg/sec,

mimicking the network traffic generated in the rest of the city.

Fig. 8a shows the average latency at each consumer. Without

location-aware operation, messages generated at S13 or S12 are

routed all the way to the opposite network partition only to be

discarded at the consumer. Messages generated by S12, in particular,

greatly impact the baselines’ latency as they end up where they

should not be routed at all. In contrast, without altering Zenoh’s
routing core, our design prevents the unnecessary routing, reducing

the average latency of about 50% compared to the baselines.

Fig. 8b shows the average throughput we measure. The baselines

show lower throughput compared to our design, regardless of lo-

cation encoding. This arises as the consumers in the baselines can

14 2 3

4 5

S13

15

16

1

C8

C11
C7 C9

C6

C10

Router Consumer Source

Figure 9: Mixed network topology.

only process a smaller number of messages from S13 within the

same interval because, with the same processing resources, they

must also handle (and discard) messages from S12 simultaneously.

Note how the plot zooms in along the y-axis for better clarity.

This phenomenon is also apparent when looking at the standard

deviation computed across all latency values for each consumer.

The higher number of messages that consumers must handle when

using either baseline yields longer processing queues, producing

a ≈53% higher variability in measured message latency.

Mixed network layouts.We evaluate the performance differences

between our design and the baselines in the absence of logical

partitioning.We consider the topology in Fig. 9: the three consumers

shown in orange match both data types and location of the single

source. The other three consumersmatch the data type but belong to

a different geographical zone, where no source generates matching

messages. The source sends 3200 msg/sec to stress the system.

Fig. 10a depicts message latency at the three matching sub-

scribers. Our design provides better performance than the baselines

also with no logical partitioning. The latter pay a penalty due to the

unnecessary traffic generated to reach consumers where messages

are eventually dropped. The Payload baseline shows a good perfor-
mance like the location-aware techniques. The 2-level shorter topic

require less time to process, compensating the time needed to filter

messages upon reception. This solution, however, does not scale.

With larger networks, the number of unnecessary messages in-

creases, reapproaching the results of Fig. 8. Unlike Fig. 8b, however,

the throughput does not suffer as much in the baselines, as shown

in Fig. 10b. There is indeed a “pile up” effect of sort at the queues

of intermediate routers, yet the additional latency this generates is

roughly the same for all messages, eventually leading to a similar

number of messages received within the same time window.

We use the same network layout to evaluate the latency dif-

ference among location encoding techniques, shown in Fig. 10c,

swapping the role of the two groups of consumers. MGRS encoding

is the best performing, owing to its concise representation that leads

to a reduced message size and is amenable to an efficient recursive

matching process that approaches 𝑂 (𝑘), where 𝑘 is a constant. As

expected, the worst-performing technique is the JSON+Base64 one,

which is verbose and complex to parse, yet provides the highest

expressiveness. The performance of Bloom filters depends on the

constituent parameters, such as domain definition and desired prob-

ability of false positives. Since we configure our experiments to

obtain an encoding length comparable to the Base64 one, the Bloom

filter performance shows how matching using bitwise operations

abates processing time, reducing latency.

Bloomfilters: probability of false positives. The 25% probability

of false positives we use is not a random value. We rather determine

EnvSys ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan Visotto and Mottola

(a) Mixed network layout: latency. (b) Mixed network layout: throughput.

9 10

(c) Latency comparison for location encoding.

Figure 10: Mixed network: results.

Subscriber ID Expectation
S6 6

S7 6

S8 4

S9 4

S10 1

S11 3

Table 1: Expected number of messages.

False positive percentage Result
1% No false positive

10% No false positive

20% No false positive

25% No false positive

30% 1 false positive

40% 4 false positive

Table 2: False positive experimental outcome.

this parameter to ensure that no false positives occur in our specific

setting, based on a dedicated experiment.

We define a 5 × 5 grid domain with one message source and

six consumers covering a portion of the domain. The source sends

one message for each domain element. Each consumer records

every message it receives, including information of the cell the

message originates from. Tab. 1 reports the number of messages

each consumer expects to receive, depending on how each of them

matches a given slice of the domain. We regenerate the Bloom

filters with increasing probability of false positives, starting from

1%. Tab. 2 shows that we record the first false positive with a 30%

false positive probability. The 25% setting we use is the greatest

setting that produces no false positives.

5 CONCLUSION
We presented an efficient design to enable location-aware opera-

tion on top of the Zenoh protocol, supporting both Req/Resp and

Pub/Sub interaction paradigms. Our design delegates handling of

location information to an external component that is completely

decoupled from the rest of Zenoh’s implementation, retains the

original functioning of Zenoh’s routing core and thus benefiting

from existing optimizations and testing. This also allows us to sep-

arate out the encoding of location information: we indeed present

three techniques to encode location information, each of them rep-

resenting a trade-off between performance and expressiveness. Our

evaluation uses a virtualized environment and real-world message

traces. We demonstrate, for example, that our design reduces the

average message latency by more than 50% in a network with a

logical partitioning, while increasing throughput compared to the

two baselines we consider. The MGRS location encoding technique,

moreover, provides 40% lower latency than the other two encoding

techniques, at the cost of reduced expressivity.

Acknowledgments. This work was partly supported by the Na-

tional Recovery and Resilience Plan (NRRP), Mission 4 Component

2 Investment 1.3 - Call for tender No. 1561 of 11.10.2022 of Minis-

tero dell’Università e della Ricerca (MUR); funded by the European

Union - NextGenerationEU.

REFERENCES
[1] S. J. Barbeau et al. 2011. A Location-aware Framework for Intelligent Real-time

Mobile Applications. IEEE Pervasive Computing (2011).

[2] R. Bryce et al. 2018. MQTT-G: A Publish/Subscribe Protocol with Geolocation.

In International Conference on Telecommunications and Signal Processing (TSP).
[3] X. Chen et al. 2003. An Efficient Spatial Publish/Subscribe System for Intelligent

Location-Based Services. (2003).

[4] Citcom.AI Consortium. 2024. Citcom.AI. https://citcom.ai/

[5] P. Costa et al. 2007. Reconfigurable Component-based Middleware for Networked

Embedded Systems. International Journal ofWireless Information Networks (2007).
[6] R. Dameri et al. 2013. Searching for Smart City Definition: a Comprehensive

Proposal. International Journal of Computers & Technology (2013).

[7] P.Th. Eugster et al. 2003. The Many Faces of Publish/Subscribe. ACM Comput.
Surv. (2003).

[8] P.Th. Eugster et al. 2005. Location-based Publish/Subscribe. In Fourth IEEE
International Symposium on Network Computing and Applications.

[9] S. Herle and J. Blankenbach. 2016. GeoPipes Using GeoMQTT. In Geospatial Data
in a Changing World.

[10] H. Hu et al. 2015. A Location-aware Publish/Subscribe Framework for Parame-

terized Spatio-textual Subscriptions. In 2015 IEEE 31st International Conference
on Data Engineering.

[11] F. Ihirwe et al. 2021. Towards an MQTT5 Geo-location Extension for Location-

aware Applications. In International Conference on Telecommunications and Signal
Processing (TSP).

[12] R.B. Langley. 1998. The UTM Grid System. GPS world (1998).

[13] G. Li et al. 2013. Location-aware Publish/Subscribe. In Proceedings of the 19th
ACM SIGKDD international conference on Knowledge discovery and data mining.

[14] F. Montori et al. 2022. LA-MQTT : Location-aware Publish-subscribe Commu-

nications for the Internet of Things. ACM Transactions on Internet of Things
(2022).

[15] L. Mottola et al. 2007. Enabling Scope-based Interactions in Sensor Network

Macroprogramming. In International Conference on Mobile Adhoc and Sensor
Systems (MASS).

[16] L. Mottola et al. 2008. A Self-repairing Tree Topology Enabling Content-based

Routing in Mobile Ad Hoc Networks. IEEE Transactions on Mobile Computing
(2008).

[17] L. Mottola and G. P. Picco. 2007. Programming wireless sensor networks with

logical neighborhoods: a road tunnel use case. In SENSYS.
[18] S. Tarkoma et al. 2011. Theory and Practice of Bloom Filters for Distributed

Systems. IEEE Communications Surveys & Tutorials (2011).
[19] Zettascale Technology. 2024. Zenoh. https://zenoh.io/

https://citcom.ai/
https://zenoh.io/

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Design
	3.1 Location Matching Component
	3.2 Encoding Location Information
	3.3 Developer APIs

	4 Evaluation
	4.1 Settings
	4.2 Results

	5 Conclusion
	References

