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Abstract—We comprehensively compare thirteen machine
learning models for forecasting urban air pollutants. However,
the accuracy of existing prediction models varies as a function
of what specific pollutant is predicted, as well as the nature and
size of the training set. We examine the performance of thirteen
machine learning models using fifteen years of IoT sensor data,
including both meteorological and pollutant data representative
of a rural industrial urban environment in the heart of the Lom-
bardy region (Italy). While prior studies have applied machine
learning models to urban air pollution forecasting [3,4,7], few
have systematically compared a diverse set of models using a
long-term, 15-year dataset across multiple pollutants and training
data scenarios. In this work, we benchmark thirteen models,
revealing how pollutant-specific characteristics and training his-
tory affect forecasting performance. Ensemble tree-based models,
particularly LightGBM, XGBoost, and Random Forest, consis-
tently outperform others, especially for pollutants with strong
temporal patterns such as NO2 and NO. Conversely, pollutants
like NH3 and CO prove more challenging to predict, due to
irregular dynamics and weaker correlation with meteorological
features. Our analysis also reveals that increasing the proportion
of training data generally enhances model accuracy as expected,
though improvements diminish beyond a 70–80% split w.r.t test
data.

Index Terms—Air quality forecasting, machine learning, en-
semble models, environmental monitoring, pollutant prediction,
data-driven modeling.

I. INTRODUCTION

The ability to evaluate and predict the concentration of air
pollutants represents a crucial step in addressing air pollution,
which remains a major global environmental and public health
concern. Among the most harmful pollutants are nitrogen
dioxide (NO2), ozone (O3), ammonia (NH3), and nitric oxide
(NO), due to their significant adverse effects on both human
health and the environment. Prolonged exposure to these
substances is linked to adverse health effects and declining
air quality. The Sustainable Development Goals of the United
Nations General Assembly [1] establish a strong correlation
between air pollution and a number of different goals.

Effective pollutants forecasting allows for early warnings,
better pollution control measures, and informed policymaking
to mitigate environmental damage. The rise of the Internet
of Things (IoT) has facilitated dense networks of low-cost
air quality sensors, generating high-volume environmental
data in real time. These IoT-driven data streams open new
opportunities for Machine Learning (ML) models to learn
complex patterns and provide timely forecasts of pollutant

levels. However, selecting appropriate ML algorithms and un-
derstanding their performance for different pollutants remains
an open challenge [2].

Prior research [3] has applied various ML techniques for
air quality prediction, including linear regression models,
tree-based ensembles, support vector machines, and neural
networks, with mixed results depending on pollutant and
context [4]. Yet, comparative evaluations across a wide range
of models under identical conditions are limited.

To fill this gap, we conduct a comprehensive comparison of
thirteen ML models for forecasting hourly concentrations of
five common urban air pollutants: CO, NO, NH3, O3, NO2.
These pollutants exhibit different emission sources and tem-
poral dynamics. For example, NO and NO2 typically follow
strong diurnal cycles tied to traffic rush hours and photo-
chemical processes, whereas NO2 emissions (from agriculture,
waste, etc.) may be sporadic or seasonally driven, potentially
leading to irregular patterns. By evaluating a diverse set of
models on each pollutant, we identify which approaches work
best for which pollutant and why.

Another key element we explored in this study was how dif-
ferent train/test split strategies influence model performance.
We tested five variations to evaluate how much historical data
is necessary for reliable predictions and how the choice of
training data impacts accuracy.

In this analysis we used a rich fifteen-year historical dataset
of meteorological variables and pollutant concentrations, rep-
resentative of a rural industrial urban area in the heart of
Lombardy region, with IoT sensor coverage. We intend to
release the complete dataset and accompanying code used in
this study upon the manuscript’s acceptance.

The remainder of the paper is structured as follows: Section
II reviews related work. Section III outlines the materials and
methods we used. Section IV presents the results and offers a
detailed interpretation of the findings. Section V discusses key
insights and practical implications, emphasizing the relevance
of the outcomes. Finally, Section VI concludes the paper.

II. RELATED WORK

Earliest efforts in air quality prediction date back to the mid-
20th century, when the use of statistical and physical modeling
techniques provided foundational techniques for simulating
pollutant dispersion and temporal trends [5].



A key turning point came in the 1990s when ML—
particularly Artificial Neural Networks (ANNs)—for air qual-
ity forecasting were introduced as an alternative method
to the traditional simple regression models and time-series
approaches [6], such as ARIMA. However, these methods
often suffer from high computational cost and sensitivity to
boundary conditions, which can hinder real-time deployment
in urban environments.

Early adopters of ML in environmental contexts, demon-
strated that Artificial Neural Networks (ANNs) could outper-
form linear regression models in capturing non-linear depen-
dencies between meteorological variables and pollutant levels,
especially NO2 [7]. This marked a turning point, setting the
stage for a broader adoption of ML in environmental sciences.

Subsequent studies in the 2000s expanded the application
of ML to various pollutants, such as PM2.5, O3, and NO2. For
instance, decision trees and Support Vector Machines (SVM)
applied to predict air pollution episodes in Portugal, reporting
improved accuracy and interpretability [7].

The 2010s saw exponential growth in this field, driven by
the availability of large environmental datasets and the rising
influence of IoT technology. Sensors now offer high-resolution
spatiotemporal data, which ML models can utilize effectively.
Techniques such as Random Forests, Gradient Boosting Ma-
chines, XGBoost, and LightGBM became increasingly popular
for their ability to handle non-linearities, collinearity among
predictors, and large datasets with minimal preprocessing. For
example, in 2015 ensemble learning models for hourly NO2
prediction were successfully applied in Beijing, demonstrating
their superior performance compared to ANN and SVM [8].

IBM’s Green Horizons project in China [9] utilized ML
and cognitive computing to forecast air pollution and provide
actionable insights for city planners. On a commercial scale,
BreezoMeter applies ensemble and deep learning methods for
hyperlocal air quality forecasting, offering forecasts up to 96
hours in advance.

More recent literature [10,11] has turned attention to multi-
pollutant and hybrid modeling approaches, using spatiotem-
poral deep learning architectures to incorporate both local
conditions and spatial correlations across sensor networks.
Yet, these models demand significant computational resources
and may struggle to generalize under changing emission
patterns, as evidenced during anomalous periods like COVID-
19 lockdowns [12].

Our study addresses the comparative performance of mul-
tiple ML algorithms in pollutants concentration forecasting,
incorporating train-test variability through five different split
ratios. Our approach directly tackles the lack of consistency
in prior studies, offering insight into how the size of training
data affects model performance. By using a consistent dataset
and evaluation metrics across all models, we establish a
rigorous benchmarking framework that enabled meaningful
comparisons. Our approach contributes to the discussion on
the generalizability and robustness of ML techniques in air
quality forecasting.

III. MATERIALS AND METHODS

We illustrate the key features of the area we study, of
the dataset we use and of the ML models we consider. We
conclude with a description of the methodology we adopt.
Study area. Codogno is a small town in the Lombardy region,
Italy, which serves as the target for this work. Its strategic po-
sition in the Po Valley gives rise to significant air pollution due
to industrial activities, vehicular emissions, and meteorological
conditions that contribute to pollutant accumulation [13].

The monitoring stations in this study are operated by
ARPA Lombardia (Agenzia Regionale per la Protezione
dell’Ambiente), which provides reliable air quality data across
the region, on different time scales, thanks to the numerous
IoT measurement points situated across the region surrounding
Codogno, which monitor not only meteorological conditions
but also the concentration of up to ten different air pollutants.
Datasets. We used historical air quality data spanning fifteen
years, from Jan 2010 through 2024, including hourly records
of pollutant concentrations and meteorological variables. The
data include four target pollutants— NO2, NH3, O3, and
NO—and environmental features such as temperature, solar
radiation, precipitation, wind speed, and humidity.

For model evaluation, we define a 30-day forecast period
corresponding to Jan 1–30, 2025 at hourly resolution. We treat
this period as an out-of-sample test set, includes wintertime
conditions with typical daily pollutant cycles. Actual pollutant
concentrations for this period were provided as “future” obser-
vations, for comparison with forecasts. We chose a contiguous
30-day horizon deliberately, with the scope of mimicking a
realistic forecasting scenario.
ML models. To ensure a comprehensive evaluation of the ML
algorithms deployed, we employ five different train-test data
splits, allowing for an in-depth analysis of the influence of
the amount of data over model performance, using random
sampling with a fixed random seed for reproducibility. All
models were ultimately applied to predict the entire 30-day
period. This approach allowed for each model to be trained five
times—once for each training fraction—and then to generate
five sets of forecasts for Jan 2025.

The ML models we consider are selected based on their
diversity across modeling paradigms (linear, tree-based, boost-
ing, kernel-based, and non-parametric), as well as their
widespread adoption in time series forecasting and environ-
mental data analysis. This set of thirteen models includes:

1) Linear Regression (linear model): assumes a linear
relationship between the regressors and the dependent
variable. It estimates coefficients that minimize the dif-
ference between predicted and actual values, serving as
a simple baseline for comparison;

2) Ridge Regression (linear model): a linear model that
prevents large coefficient values, reducing the risk of
overfitting and is particularly useful when features (in
this case meteorological) are highly correlated;

3) Lasso Regression (linear model): a linear regression
model, which selectively shrinks some feature coeffi-



cients to zero, performing feature selection with the goal
of improving interpretability;

4) ElasticNet (linear model): combines Lasso and Ridge
Regression, balancing feature selection and regulariza-
tion. This model is effective when dealing with mul-
ticollinearity [14], that is, when several independent
variables are correlated, among meteorological inputs;

5) DecisionTree (tree-based model): splits the data into
hierarchical decision rules (”leaves” and ”branches”)
based on meteorological factors. It captures nonlinear
relationships but may overfit without proper pruning;

6) Random Forest (tree-based model): an ensemble of
multiple decision trees that reduces variance by aver-
aging predictions. It is robust against overfitting and
captures complex interactions in air quality data;

7) ExtraTrees (tree-based model): similar to Random For-
est with additional randomization in feature selection
and splitting criteria, enhancing robustness;

8) AdaBoost (boosting model): sequentially corrects errors
from previous weak learners, improving predictive per-
formance, especially for volatile levels;

9) Gradient Boosting (boosting model): builds trees iter-
atively, optimizing residual errors. It is claimed to be
effective in modeling complex dependencies in meteo-
rological and air quality data;

10) XGBoost (boosting model): an optimized version of
Gradient Boosting that incorporates regularization and
handling of missing values, claimed to be one of the
best performing models;

11) LightGBM (boosting model): a gradient boosting model
optimized for speed and efficiency. It processes large
datasets quickly while maintaining high accuracy;

12) K-Nearest Neighbors (KNN) (non-parametric model):
predicts the target variables based on the values of the
nearest features observations;

13) Support Vector Regressor (SVR) (kernel-based
model): maps input data into a higher-dimensional space
to identify complex patterns, particularly useful for
handling nonlinear relationships.

We use the regular implementation of all models as found
in standard Python libraries. We use the scikit-learn.
implementation for most models, and pick XGBoost and
LightGBM from their respective packages [15-17]. We use de-
fault hyperparameters, except the number of trees in ensemble
models which was set to 100 for Random Forest, Extra Trees,
GBM, XGBoost, and LightGBM to ensure adequate learning
capacity. To retain consistency and avoid overfitting across a
broad comparison, we did not perform hyperparameter tuning.
While this decision allows for fairer benchmarking of default
model behavior, it may disadvantage algorithms like SVR and
AdaBoost, which are known to be highly sensitive to their
configuration settings [3,4].

A. ML Pipeline and Methodology

We trained each model separately for each pollutant. The
input features to the models included recent meteorological

variables and time features. Specifically: Temperature, Ra-
diation, Precipitation, Wind Speed, Humidity, and temporal
indicators (Hour, Day, Month, Weekday) are provided as
predictors.

We deliberately excluded lagged pollutant values to simu-
late forecasting from exogenous features alone, aligned with
approaches aiming for real-time deployability without reliance
on prior pollutant measurements. Although autoregressive in-
puts can improve accuracy, this restriction allows evaluating
model performance solely from environmental predictors [2,3].
This design simulates real-world constraints where historical
pollutant data may be unavailable or delayed. Although lag
features can improve accuracy through autocorrelation [2],
this study isolates exogenous predictive power to better assess
model generalizability.

After selecting a target variable (y), we construct the feature
set (x) by excluding time information and the target variable.
The dataset is split into training and testing subsets, according
to multiple train-test splits: 50%, 60%, 70%, 80%, and 90%.
Forecast. After training on the historical data, we predict
pollutant concentrations hour-by-hour over the forecast period.
We assumed that the required features, for example, meteo-
rological forecasts, for the period at stake were available or
could be estimated; in practice, one would use actual weather
forecasts as input. In our case, we used the actual observed
meteorological data for Jan 2025 as input to isolate model
errors. The result was, for each pollutant, 65 forecast series,
that is 13 models times 5 training scenarios, of 720 hours each,
alongside the actual observed series.

IV. RESULTS

The following subsections present the results separately
for each pollutant through summary tables containing perfor-
mance metrics, indicating the best performing train/test ratio
of each model for each pollutant, in terms of accuracy. We also
graphically illustrate typical forecast behavior. The results are
based on predictions for the forecast period compared against
the actual observed concentrations for that period. We evaluate
the forecast models using standard performance metrics: R²,
RMSE, MAE, and (Accuracy (%) =

(
1− MAE

Y actual

)
× 100).

A. Carbon Monoxide (CO)

As seen in Fig. 1, CO concentrations during the forecast
period were low in magnitude (mostly 0.5–1.5 units) with a
relatively flat diurnal profile and a regular fluctuation. The
lack of strong upward or downward long-term trend lead to
limited variability proving challenging for models to capture
improvements over a naive prediction. Table I summarizes the
CO forecasting performance metrics for each model, ranking
the best performed train/test split among each algorithm.

Among all tested configurations, XGBoost with the 90%
training split (CO XGBoost 90) demonstrated the best over-
all performance, indicating a strong balance between pre-
diction precision and generalization. The LightGBM model
(CO LightGBM 80) followed with a respectable R² and



TABLE I
PERFORMANCE OF CO PREDICTION MODELS

Model R2 RMSE MAE Accuracy (%)
CO XGBoost 90 0.5560 0.2537 0.1966 78.03

CO LightGBM 80 0.4634 0.2789 0.2260 74.74
CO ExtraTrees 90 0.3661 0.3031 0.2493 72.13

CO RandomForest 90 0.3358 0.3103 0.2530 71.72
CO AdaBoost 50 0.1707 0.3467 0.2793 68.78

CO DecisionTree 80 -0.0259 0.3856 0.2966 66.84
CO KNN 80 0.0493 0.3712 0.3096 65.40

CO GradientBoosting 70 0.1083 0.3595 0.3130 65.02
CO ElasticNet 50 -0.1052 0.4002 0.3497 60.92

CO Lasso 50 -0.1331 0.4053 0.3534 60.50
CO SVR 50 -0.1578 0.4096 0.3594 59.82
CO Ridge 60 -0.2383 0.4237 0.3671 58.96

CO LinearRegression 60 -0.2383 0.4237 0.3671 58.96
aAll values rounded to 4 decimal places. Accuracy is expressed as a percentage.

slightly higher RMSE and MAE, suggesting its predic-
tions were somewhat more dispersed compared to XGBoost.
Ensemble-based methods like Extra Trees and Random Forest
with 90% training split also performed reasonably well, though
with slightly reduced accuracy.

On the other hand, AdaBoost models, for example,
CO AdaBoost 50, showed relatively lower performance, pos-
sibly due to their sensitivity to noise or underfitting in this
particular dataset. Overall, boosted tree-based models, espe-
cially XGBoost and LightGBM, consistently outperformed
other algorithms, underlining their robustness against time
series prediction tasks involving CO concentration levels.

B. Nitric Oxide (NO)

For NO, the highest concentration peaks seen in Fig. 2
(up to 382 µg/m³) posed forecasting challenges, but overall
performance was strong for the top performing models, as
seen in Table II. RandomForest achieved the lowest RMSE
and highest R², indicating it explained 81% of NO variance–
the best R² among all pollutants. ExtraTrees and LightGBM
were next, followed by XGBoost. GradientBoosting and KNN
have slightly higher RMSE but still maintain R² of 0.73–0.75,
indicating decent performance. The Linear and Ridge models,
which again produced similar results, and Lasso were mid-
tiers, while SVR and AdaBoost were the worst.

All top 8 models show R2 > 0.67, indicating they captured
the majority of variance in NO levels, likely due to NO’s
diurnal seasonality, which is easier to model when using tree
ensembles that capture nonlinear interactions. RandomForest
emerged as the best-performing model for NO, closely fol-
lowed by ExtraTrees and LightGBM. Simpler models per-
formed worse and AdaBoost continued to exhibit instability.

C. Ammonia (NH3)

Model performance for forecasting NH3 concentrations
demonstrated great variability across different algorithms and
parameter settings, as shown on Fig. 3. NH3 had a wider
dynamic range, posing a more complex forecasting task.
Forecasting NH3 was challenging not only due to its com-
plex and dynamic behavior, but also due to heterogeneous
emission sources, chemical reactions occurring in the atmo-
sphere, which together introduce significant nonlinearity in its

TABLE II
PERFORMANCE OF NO PREDICTION MODELS

Model R2 RMSE MAE Accuracy (%)
NO RandomForest 80 0.8138 22.2040 14.0604 78.31

NO ExtraTrees 80 0.8033 22.8231 14.4405 77.72
NO LightGBM 70 0.8012 22.9462 14.4598 77.69
NO XGBoost 50 0.7868 23.7641 15.0071 76.85

NO GradientBoosting 70 0.7541 25.5190 16.0295 75.27
NO KNN 90 0.7254 26.9650 16.2958 74.86

NO ElasticNet 80 0.6744 29.3656 16.8102 74.07
NO Lasso 80 0.6793 29.1441 16.9541 73.85
NO Ridge 80 0.6786 29.1758 18.3979 71.62

NO LinearRegression 80 0.6786 29.1759 18.3983 71.62
NO DecisionTree 50 0.6560 30.1838 18.7037 71.15

NO SVR 90 0.1814 46.5614 26.4179 59.25
NO AdaBoost 50 0.5495 34.5397 27.6603 57.33

aAll values are rounded to 4 decimal places. Accuracy is expressed as a percentage.

concentration levels. Among the best-performing models, as
shown in Table III, ensemble-based approaches such as Gra-
dient Boosting and LightGBM emerged with higher predictive
accuracy, where the former achieved the highest R² value of
0.050, indicating a modest but superior explanatory power
compared to others.

Models like Extra Trees and Random Forest with a 70-
minute forecast horizon showed negative R² values, suggest-
ing poor generalization and predictive capability in those
configurations. SVR, although generally underperforming in
terms of R² and RMSE, demonstrated reasonable MAE values,
indicating consistent albeit biased forecasts.

TABLE III
PERFORMANCE OF NH3 PREDICTION MODELS

Model R2 RMSE MAE Accuracy (%)
NH3 LightGBM 60 -0.0213 15.4757 10.1091 62.11

NH3 GradientBoosting 80 0.0504 14.9227 10.5408 60.49
NH3 SVR 90 0.0253 15.1186 11.0149 58.71

NH3 ExtraTrees 70 -0.3460 17.7664 11.5523 56.70
NH3 RandomForest 70 -0.3583 17.8476 11.6669 56.27

NH3 XGBoost 60 -0.5935 19.3309 13.0289 51.16
NH3 DecisionTree 80 -0.7206 20.0876 13.8389 48.12

NH3 Lasso 60 -0.1601 16.4943 14.0059 47.50
NH3 ElasticNet 60 -0.1742 16.5937 14.1307 47.03

NH3 KNN 50 -0.5049 18.7862 14.3479 46.22
NH3 Ridge 60 -0.1765 16.6100 14.3554 46.19

NH3 LinearRegression 60 -0.1765 16.6099 14.3554 46.19
NH3 AdaBoost 60 -4.3080 35.2813 31.7938 -19.18

aAll values rounded to 4 decimal places. Accuracy is expressed as a percentage.

Overall, NH3 forecasts proved difficult: only ensemble and
kernel methods contained errors to 15 units, while linear mod-
els and AdaBoost failed to generalize, showing large errors
and negative accuracy. In this case, considering a pollutant
with a more dynamic nature, models proved well performing at
predicting trends, at the expense of accuracy, finding it difficult
to reach the exact observed values.

D. Ozone (O3)

O3 forecasting was also challenging for most models, as
Table IV demonstrates. LightGBM emerged as the best, with
R2 = 0.47, meaning it explained approximately 47% of
the variability. ExtraTrees and XGBoost followed closely,
achieving only 52-55% accuracy, since O3 concentrations up



Fig. 1. Comparison of actual CO concentrations (black line) with predictions from the 4 best performing models, over 2 different 7-day periods in Jan 2025.

Fig. 2. Comparison of actual NO concentration levels (black line) with predictions from the 4 best performed train/test splits over time. The plot highlights
the models’ ability to capture peak concentrations and general trends in NO levels throughout Jan 2025.

Fig. 3. Comparison of observed NH3 concentrations (black line) with forecasted values from the 4 top-performing model variations in 2 snippets of 7 days
each in the forecast period.

to ∼60 µg/m3) often had low absolute values, making percent-
age errors high. Many models showed negative accuracy for
O3, indicating MAPE > 100%. The forecast comparison is
visualized in Fig. 4.

Still, even the best models had R2 < 0.5, meaning large
relative errors. This is partly due to very low overnight O3
values, when actual O3 is near zero. This effect explains why
accuracy percentages are low or negative despite moderate
RMSE values. Moreover, regression models yielded similar
results, as did ElasticNet and Lasso, highlighting that little
regularization was helpful for O3.

In summary, LightGBM provided the most reliable O3
forecasts among the tested models, but even it left substantial
errors, whereas models like SVR and AdaBoost severely
overfit or mis-predicted O3 levels, resulting in unacceptably
high errors. Ozone proved to be one of the most challenging
pollutants to forecast accurately–many models yielded nega-
tive R² and low accuracy, indicating large errors relative to its

TABLE IV
PERFORMANCE OF O3 PREDICTION MODELS

Model R2 RMSE MAE Accuracy (%)
O3 LightGBM 70 0.4718 8.6796 6.4855 55.11
O3 XGBoost 90 0.4607 8.7703 6.5682 54.53

O3 ExtraTrees 70 0.4523 8.8383 6.6185 54.19
O3 RandomForest 50 0.4132 9.1483 6.8706 52.44

O3 GradientBoosting 70 0.3513 9.6190 7.5330 47.86
O3 ElasticNet 50 0.2427 10.3926 8.7501 39.43

O3 Lasso 70 0.2420 10.3973 8.7584 39.37
O3 LinearRegression 80 0.2246 10.5163 8.7929 39.14

O3 Ridge 80 0.2246 10.5163 8.7929 39.14
O3 KNN 50 -0.0112 12.0093 8.9154 38.29

O3 DecisionTree 90 -0.2254 13.2199 9.2601 35.90
O3 SVR 90 -0.2588 13.3988 11.8704 17.83

O3 AdaBoost 60 -2.5026 22.3506 20.4434 -41.51
aAll values rounded to 4 decimal places. Accuracy is expressed as a percentage.

variability. Simpler ML models appear not to perform suffi-
ciently well to forecast values with high variability and low
seasonality, thus requiring more advanced models, additional



Fig. 4. Comparison of observed O3 concentrations (black line) with forecasted values from the 4 top-performing models over the 2 snippets, each of 7-day
periods in the month of Jan.

TABLE V
PERFORMANCE OF NO2 PREDICTION MODELS

Model R2 RMSE MAE Accuracy (%)
NO2 LightGBM 50 0.8015 5.4493 4.0730 86.84
NO2 ExtraTrees 50 0.7990 5.4840 4.1383 86.63

NO2 RandomForest 50 0.7759 5.7907 4.2828 86.17
NO2 XGBoost 90 0.7806 5.7292 4.4008 85.79

NO2 KNN 50 0.7285 6.3737 4.7284 84.73
NO2 GradientBoosting 70 0.7207 6.4641 4.8540 84.32

NO2 SVR 50 0.6936 6.7708 4.9269 84.09
NO2 DecisionTree 60 0.6224 7.5160 5.3228 82.81

NO2 ElasticNet 50 0.6517 7.2193 5.3508 82.72
NO2 Lasso 50 0.6483 7.2544 5.3779 82.63
NO2 Ridge 60 0.6340 7.4003 5.5797 81.98

NO2 LinearRegression 60 0.6340 7.4003 5.5797 81.98
NO2 AdaBoost 50 0.2958 10.2647 8.5766 72.30

aAll values rounded to 4 decimal places. Accuracy is expressed as a percentage.

predictors or hyperparameters.

E. Nitrogen Dioxide (NO2)

The NO2 forecasting results, shown in Table V, demonstrate
that ensemble tree models excel there. LightGBM attained
the best performance, explaining approximately 79% of NO2
variance. ExtraTrees is a close second, followed by XGBoost
and RandomForest. These top four models, plotted in Fig. 5,
have high accuracy (84–86%), indicating their predictions are
very close to actual NO2 levels.

Linear models show somewhat higher errors and R2 values,
still positive, implying they capture some signal, but are clearly
inferior to the ensembles. Further, AdaBoost’s errors are nearly
double those of the best model, yielding R2 = 0.295 and
accuracy 62%, making it an outlier again.

Notably, all models achieved >60% accuracy for NO2, and
most surpassed 80% of accuracy, indicating that NO2 was
comparatively easier to predict than NH3 or O3. In summary,
LightGBM and ExtraTrees provided excellent NO2 forecasts,
while single-tree and boosting methods without sufficient
ensemble diversity (DecisionTree, AdaBoost) performed sig-
nificantly worse. The strong performance of ensemble methods
is likely due to their ability to capture complex relationships
in the NO2 time series.

From the visual patterns in Fig. 6, we observe that NO2 and
NO consistently exhibit high R² values across nearly all mod-
els and training splits, suggesting that their temporal and/or
spatial patterns are well-captured by both linear and non-linear

regression techniques. Ensemble-based methods, particularly
ExtraTrees, GradientBoosting, RandomForest, LightGBM, and
XGBoost, demonstrate robust and stable performance in mod-
eling these species, often yielding R² values exceeding 0.8.
Even conventional linear models maintain strong predictive
capabilities, indicating a relatively linear and structured rela-
tionship between the input features and the target variable.

In contrast, the models perform only moderately well on
CO. While some ensemble methods such as GradientBoosting
and XGBoost manage to achieve reasonable R² scores, most
models struggle to accurately capture the variability in CO
concentrations. This suggests a potentially more complex or
less stable relationship between CO levels and the available
predictor variables, or possibly a higher sensitivity to noise or
temporal fluctuations.

NH3, on the other hand, proves highly resistant to accurate
modeling. Negative R² values are observed across nearly all
models and data splits, signifying that these models perform
worse than a simple mean-based baseline predictor. Such
consistently poor performance indicates that NH3 may exhibit
a high degree of non-linearity, variability, or dependence on
unmeasured or external factors, such as agricultural practices,
industrial activities and soil characteristics [18], not repre-
sented in the dataset.

O3 demonstrates an intermediate level of predictability.
Model performance at lower training ratios (50–60%) is
generally poor, but improves steadily as the proportion of
training data increases. This trend is especially evident among
ensemble methods, which begin to show moderate predictive
power at higher splits, suggesting that O3 modeling may
benefit significantly from larger datasets.

V. TAKE AWAYS

The heatmap in Fig. 6 illustrates the predictive performance
of various ML models on air pollutant concentrations across
different data splits, measured by the R2 score. Ensemble
models—especially Extra Trees, Gradient Boosting, Light-
GBM, Random Forest, and XGBoost—consistently perform
best, particularly for NO and NO2, reflecting strong feature
relationships. CO shows moderate predictability, while NH3
and O3 are harder to model, with most models producing low
or negative R2 values. Simpler models like Linear Regression,
SVR, and KNN generally underperform. Overall, the heatmap



Fig. 5. Comparison of actual NO2 concentrations with forecasts from ML models in 2 snippets of 7 days each from the month of Jan 2025. The black line
represents the true NO2 levels, while colored lines show predictions from the 4 top-performing models. The chart highlights model accuracy and their ability
to capture temporal patterns and spikes in pollution.

Fig. 6. Visualizing the R² scores of the 13 different machine learning models across the five pollutants (CO, NH3, NO2, O3, NO) and the five different
train/test split ratios (50% to 90%). Stronger red represents better accuracy.

underscores the strength of ensemble methods for predicting
nitrogen oxides, while highlighting the challenges of modeling
more variable pollutants like ammonia and ozone.

Generally, we draw several key observations:
Model selection matters. The choice of ML model has a
pronounced impact on forecast accuracy. Ensemble tree-based
models, especially LightGBM and Random Forest, delivered
the best overall performance. These models captured complex
temporal patterns, like daily cycles and sudden emission
spikes, far better than simpler models. In contrast, some other
techniques, such as AdaBoost and SVR, consistently underper-
formed and should likely be avoided for uni-variate pollutant
time-series forecasting unless tailored/tuned extensively.
Training data matters, but not too much. The results of the
amount of historical data needed investigation indicated that,
for most pollutants and models, performance improvements
beyond the 50–70% range were marginal. In several instances,
optimal performance was observed at intermediate splits: for
example, LightGBM achieved peak performance at 50% for
NO2 and 70% for O3.

Generally, increasing the volume of training data did not

degrade performance, apart from minor fluctuations potentially
due to overfitting. These findings suggest that beyond a certain
threshold, additional data primarily reinforce patterns already
learned, such as weekday/weekend differences and seasonal
emission variations. An important trend observed across nearly
all pollutants is the positive correlation between training set
size and model performance. Larger training datasets generally
lead to higher R² values, underscoring the importance of sam-
ple size in improving generalizability and predictive stability,
especially in the context of environmental modeling where
noise and variability are inherent.
The pollutant matters. Different pollutants pose different
forecasting challenges. NO2, NO and O3 showed somewhat
predictable patterns, leading to higher R2 scores, whereas NH3
and CO were harder to predict.

This implies that we should not adopt a one-size-fits-all
modeling approach. For instance, a LightGBM model can
be confidently used for O3 and NO2 forecasting, enabling
useful predictions for exposure management. However, the
same model applied to CO might yield no improvement over
a baseline. NH3 forecasts remained challenging: likely due



to highly localized and intermittent emission sources, such as
agricultural practices and fertilizer use, which are not captured
by meteorological predictors alone. Prior work has shown that
NH3 emissions are spatially heterogeneous and influenced by
surface conditions and seasonality [18]. Improving predictions
may require integrating spatiotemporal emission models or
domain-specific proxies for agricultural activity.
Trend explanation. A deeper analysis of historical data
reveals why model performance varies across pollutants. For
example, NH3 lacks a consistent daily cycle. On specific days,
concentrations remain nearly constant from afternoon through
the night, even if other pollutants exhibit significant variation.
This behavior implies that temporal features provide little
predictive value for NH3. A slight midday decline may be
linked to chemical processes in daylight, but such mechanisms
were not explicitly modeled to test the algorithms impartially.

As a result, models tend to regress toward the mean, leading
to large errors when actual values deviate. Consequently,
models can reliably predict timing but often struggle with
magnitude, leading to moderate overall performance.
Expectations. The most accurate models achieved MAE in the
range of 5 to 10 ppb (parts per billion) for NO2 and O3, and in
the order of a few tenths of a part per million (ppm) for CO.
These levels of error are generally acceptable for air quality
monitoring, where regulatory and public health thresholds tend
to be defined in broader concentration ranges.

For instance, an average error of approximately 5 ppb for
NO2 enables reliable distinction between scenarios such as
20 ppb and 40 ppb, which is particularly useful for iden-
tifying moderate pollution events and triggering appropriate
responses. Similarly, an MAE of around 5 ppb for O3 is well
within tolerable limits when considering the U.S. EPA 8-hour
ozone standard of approximately 70 ppb, making the model
suitable for early-warning applications.

VI. CONCLUSION

This study shows that combining IoT data with advanced
machine learning models enables accurate forecasting of air
pollutant concentrations, outperforming simpler methods. Suc-
cess depends on selecting robust ensemble models—such as
LightGBM or Random Forest—and tailoring them to the
unique behavior of each pollutant. These findings provide
practical guidance for deploying IoT-based air quality forecast-
ing systems: use ensemble tree models for strong performance,
avoid overfitting by managing training history length, and
account for pollutant-specific dynamics. With such models,
IoT networks can go beyond monitoring to deliver short-
term forecasts, issue timely pollution alerts, and help reduce
exposure risks.
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