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Abstract—We present a measurement and performance anal-
ysis of system-level settings to improve the energy efficiency of
Deep Neural Network (DNN) inference on battery-less Internet
of Things (IoT) devices. To do so, we deliberately trade a small,
controllable reduction in inference accuracy for energy gains.
Battery-less IoT devices are severely resource-constrained plat-
forms powered by energy harvesting, where execution becomes
intermittent as it alternates between bursts of computation and
periods of energy recharge. To survive frequent energy failures,
devices persist their system state into non-volatile memories,
incurring significant energy costs. We leverage aggressive current
scaling offered by Spin-Transfer Torque Magnetic Random-
Access Memory (STT-MRAM) during state writes to reduce en-
ergy consumption, intentionally allowing controlled write errors
that affect inference outcomes. Through an extensive experimen-
tal campaign comprising over 2.2+ trillion data points across 4
microcontroller units (MCUs) and 8 benchmarks, we demonstrate
that by tolerating a limited accuracy loss we can obtain up to
40% energy savings. We release our framework and toolset to
foster further research in this emerging design space.

I. INTRODUCTION

Internet of Things (IoT) devices powered by ambient energy

eliminate the need for traditional batteries [1], reducing main-
tenance costs and enabling unattended deployments [2], [3],
[4]. Yet, harvested energy is typically scarce and unpredictable,
causing frequent energy failures.
Challenge. Despite these constraints, existing work shows that
efficient Deep Neural Network (DNN) inference is feasible
even on battery-less IoT devices [5], [6]. These devices operate
intermittently: computation proceeds in bursts powered by
small energy buffers, such as capacitors, and is repeatedly
interrupted by energy failures and corresponding recharge
periods [7]. As shown in Fig. 1, devices start operating once
the capacitor voltage exceeds V,,,, and energy failures occur
when the capacitor voltage drops below Vg and the device
shuts down.

Battery-less IoT devices are usually resource-constrained
devices powered by 16- or 32-bit microcontroller units
(MCUs) with no operating system [8], and applications run
on bare-metal. Consequently, volatile memory is lost on every
shutdown. To guarantee forward progress, systems persist
critical state, such as intermediate layer outputs, into Non-
Volatile Memory (NVM) after each phase. Crucially, the cost
for this operation is massive: persisting state can consume
orders of magnitude more energy than computation itself [9].
Even so, device-local intermittent inference most often re-
mains preferable to even more energy-expensive alternatives,
such as wireless data transmission to a back-end [7], [5].
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Fig. 1: Example of intermittent execution: computation al-
ternates between recharging periods through ambient energy
harvesting (green) and active operation (blue).

Opportunity. We observe that existing intermittent systems
tend to assume that state persistence operations must be
perfectly correct at all times. Yet, many DNN workloads are
inherently resilient to small errors.

This feature offers a fundamental opportunity: modern
NVNMs, particularly Spin-Transfer Torque Magnetic Random-
Access Memory (STT-MRAM) [10], allow dynamic adjust-
ment of write current. Lowering write current reduces en-
ergy consumption but increases the probability of stochastic
switching errors [11], [10]. By tuning the write current, we
may thus deliberately trade a small increase of errors in
NVM write operations for potential reductions in energy
consumption. Since DNNs may tolerate moderate inaccuracies
without substantial quality loss, the key question is:

How much energy can we save by introducing con-
troller write errors during state persistence, and
what is the impact on inference accuracy?

Methodology and contribution. We systematically inves-
tigate this energy-accuracy trade-off across a broad design
space: multiple MCU platforms, diverse neural network mod-
els, varied input datasets, and a wide range of memory fault
rates. Our methodology combines precise energy modeling,
hardware emulation, and real-device profiling.

Our findings are striking: across over 2.2 trillion data
points we collect, consistent sweet spots exist where up to
40% energy savings are attainable with negligible impact on
inference accuracy. We also observe that i) the optimal trade-
off point depends on the program, platform, and network
characteristics—highlighting the need for whole-system in-
vestigation; and ii) quantized networks are generally more
resilient to memory errors compared to non-quantized ones.

The rest of the paper unfolds as follows. Sec. II contrasts our
work with the state of the art. Sec. III defines the problem, and
Sec. IV outlines or methodology and toolset. We report on our



findings in Sec. V. We release our full framework, toolset, and
datasets [12], enabling reproducibility and laying a foundation
for future work in this area.

II. RELATED WORK

We briefly survey the existing relevant literature and contrast

that with our work.
Intermittent inference. Energy-harvesting or battery-less IoT
devices face a fundamental challenge: frequent energy failures
lead to loss of volatile memory. Long-running computations
like DNN inference must be carefully managed to ensure
forward progress and correctness across energy failures.

Prior work adapts rollback-recovery techniques to this do-
main. Hardware-assisted schemes [13], [14], [15] use voltage
monitoring to trigger checkpoints. For instance, Hibernus
defines a “guard band” threshold and hibernates the system
once the capacitor voltage falls below the minimum needed
for checkpoint completion [15], guaranteeing forward progress
at the cost of idle periods for recharging. Software-based
approaches like DINO [16] decompose programs into atomic
tasks and use versioning to recover state after energy failures.

Works exist that modify the DNN itself to better accommo-
date intermittent executions. Multi-exit networks allow early
inference termination under energy constraints, with limited
accuracy loss [17], [18]. Model compression, pruning, and
architecture search have also been used to fit DNNs within
tight energy budgets [19], [20], [21], [22]. Some systems [6],
[23] combine workload partitioning with energy prediction to
better schedule inference across energy cycles.

Our work is orthogonal to these efforts. We execute un-

changed, pre-trained networks without requiring model re-
training, augmentation, or specialized scheduling. Instead, we
focus on the critical yet under-explored challenge of efficient
persistence: minimizing the energy cost of state saving when
using STT-MRAM as NVM. By reducing the energy cost of
state-persistent operations, we extend the effective execution
window without altering the models.
Target NVM. STT-MRAM is a promising NVM technology
offering fast reads and writes, high endurance, and virtually no
standby leakage. Unlike flash or EEPROM, STT-MRAM pro-
vides SRAM-like performance while maintaining persistency,
making it apt to intermittent systems [24]. However, STT-
MRAM writes are subject to stochastic switching: reducing
the write current to save energy increases the probability of
bit errors [10], [11]. Conventional designs ensure correctness
by using conservatively high write currents or by employing
error correction codes [25], both of which increase energy
consumption. Instead, we embrace controlled imprecision:
DNN inference can tolerate occasional bit errors because
the data pipelines are naturally robust to noisy inputs [26].
Adjusting the STT-MRAM write current thus offers a knob to
tune the trade-off between energy and output quality.

Several works [10], [27], [28], [29] expose software in-
terfaces to control write currents. For example, CAST [10]
defines Quality Levels (QLs) tied to specific write current
settings and associated bit error rates. These efforts primarily
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Fig. 2: Abstract representation of the system architecture. Pro-
grams are structured as sequences of tasks. State restore and
persistence operations are interleaved with task executions.
The MCU is powered by a multi-capacitor architecture [30]. A
knob allows setting the write current on STT-MRAM accesses.

focus on architecture design and present a limited evaluation
of application-level impact. Similarly, in prior work applying
STT-MRAM to intermittent systems [5] we demonstrate write
current tuning for DNN inference but within a restricted
parameter space, and without systematically quantifying the
relationship between write current reduction, error rates, ac-
curacy loss, and energy savings. This work explicitly and
exhaustively characterizes this trade-off across a wide range
of system parameters, providing a thorough experimental basis
for using energy-tuned STT-MRAM in intermittent inference.

III. PROBLEM AND OBJECTIVES

We articulate the benefits we obtain from controlling the
write currents in STT-MRAM and weigh them against the
potential degradation in inference accuracy. We conclude by
formulating the problem we tackle and the related objectives.

A. Platforms and Configurations

We target resource-constrained MCUs equipped with an
STT-MRAM for non-volatile state persistence, as depicted
in Fig.2. Our platform mirrors existing battery-less IoT sys-
tems based on Cortex-M microcontrollers [2], [3], [4].

The STT-MRAM offers an interface to tune the write
current, as the one in CAST [10]. The software controls this
setting via a set of discrete QLs, each one characterized in
terms of energy cost and probability of write error, namely
Write Error Rate (WER). Note this is purely a software
abstraction; our findings are valid regardless of the specific
memory interface. Since not all data can tolerate write-induced
errors, we partition the STT-MRAM address space into two
regions: one storing critical variables (error-intolerant) and
one storing error-resilient large data structures, such as DNN
intermediate outputs. We set a QL guaranteeing no write error
may occur in the former memory region, while in the latter,
we tune QL at the granularity of individual variables.

In line with state-of-the-art intermittent computing, we
consider task-based programming and a multi-capacitor
setup [30]. Capacitors are dimensioned to match task energy
requirements: small capacitors for lightweight tasks, and larger
ones for compute-intensive operations. This design reduces
recharge latency and leakage overhead [31].
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Fig. 3: Benefits of using current scaling for STT-MRAM
accesses. An example of task execution (top) and two ways to
invest energy savings (bottom): either by reducing capacitor
size (bottom left) or by extending computation (bottom right).

Neural network inference is partitioned at layer granularity:
each task executes exactly one layer. When a layer completes
the execution, the output tensor is persisted to STT-MRAM
to guarantee forward progress despite energy failures. This
design enables effective fault tolerance but creates significant
persistence overhead, since output tensors can be large. Re-
ducing the energy cost of persisting tensors directly impacts
the ability to process more layers within a single energy cycle,
boosting overall system throughput.

B. Benefits and Drawbacks

The top of Fig.3 qualitatively illustrates the energy profile
of a task execution, including computation, state restore, and
persistency operation. During state persistence, the MCU must
actively transfer data to STT-MRAM, consuming energy both
for memory writes (red area) and for its own operation during
the write process (shaded blue area). This persistence overhead
reduces the fraction of available energy that can be invested
in useful computations.

By scaling down the write current, we reduce the energy
consumption of the memory without affecting the duration of
the memory transaction, since timing remains unchanged. As
a result, we can improve system throughput by either

1) executing the same layer using a smaller capacitor, as
shown in the bottom left of Fig.3, reducing recharge
time and leakage;

2) keeping the same capacitor and investing saved energy
into additional work—potentially executing multiple lay-
ers per cycle—as shown in the bottom right of Fig. 3.

However, lower write currents increase the probability of
bit errors, potentially corrupting the persisted output tensors.
As illustrated in Fig. 4, three key factors influence the impact
of such errors:

1) A single bit error can propagate to multiple downstream
computations, as the output of a neuron is typically used
as input by many neurons in the subsequent layer.
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Fig. 4: Error propagation across layers. Errors in persisted
tensors propagate through downstream layers, compounding
their impact and potentially causing significant degradation
in final inference accuracy.

2) Not all bit errors are equally harmful; flips in the most
significant bits generally have a more severe effect than
those in the least significant bits.

3) DNN error resiliency significantly varies model by
model, as a function of structure, complexity, function-
ality, and intrinsic information redundancy.

C. Problem

The problem we address is therefore to identify a “sweet
spot” in write current settings that offer meaningful energy
savings, in exchange for a limited degradation in inference
accuracy. This is a multi-faceted problem because the factors
determining the energy savings and how errors impact the
inference accuracy are many.

Given sufficient energy, we model the energy necessary to
complete a task as

Etotal = EMCUcompute+EMCUpersist+Est0ragePersist (1)

where Eyrctcompute 1 the energy spent by the MCU in useful
computations, shown in blue in Fig.3, Eycupersist 1 the
energy spent by the MCU while the STT-MRAM writes data,
which is shown in green, and Esioragepersist 15 the energy
spent by the STT-MRAM when writing data, shown in red.

Each term in Eq.1 may be rewritten, piece by piece,
depending on the hardware characteristics:

Eiotal = Eeyele - #cycles
+ Eeycle - #memWriteAccesses
+ Ememwrite - F#FmemWrite Accesses 2)
= Feycle - #cycles
+ (Eeycle + Ememwrite) - #memWriteAccesses

where Ey . is the MCU energy for a single compute cycle,
#cycles is the number of MCU cycles to complete the tasks
chosen for execution, #mem WriteAccesses is the number of
memory accesses during state persistence operations. Finally,
FEremwrite 18 the write energy for a single memory operation.



Given a task T' in a program, the quantities of Eq. 2 depend
on multiple software and hardware factors as:

Ecycie = f1(MCU,ctiverower, MCUfreq)
#cycles = fo(MCUjga,T)
#memWriteAccesses = f3(T)
Enemwrite = fa(QL)

where MCUgctivepPower and MCUjga capture the power
figures and instruction set architecture of the chosen MCU,
MCUjeq is the MCU operating frequency, and QL is the
Quality Level for STT-MRAM writes corresponding to specific
current settings. We derive functions f1, f4, and fg from
an analysis of the datasheets and encode them as lookup
tables, whereas we determine fa, f3, and f5 through profiling
executions on real hardware or emulators, as shown next.

3)

IV. METHODOLOGY AND TOOLSET

We illustrate the methodology and experimental framework
that enable us to systematically explore the trade-offs between
energy savings and inference accuracy across different con-
figurations. We first introduce the benchmarks and hardware
platforms in Sec.IV-A, followed by the description of our
experimental framework in Sec.IV-B. We present the setup
used for evaluation in Sec.IV-C.

A. Benchmarks, Metrics, and MCUs

Our evaluation spans eight different DNNs, detailed in Tab. I
and deployed on intermittent systems [6], [23]. We use imple-
mentations from the STM ModelZoo suite [32], which cover a
wide range of model sizes, architectures, and training datasets.
Such heterogeneity is key for a comprehensive evaluation, as
it allows us to investigate which characteristics make a DNN
more resilient to memory access errors, and thus better suited
to exploit aggressive energy-saving techniques.

We select models focusing on two main application do-
mains: image classification and human activity recognition.
The models are 8-bit quantized, in line with the con-
straints of edge deployments. The naming convention for
the models reflects their input dimensions: for example,
FDMobileNet_96 and MobileNetV1_224 process RGB
images of sizes 96x96 and 224 x224 pixels, respectively. In
human activity recognition benchmarks, such as IGN_wl_24
and IGN_wl_48, the inputs are matrices of accelerometer
readings with dimensions 24 x3x 1 and 48 x3 x 1, respectively.

Each DNN is structured as a sequence of layers, where
the intermediate tensors generated by each layer must be
stored into STT-MRAM before they are consumed by the next
computation stage. To assess the impact of memory errors,
we use classification accuracy as the quality metric across all
models, following established evaluation practices [32], [33].
This allows us to consistently quantify the deviation in the
output caused by introducing write errors.

We conduct experiments across a set of MCUs listed in
Tab. I, comprising Cortex-M0, Cortex-M4, Cortex-M33, and
Cortex-M7 cores [34]. We select these MCUSs to cover a broad

TABLE I: Benchmarks for experimental evaluation. We use a
diverse set of benchmarks from different domains, to enable a
comprehensive evaluation of how the current scaling impacts
the tradeoff between energy gains and accuracy.

\ Benchmark [ Domain | MACs [ Max state size |
MobileNetV1_0.25_96 Image classification 7.5M 39KiB
MobileNetV1_0.25_224 | Image classification 41M 202KiB
FDMobileNet_128 Image classification 3.9M 49KiB
FDMobileNet_224 Image classification 12M 152KiB
SqueezeNetV1.0 Image classification 175M 450KiB
STMnist Image classification IM 12KiB
IGN_wl_24 Activity recognition 13K 1.63KiB
IGN_wl_48 Activity recognition 50K 5.2KiB

TABLE II: Selected MCUs. Each MCU is characterized by
different instruction sets and energy figures, allowing us to
perform a comprehensive experimental evaluation.

Clock speed | Main memory | MCU,ctivePower

‘ mcu ‘ (Mhz) (KiB) (uW/Mhz)
Cortex MO 40 32 12.5
Cortex M33 160 768 12.0
Cortex M4 80 128 32.82
Cortex M7 480 1024 58.5

spectrum of hardware capabilities in terms of clock frequency,
available main memory, and active power consumption. This
diversity enables us to capture how microarchitectural features
and power profiles influence the energy-accuracy trade-off.
The active power figures reported correspond to the MCU
operating in compute mode, with only the main memory
and compute core powered on, ensuring measurements reflect
purely computational workloads without I/O.

B. Framework

Ensuring reproducible experimental settings in intermittent

computing is extremely difficult [7], due to the multitude of
system variables [35], resource constraints of target hardware
that limit visibility into the system operation [36], and the
stochastic behavior of energy sources [1].
Design. To ensure accurate measurements and reproducible
executions, we combine NVM estimation tools and profiling
on real hardware, as shown in Fig. 5. For each DNN model and
target MCU, we measure energy consumption and correspond-
ing accuracy while applying the different QLs to STT-MRAM
writes. As we articulate next, the performance figures for the
MCU come from widely used emulators or real hardware
executions, while STT-MRAM performance data comes from
datasheets and state-of-the-art NVM simulators. These design
choices provide a sound basis to maintain that our quantitative
results are on par with real executions.

We measure the system’s energy consumption as the sum of
MCU and STT-MRAM energy. The MCUs we consider feature
very simple architectures with no dynamic voltage/frequency
scaling; we can reliably estimate their energy consumption as
a simple function of power consumption and the number of
cycles to execute the workload. We retrieve power consump-
tion from the MCU datasheet @ To compute the number
of cycles, we profile executions to extract a trace of machine
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Fig. 5: Experimental framework and toolset. Our framework processes input data derived from both datasheets and on-hardware
measurements. It outputs the trade-off between energy consumption and accuracy for each QL.

instructions and memory accesses @ We perform multiple
runs to average out the effects of inputs.

For write operations on STT-MRAM operations, energy
consumption depends on the QL @; we explain next how
we obtain this value and the corresponding single-bit error
probability. Finally, we extract the number of write operations
from the execution trace. We then combine all these energy
contributions in Eq.2 (4).

Measuring the accuracy of a benchmark at a given QL
requires memory access errors to be simulated. Since the errors
caused by current scaling on STT-MRAM are stochastic, as
common practice in reliability analysis of digital systems [37],
we perform a large number of error simulation runs on every
target architecture @ We compare the faulty outputs against
the golden counterparts to compute the accuracy loss @ For
each benchmark and MCU, we repeat experiments for all QLs
and we collect energy consumption and accuracy loss.
Implementation. We use NVSIM [38] to obtain STT-MRAM
energy figures. NVSIM is a widely used NVM simulator [10]
that allows system designers to characterize STT-MRAM de-
vices, and therefore to estimate read/write currents and energy
consumption for a given chip configuration. We borrow the
mapping between the energy invested for read and write op-
erations at a given QL and the corresponding single-bit WER
from existing literature [10]. We use hardware development
kits from ST Microelectronics [39] to profile the benchmarks
with Cortex M MCUs. We use hardware counters and on-board
debugging facilities to count the number of executed cycles.

To simulate NVM errors, since the STT-MRAM is used
as a scratch-pad memory, STT-MRAM operations are directly
mapped to variable accesses in the application source code;
as a consequence we can instrument the benchmark code in
Tensorflow with an error injection functionality corrupting the

bits during each variable write or read with the given WER
probability as in existing literature [37]. As this strategy is
independent of target hardware, as long as the data encoding is
the same, it is possible to execute error simulations on a high-
end workstation and yet obtain the same results as the target
MCU, yet with a multi-fold reduction of execution times.

C. Setup

To systematically explore the energy-accuracy trade-off, we
define five distinct QLs, denoted as Q0 through Q4. The former
QO corresponds to standard operating conditions with virtually
error-free memory writes, serving as the golden baseline.
Progressively higher QLs reduce the memory write and read
currents, resulting in lower energy consumption at the cost of
increasing write error rates, as reported in Tab. III.

We derive the parameters associated with each QL, in-
cluding set current and energy per bit, from simulations
targeting a 32nm STT-MRAM process technology. Notably,
even moderate current reductions yield substantial energy
savings; for instance, setting Q1 results in write operations
that consume only about 56.3% of the energy compared to a
Q0 setting. However, these savings come with a significant
increase in error probability, and the relationship between
energy reduction and error rate is non-linear, with diminishing
returns at higher QLs.

Each test configuration is defined as a combination of
i) benchmark, ii) target MCU, and iii) QL for STT-MRAM
operations. For each benchmark, we use between 15,000 and
70,000 distinct input samples, ensuring a diverse workload.
We execute every configuration multiple times with different
inputs, totaling between 750,000 and 3,750,000 runs per
benchmark. This extensive sampling is necessary to accurately
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Fig. 6: Trade-off between energy savings and accuracy loss for
gain at the sweet spots, ranges from 5% to 40%, depending on

TABLE III: Characterization of QLs. Write and read energy
decrease linearly; while the corresponding WERs increase by
orders of magnitude.

[ QL | WER | Set current (uA) | Write energy per bit (p.J) |
00 | 10% 1153 167
01 10 865 94
02 107 769 74
03 104 673 57
04 1073 577 43

capture the stochastic behavior of errors and to provide statis-
tically meaningful estimates of inference accuracy.

Resource constraints in the target MCUs dictate the map-
ping of benchmarks to platforms. For example, the Cortex-
MO, with its limited memory capacity, can only execute the
lightweight STMNIST benchmark, whereas the Cortex-M4 can
accommodate the smaller image classification models but not
the larger variants such as MobileNetV1_224. The Cortex-
M33 and Cortex-M7, offering more generous memory budgets,
are capable of running all benchmarks.

System capacitors, necessary for intermittent execution, are
sized based on a hybrid analytical and empirical approach [40],
[3], [41]. In particular, we adopt a tiered approach, sizing
the largest capacitor according to the energy demand of the

(h) IGN_wl_48

Cortex M benchmarks with write current scaling. The energy
MCU and benchmark.

most computation-intensive layer, and supplement it with
medium and small capacitors to execute layers of varying
energy requirements [40], [30]. Additional details regarding
benchmark inputs, number of repetitions, platform mappings,
and capacitor sizing strategies are available elsewhere [12].

V. RESULTS

Based on more than 2.2 trillion experimental data points, we
provide quantitative evidence of where and to what extent it is
possible to identify sweet spots that enable substantial energy
savings in exchange for a limited degradation in accuracy, by
applying current scaling to write operations. We also discuss
key factors governing these trade-offs.

A. Sweet Spots

Fig. 6 illustrates the trends in energy savings and accuracy
loss across benchmarks. The plots consistently reveal non-
linear patterns in accuracy loss. Importantly, beyond QO, there
is almost always at least one QL where the accuracy is
comparable to Q0 or deteriorates only slightly. The critical
insight is to evaluate the energy gain at this alternative QL.

Across all DNNs tested on Cortex M-class MCUs, Fig. 6
shows that operating at Q2 often achieves an intangible or very
limited impact on classification accuracy, typically only a few



percentage points at most. Yet, energy consumption improves
by up to 40% compared to Q0. For specific benchmarks like
FDMobileNet_224, similar improvements persist even at
03. Among the platforms tested, the Cortex M33 achieves the
best energy gains, and along with the Cortex M7, it is the only
MCU capable of executing all considered benchmarks.

It is important to note that the best energy savings occur
when the energy needed to persist data outweighs the energy
needed to compute them. Since our we selectively reduce the
energy of state persistence without affecting compute energy,
applications where FEgorage dominates Eycucompue benefit the
most. Thus, the full potential of the approach emerges when
the output tensor is large enough, or persistence is costly
enough, that optimizing only storage-related operations leads
to visible system-level gains.

These findings highlight the necessity of empirical tuning to
discover optimal operating points, which vary across hardware
and workload characteristics. The framework we release [12]
streamlines this process, enabling developers to explore and
exploit these trade-offs.

B. Key Factors

Several factors critically influence whether a sweet spot

exists and what its characteristics are.
Quantization and input size. We employ 8-bit quantiza-
tion, a standard practice when deploying DNNs on resource-
constrained platforms [6], [23]. Beyond footprint benefits,
quantization inherently enhances error resilience by restricting
the numerical dynamic range, thus reducing the impact of
bit flips [42]. In Fig.7 we illustrate this effect. While non-
quantized DNNs initially have higher accuracy than their
quantized counterparts, they exhibit sharp accuracy degrada-
tion as early as Q1. In contrast, quantized models maintain
stable performance across a wider range of quality levels,
exposing error-tolerant operating points that non-quantized
models cannot sustain. For instance, at QL1, the non-quantized
FDMobileNet_128 suffers nearly a 30% drop in accuracy,
whereas the quantized version experiences a negligible accu-
racy loss of less than 1%.

Similarly, in Fig.8 we show that also input size affects
how well DNNs handle write-induced errors. At lower quality
levels like Q1, the accuracy drop is small and does not depend
much on input size. However, as the error rate increases at Q2
and 03, DNNs with smaller inputs tend to lose more accuracy.
This happens because larger inputs carry more information
and inherently offer greater data redundancy. This allows
the network to tolerate partial corruption since even when
some bits are flipped, the abundance of correct information
in the intermediate outputs compensates for the errors, finally
mitigating the accuracy loss. Still, under extreme degradation
at Q4, all models fail, regardless of input size.

DNN models and platforms. The trends seen in Fig.6 can
be explained by examining the relative contribution of the
terms in Eq.1. Benchmarks like SqueezeNet emphasize
computation phases and have comparatively small states. Thus,
Envcucompute dominates Fio,, and reducing STI-MRAM write
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Fig. 7: Impact of quantization on neural network resilience to
write errors. Quantized DNNs experience significantly smaller
accuracy drops compared to non-quantized versions under
degraded write conditions, enabling the discovery of useful
sweet Spots.
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Fig. 8: Effect of input size on neural network robustness.
Networks operating on larger inputs show greater resilience to
degraded storage conditions at higher quality levels, delaying
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Fig. 9: Energy savings enabled by current scaling on state
persistence operations. Benchmarks and platforms with larger
storage requirements relative to computation phases yield the
highest energy gains, confirming that the most effective savings
arise when Egoreg. dominates Eycucompute-

energy yields minimal benefit. Conversely, benchmarks such
as MobileNet maintain large intermediate states and outputs,
resulting in Ejorage bearing a much greater impact on Eigg.
These benchmarks are the ones that reap the greatest rewards
from optimizing storage energy.

Fig.9 aggregates energy savings across MCUs. Fig.9a
shows the energy gains for STMINIST, the only DNN com-
patible across all Cortex M* cores. Despite having lower active
power, the Cortex MO achieves the least savings, as its limited
instruction set prolongs execution time, dampening the effect
of reduced storage energy.

Fig.9b further shows that the Cortex M33 consistently
obtains the best absolute energy savings. Cortex M4 and M7
offer similar results despite the Cortex M7 consumes ~=50%



more active power. In fact, the Cortex M7 advanced instruction
set requires significantly fewer cycles per inference compared
to the Cortex M4—roughly 1.4x fewer cycles—thus reducing
the dominance of compute energy relative to storage energy,
and maximizing the benefit of reduced persistence energy.

VI. CONCLUSION

We determined that tuning the write current of STT-MRAM
in intermittent computing executing DNNs enables the iden-
tification of a sweet spot where up to 40% energy gains are
available in exchange of a negligible degradation in accuracy.
Together with this, we also studied how DNN and system
settings including quantization, input size, program, and target
platform impact these trends. The toolset we release [12] for
others to use and build upon allows a similar investigation to
be carried out on different programs and platforms.
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