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We present hardware/software techniques to intelligently regulate supply voltage and clock frequency of intermittently-computing

devices. These devices rely on ambient energy harvesting to power their operation and small capacitors as energy buffers. Statically

setting their clock frequency fails to capture the unique relations these devices expose between capacitor voltage, energy efficiency at

a given operating frequency, and the corresponding operating range. Existing dynamic voltage and frequency scaling techniques

are also largely inapplicable due to extreme energy scarcity and peculiar hardware features. We introduce two hardware/software

co-designs that accommodate the distinct hardware features and function within a constrained energy envelope, offering varied

trade-offs and functionalities. Our experimental evaluation combines tests on custom-manufactured hardware and detailed emulation

experiments. The data gathered indicate that our approaches result in up to 3.75× reduced energy consumption and 12× swifter

execution times compared to the considered baselines, all while utilizing smaller capacitors to accomplish identical workloads.

CCS Concepts: • Computer systems organization → Embedded hardware; Embedded software.
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1 INTRODUCTION

Ambient energy harvesting enables battery-less embedded sensing [2, 30, 35, 36, 40, 79, 86]. However, energy from

the environment is generally erratic, causing frequent and unanticipated energy failures. Executions thus become

intermittent, as they consist of intervals of active operation interleaved by periods of recharging energy buffers [16].

Battery-less devices typically employ capacitors as energy buffers. As intuitively shown in Fig. 1, as long as the

capacitor voltage is below a predetermined boot threshold, the device rests dormant until the buffered energy is sufficient

to boot. An energy cycle then starts when the device actively operates. The energy consumption during this cycle

typically exceeds the ambient energy intake, leading to a net negative energy balance. Consequently, the capacitor

voltage drops below the operating voltage, causing the device to shut down, at which point a new charging phase begins.

Due to extreme resource constraints of the target platforms, applications run on bare hardware without proper

operating system support. Energy failures thus normally cause devices to lose computational and peripheral states. To

ensure forward progress across energy failures, techniques [9, 11, 12, 14, 17, 18, 21, 38, 61–63, 65–67, 75, 83] exist that,

at the cost of significant overhead, allow the system to save the computational and peripheral state onto non-volatile

memory (NVM) locations, which persist across energy failures. Once the boot threshold is attained again, the state is

restored from NVM, and execution picks up near the point where the energy failure occurred.

Frequency, voltage, and the rest.With low-power microcontrollers, system efficiency is typically dictated by the

rate of energy consumption and execution speed. These parameters are influenced by the running frequency, supply

voltage, and operating range [4]. Consider the MSP430-G2553 [43] microcontroller unit (MCU) of the TI MSP430 series,
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Fig. 1. Example of intermittent execution.
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Fig. 2. Energy consumption per clock cycle at various voltage

and frequency ranges for the MSP430-G2553 [4, 43].
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Fig. 3. Clock cycles executed in a single discharge from 3.6𝑉

of a 100𝜇𝐹 capacitor for various frequency configurations for

the MSP430-G2553 [43].

that is, arguably the most used MCU platform in battery-less devices. Fig. 2 shows the energy consumption per clock

cycle at the four factory-calibrated operating frequencies. The higher the frequency, the faster the computation and

the lower the energy consumption per clock cycle. For example, running the MCU at 16𝑀𝐻𝑧 is on average 47% more

energy efficient per clock cycle and 16𝑥 faster than the 1𝑀𝐻𝑧 setting. However, compared to the latter, running the

MCU at 16𝑀𝐻𝑧 limits the operating voltage range: as soon as the supply voltage falls below 3.3𝑉 , the MCU shuts down.

Differently, if the MCU is set to run at 1𝑀𝐻𝑧, it can continue operating until the supply voltage reaches 1.8𝑉 .

Fig. 3 demonstrates the impact of these trade-offs on the number of clock cycles the MCU can execute, given a fixed

energy budget. Although the 16𝑀𝐻𝑧 setting offers faster execution and superior energy efficiency per clock cycle, its

narrowed operating voltage range results in 3.75𝑥 fewer clock cycles compared to the slower, yet less energy-efficient

1𝑀𝐻𝑧 setting. This latter configuration enables the MCU to compute for an extended duration, specifically as long as the

supply voltage remains above 1.8𝑉 . Fundamentally, the 1𝑀𝐻𝑧 setting allows the system to harness more energy—and

consequently more useful work—from an identical initial capacitor charge.

Challenge. Similar trade-offs are seen also in regular processors and routinely exploited to improve execution speed

and/or energy consumption [81]. In mobile platforms, for instance, the dynamic adjustment of operating frequencies

and supply voltage enables systems to respond to sudden surges in system load, while conserving energy during periods

of lighter loads [51]. To achieve this, dedicated hardware and software components are employed, collectively referred

to as Dynamic Voltage and Frequency Scaling (DVFS) [25].
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DVFS techniques used in mainstream platforms are not applicable to battery-less devices. Resource constraints and

different performancemetrics demand a different design rationale. As an example, employing hardware support for DVFS

from mainstream platforms in battery-less devices would be impractical due to the excessive energy consumption [25].

Conversely, the lack of a proper operating system renders existing software drivers outright unusable.

Crucially, the application and system requirements of battery-less embedded computing diverge significantly from

those in mainstream computing. Energy consumption is the primary, and often only metric of interest. To conserve

energy [13], application developers often prioritize energy savings over other metrics of interest, such as execution

speed or data processing accuracy. Conserving energy extends the duration of energy cycles, consequently reducing

the overhead associated with NVM operations.

Further, charge-discharge cycles are frequent in battery-less devices, as the push for miniaturization prompts energy

storage facilities to be minimized as well. For example, harvesting energy from RF transmissions to compute a simple

CRC may lead to 16 energy failures over a 6 seconds period [16]. The improvements in energy consumption, leading

to prolonged energy cycles and lower overhead, are going to have a magnifying effect on other metrics of interest,

including data throughput.

Contribution and road-map.Aswe discuss Sec. 2, only a few efforts exist to apply DVFS to battery-less devices [10, 27].

Research most similar to ours primarily targets multi-core processors equipped with DVFS hardware support, which

are distinctly different from MSP430-class microcontrollers. While their focus is on achieving power neutrality by

adjusting power consumption to match harvested energy, they do not account for the implications of NVM operations.

We demonstrate that it is possible to achieve DVFS functionality in a much more limited energy envelope, throughout

intermittent operations, and consequently unlock significant performance gains. Sec. 3 illustrates the design rationale,

whereas Sec. 4 provides concrete evidence based on two hardware/software co-designs that expose different trade-

offs and functionality. The two distinct implementations, D
2
VFS and FBTC, were developed to balance simplicity,

efficiency, and configurability in achieving DVFS in battery-less embedded devices. D
2
VFS serves as a reference design,

straightforward but occasionally less efficient, emphasizing the gains in performance even with the energy costs of

its DVFS circuitry. On the other hand, FBTC improves upon D
2
VFS by reducing energy overhead and introducing a

configurable startup voltage threshold, offering developers a means to tailor energy dynamics to specific deployment

scenarios. This design choice underscores a pragmatic approach: providing a baseline system that demonstrates the

benefits of DVFS while also offering a more advanced alternative that optimizes for energy efficiency and provides

greater flexibility for real-world applications. Both implementations use the same MCU and voltage regulator, but

their different architectures highlight the balance between energy efficiency, system responsiveness, and hardware

complexity, addressing distinct use cases and optimization priorities in the domain of energy-harvesting systems.

Sec. 5 presents an extensive evaluation of both designs. We compare their performance against a stock MSP430

microcontroller that is statically set to one of the four factory-calibrated frequencies. This configuration fails to capture

the trade-offs illustrated in Fig. 3. Our results demonstrate that both D
2
VFS and FBTC can achieve up to 3.75𝑥 lower

energy consumption and 12𝑥 faster execution time than the considered baselines, while requiring a smaller energy

buffer and thus reducing recharging times and mitigated energy waste due to leakage.

2 BACKGROUND AND RELATEDWORK

Embedded sensing devices form the backbone of the Internet of Things (IoT) [31]. Most IoT devices are battery-

powered. Batteries, even rechargeables, must be periodically recharged, replaced, and eventually disposed, polluting

Manuscript submitted to ACM



4 Andrea Maioli, Kevin A. Quinones, Saad Ahmed, Muhammad H. Alizai, and Luca Mottola

the environment [19, 87]. The battery-less IoT [7] liberates IoT devices from batteries by enabling them to harvest

energy from the environment. This design leads to a broad range of applications, including space applications [24],

smart buildings [28, 78], precision agricolture [40], and supervision of archaeological sites [2]. Deployments in these

application scenarios can potentially work for years without requiring any maintenance [2].

System support plays a key role in enabling such applications as it helps maintain forward progress despite frequent

power failures [5, 6, 22, 63]. We offer next a primer on intermittent computing and delve into the challenges and

prevailing solutions for DVFS, in both mainstream computing platforms and battery-less devices.

2.1 Intermittent Computing

The pattern of intermittent computing necessitates specialized system support to bridge periods of energy scarcity.

Numerous techniques have been developed to ensure forward progress in battery-less devices despite energy disruptions.

Some strategies implement checkpoints at compile-time based on execution patterns [63, 75] or program structures [5,

17, 75], while others utilize supplementary hardware to initiate proactive checkpointing [11, 12, 50]. There are also

approaches that offer developers task-based programming abstractions with transactional semantics [21, 62, 68].

Specialized solutions have been designed to preserve peripheral states through energy disruptions [9, 14, 18].

However, the majority of techniques in intermittent computing primarily aim to minimize the energy overhead

associated with maintaining application progress. They often overlook the dynamics of supply voltages and MCU

frequency adjustments. Thus, the application of DVFS presents a distinct challenge, influencing system performance

within an energy cycle—by enhancing energy efficiency, for instance—rather than spanning multiple energy cycles.

2.2 DVFS

DVFS includes two key mechanisms: voltage and frequency scaling. Each processor possesses distinct operational ranges,

with each range characterized by a frequency and voltage tuple (𝑓 ,𝑉 ). Mainstream computing platforms utilize advanced

software and hardware mechanisms that allow for precise control over voltage and frequency configurations [23, 33].

In the following, we will focus our discussion on related works pertaining to embedded systems, as they closely

align with battery-less devices.

Real-time embedded systems. Salehi et al. [76] present an adaptive voltage and frequency scaling technique that

rapidly tracks the workload changes to meet soft real-time deadlines. Their work demonstrates considerable energy

savings and fewer frequency updates compared to DVFS systems based on fixed update intervals. HyPowMan [15]

considers the problem of minimizing energy consumption for periodic real-time tasks scheduled over multiprocessor

platforms. The technique takes a set of well-known existing DVFS policies, each performing well for given conditions,

and adapts at runtime to the best-performing policy for a given workload.

Huang et al. [39] apply DVFS to mixed-criticality systems and show that DVFS helps critical tasks meet deadlines

by speeding up the processor when it is bound to miss a deadline. Liu et al. [59] employ DVFS to optimize system

thermal profiles to prevent run-time thermal emergencies and to minimize cooling costs. RT-DVFS [73] modifies the

OS’s real-time scheduler and task management service to provide energy savings while maintaining real-time deadline

guarantees. Generalized Shared Recovery (GSHR) [88] efficiently uses DVFS techniques to achieve a given reliability

goal for real-time embedded applications.
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While these works offer essential insights into the application of DVFS in embedded systems, their design objectives

diverge significantly, rendering their techniques less suited for direct application to battery-less devices. The latter

rarely deal with real-time deadlines, whereas reducing energy consumption for a fixed workload is key.

Wireless sensor networks. Kulau et al. [52–54] analyze the effects of undervolting a wireless sensor node. They show

that such a device can still work reliably, even if the voltage recommendations are violated, because a correlation exists

between temperature and probability of error at a given voltage level. Powell et al. [74] design DVFS hardware to meet

battery life and form factor expectations of body area sensor networks. Similar to these works are also the efforts on

developing DVFS techniques in distributed microsensor networks [70] and in sensor networks with deadlines [8].

As most of these works aim to conserve energy, many of them are similar to ours in spirit, yet the authors consider

battery-powered devices with finite energy supplies and tend to accept performance penalties to increase lifetime. On

the contrary, we deal with intermittent but unbounded energy supplies, with the goal of increasing the amount of work

achieved in an energy cycle.

Battery-less devices. EA-DVFS [58] presents a high-level simulation study on the advantages of DVFS for real-time

operation in battery-less devices. Due to the lack of a corresponding hardware implementation, it does not serve as a

suitable baseline for our investigation. Lin et al. [57] model a framework for concurrent task scheduling and dynamic

voltage and frequency scaling in real-time embedded systems with energy harvesting. Li et al. [55] also provide early

insights into jointly scaling workload, voltage, and frequency in multi-core sensor networks using energy harvesting.

These studies offer valuable preliminary perspectives on the application of DVFS in energy harvesting devices.

However, our work is the first concrete implementation of any such technique, complemented by a comprehensive

evaluation that distinctly underscores the advantages of applying DVFS in battery-less environments.

Summary. Numerous efforts exists to enhance energy efficiency, particularly in environments with stringent en-

ergy constraints. The primary focus of these works is on devices with finite energy sources. These works, although

foundational, often diverge in design goals and cannot be applied “as-is” to battery-less devices.

Our research pivots from these traditional paradigms. Instead of finite energy reserves, we consider intermittent, yet

potentially perpetual energy supplies. Our primary objective is not merely to conserve energy but to maximize the

amount of useful work accomplished within each active cycle.

3 DESIGN RATIONALE

The fundamental element enabling DVFS for a target MCU is the identification of the available performance windows,

which consist in a platform-specific combination of voltage and frequency settings.

Indeed, most low-power MCUs feature dozens of possible frequency settings. We concentrate on a subset of them,

usually the factory-calibrated ones, where the datasheet also explicitly reports the corresponding minimum supply

voltage. At a given frequency setting, the minimum supply voltage yields the lowest energy consumption [4]. For

instance, with the MSP430-G2553 [43] MCU, we examine the four factory-calibrated frequency settings with the

corresponding minimum supply voltages, thereby determining four (ordered) performance windows: (i) 16𝑀𝐻𝑧 at 3.3𝑉 ,

(ii) 12𝑀𝐻𝑧 at 2.8𝑉 , (iii) 8𝑀𝐻𝑧 at 2.2𝑉 , and (iv) 1𝑀𝐻𝑧 at 1.8𝑉 .

Scaling down. The blue and orange curves depicted in Fig. 4 illustrate the expected performance across the four

performance windows of the MSP430-G2553 during capacitor discharge.

As long as the capacitor voltage is above the minimum supply voltage of a certain performance window, the supply

voltage is regulated to exactly this minimum, which provides the best energy efficiency at the corresponding frequency.
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Fig. 4. System behavior when capacitor discharges.
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Fig. 5. System behavior when capacitor charges.

As soon as the capacitor voltage crosses the lower bound of the current performance window, frequency and voltage

settings are scaled to enter the lower performance window. For example, when the capacitor discharges from 3.6𝑉 to

3.3𝑉 , frequency changes to 12𝑀𝐻𝑧 and supply voltage is scaled to 2.8𝑉 , thus moving from window (i) to window (ii).

Transitioning to a lower performance window necessitates altering the frequency settings prior to adjusting the supply

voltage; reversing this sequence would result in device shutdown due to the supply voltage dipping below the minimum

threshold for the given frequency setting.

Scaling up. This rationale is also applicable when the capacitor voltage rises, albeit with a nuance as depicted in Fig. 5.

Energy consumption per clock cycle increases when moving from a lower to a higher frequency setting. Should

the device fail to harvest sufficient energy, the heightened energy consumption per clock cycle could precipitate an

immediate reduction in capacitor voltage, thereby compelling the system to revert promptly to a lower performance

window. Following the adjustment, as the energy consumption per clock cycle decreases, the net energy balance may

shift to positive, leading to a subsequent rise in capacitor voltage. This increase can trigger a transition back to the higher

performance window. This behavior may repeat indefinitely, entering a sort of livelock. To avoid this, we cautiously

wait until the capacitor voltage reaches the upper bound of the upper performance window before changing frequency

and voltage settings accordingly. Symmetrically, to avoid shutting down the system when transitioning to the upper

performance window, we change supply voltage first, then frequency.

Towards implementation. Realizing this behavior concretely hinges on a careful consideration of trade-offs between

the energy overhead attributed to supplementary hardware components and the resulting gain in flexibility.

For example, to change supply voltage, an external voltage regulator may be required, as regular low-power MCUs

are usually not equipped with it. Detection of the capacitor voltage reaching a threshold that necessitates a change

in performance window can be accomplished either by periodic polling or by employing specialized circuitry that

asynchronously alerts the MCU of particular conditions occurring at the capacitor. Conversely, existing low-power

MCUs are capable of altering frequency settings via software: using MSP430-class MCUs [43], frequency settings are

programmatically set by changing the values of specific registers.

4 IMPLEMENTATION

The design rationale of Sec. 3 is materialized in two distinct implementations, each elucidating different trade-offs and

functionalities. The first implementation we present is called D
2
VFS (Discrete Dynamic Voltage and Frequency Scaling)

and may be regarded as a reference implementation of sorts. It achieves DVFS functionality in the simplest, but not
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Fig. 6. D
2
VFS design.

necessarily the most efficient or flexible way. As illustrated in Sec. 5, despite the energy overhead due to the circuitry

realizing DVFS functionality, D
2
VFS already provides great performance advantages compared to a static setting.

The second implementation is called FBTC (Fixed Boot Threshold Controller) and improves over D
2
VFS in three

ways. The circuitry realizing DVFS functionality imposes a much lower energy overhead compared to D
2
VFS. Further,

FBTC avoids the fluctuation problem mentioned in Sec. 4 by design, without requiring a delay in the changes to upper

performance windows during the capacitor charge. This results in a faster and more efficient change of operating

setting compared to D
2
VFS. The corresponding energy savings are spent in useful application processing, boosting

the overall energy efficiency. Finally, FBTC allows developers to configure the voltage threshold to boot the system,

providing a knob that may be useful to capture deployment-specific energy dynamics [2].

Both implementations are centered around the MSP430-G2553 [43] MCU and use the TPS62740 [45] voltage regulator.

The performance windows are those in Sec. 3.

4.1 D
2
VFS

Fig. 6 illustrates the design of D
2
VFS; Fig. 6(a) describes the logical components and Fig. 6(b) shows the schematics.

Logical components. The Window Detector in Fig. 6(a) determines the valid performance window based on capacitor

voltage. To circumvent the energy-intensive process of periodic polling by the MCU’s ADC, we employ four TI

BU49XXG [80] voltage detectors, as illustrated in Fig. 6(b); one for each performance window. Each detector takes as

input the capacitor voltage 𝑉𝑐𝑎𝑝 and outputs a signal that indicates if 𝑉𝑐𝑎𝑝 is higher than the threshold.

The MCU is required to ascertain shifts in the current performance window to adjust its operating frequency and

supply voltage appropriately. One approach could involve periodic software polling of the Window Detector’s output.

However, this method is fraught with several drawbacks: it imposes extra latency dependent on the polling interval,

risks interrupting the flow of application processing, and leads to superfluous energy expenditure, as each non-revealing

check essentially constitutes wasted effort. We anticipate that such unproductive checks would predominate.

We opt for a design that employs a hardware interrupt mechanism to notify the MCU of a change in the performance

window. This functionality is shown as Interrupt Driver in Fig. 6(a). The key is to maintain a small dedicated memory

that reflects the active performance window—specifically, the current configuration of the MCU’s frequency and supply

voltage—as depicted in Current Window Setting in Fig. 6(a). A dedicated Window Comparator monitors both the output

of theWindow Detector and the Current Window Setting; whenever the two differ, it signals an interrupt to the MCU.
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Fig. 7. Example of D
2
VFS behavior.

This informs the MCU that the capacitor voltage entered a new performance window. As a result, the Store Current

Window function updates the Current Window Setting to reflect the new information accurately.

The Interrupt Driver is implemented using three hardware components, each chosen mainly because of energy

efficiency, as depicted in Fig. 6(b). The SN74LV175A [41] D-type flip-flop stores the Current Window Setting as a sequence

of bits, where the 𝑖 − 𝑡ℎ bit represents the output of the 𝑖 − 𝑡ℎ voltage detector. The 74HC85 [71] 4-bit comparator

works as theWindow Comparator, which compares the output of voltage detectors against the state saved in the D-type

flip-flop and outputs a changed signal when they differ. The SN74AUP1G08 [46] AND gate operates as the Store Current

Window block, which allows the MCU to set the new state of the D-type flip flop after the performance window changes.

Run-time behavior. Fig. 7 shows an example execution. The capacitor voltage 𝑉𝑐𝑎𝑝 starts at 3.6𝑉 and the DVFS driver

sets the voltage regulator to 3.3𝑉 with the MCU operating at 16𝑀𝐻𝑧. As soon as𝑉𝑐𝑎𝑝 reaches 3.3𝑉 , the Interrupt Driver

fires an interrupt, shown in green in Fig. 7. The D
2
VFS driver identifies the new performance window by checking the

outputs of the voltage detectors and regulates supply voltage to 2.8𝑉 first, then sets the operating frequency to 12𝑀𝐻𝑧.

The same behavior repeats when 𝑉𝑐𝑎𝑝 reaches 2.8𝑉 and 2.2𝑉 , corresponding to two more interrupts.

To avoid the fluctuations mentioned in Sec. 3, the D
2
VFS driver delays the change to the upper performance window

when 𝑉𝑐𝑎𝑝 increases. Let us focus on Fig. 7 when 𝑉𝑐𝑎𝑝 is at 1.8𝑉 and rising. The MCU is running at 1𝑀𝐻𝑧 and supply

voltage is regulated at 1.8𝑉 . Whenever 𝑉𝑐𝑎𝑝 reaches 2.2𝑉 , the Interrupt Driver fires an interrupt. The D
2
VFS driver

discerns the appropriate new performance window by monitoring the outputs from the voltage detectors. To avoid

the risk of fluctuations, an immediate transition to a higher performance window is deferred. The driver awaits a

subsequent interrupt to initiate this change. Thus, when 𝑉𝑐𝑎𝑝 rises to 2.8𝑉 , the Interrupt Driver issues a new interrupt,

prompting the D
2
VFS driver to adjust the supply voltage to 2.2𝑉 and the MCU frequency to 8𝑀𝐻𝑧.

4.2 FBTC

Fig. 8 shows the design of FBTC. Fig. 8(a) illustrates the logic and Fig. 8(b) shows the corresponding schematics. Two

macro components drive the functioning of FBTC. The Power State Controller of Fig. 8(a) turns the system on whenever

the capacitor voltage rises above a given boot threshold. Unlike D
2
VFS, this threshold is hardware-configurable in

FBTC. The Changepoint Detector, instead, manages the detection of changes in the performance window. We consider

the same performance windows of D
2
VFS.
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(b) FBTC schematics.

Fig. 8. FBTC design.

Power state controller. The Operating Range Detector in Fig. 8(a) identifies if 𝑉𝑐𝑎𝑝 is within the considered operating

range. It does so by relying on two BU49XXG [80] voltage detectors, as shown in Fig. 8(b). The first detector triggers

when 𝑉𝑐𝑎𝑝 reaches the MCU minimum operating voltage 𝑉𝑚𝑖𝑛 = 1.8𝑉 , whereas the second detector triggers when

𝑉𝑐𝑎𝑝 reaches the hardware-configurable boot threshold 𝑉𝑜𝑛 . Although Fig. 8(b) shows a 3.6𝑉 setting for the second

voltage detector, when fabricated, FBTC allows users to select among four different voltage detectors to configure 𝑉𝑜𝑛 ,

as indicated by the PVComp and PVT ports of Fig. 9.

The System Enable function, as illustrated in Fig. 8(a), determines the conditions to activate the system. This operation

utilizes a SN74AUP1G04 [44] NOT gate in conjunction with a SN74AUP2G02 [42] 2-input NOR gate, configured as a

set-reset flip-flop, which is detailed in Fig. 8(b). The NOT gate takes as input the signal of the first voltage detector, that

is, the one identifying if 𝑉𝑐𝑎𝑝 exceeds 𝑉𝑚𝑖𝑛 . The NOT gate thus verifies if 𝑉𝑐𝑎𝑝 falls below 𝑉𝑚𝑖𝑛 , resetting the flip-flop

output. Instead, the signal of the second voltage detector sets the flip-flop output. When 𝑉𝑐𝑎𝑝 exceeds the configured

𝑉𝑜𝑛 , the flip-flop output is set to a logical high and the voltage regulator is powered on. When 𝑉𝑐𝑎𝑝 goes below 𝑉𝑚𝑖𝑛 ,

the flip-flop output is reset to a logical low and the voltage regulator is powered off.

To initialize the output voltage of the voltage regulator at startup, we employ four pull-up resistors, designated

as 𝑅6 − 𝑅9 in the schematic depicted in Fig. 8(b) and as 𝑅1 − 𝑅4 in the actual prototype shown in Fig. 9. This step is

necessary because the voltage regulator’s output is governed by the MCU, which is incapable of setting the output

voltage until it has completed its startup sequence.

Changepoint detector. Unlike D
2
VFS, FBTC does not keep track of the current performance window in hardware;

instead, it merely detects the conditions that trigger any change in the current performance window and whether

this change is towards an upper or lower window. This indication reaches the MCU through a hardware interrupt: by

keeping track of the current performance window and by learning whether the change being detected is upwards or

downwards, the MCU changes voltage and frequency settings.

The Interrupt Driver of Fig. 8(a) provides this functionality through a Charge (Discharge) Detector detecting upward

(downward) changes in the performance window. The two detectors are based on the same logic, which we accomplish

with two components: (i) the 𝑅3 − 𝑅4 (𝑅1 − 𝑅2) resistors of Fig. 8(b), which act as a voltage divider that reduces the
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Fig. 9. FBTC prototype.
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Fig. 10. Example of FBTC behavior.

𝑉𝑐𝑎𝑝 signal to 𝑉𝑟𝑒 𝑓 _𝑐ℎ𝑎𝑟𝑔𝑒 (𝑉𝑟𝑒 𝑓 _𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 ), that is, the maximum (minimum) voltage level that triggers a change in the

performance window, and (ii) a TS881 [82] operational amplifier that compares𝑉𝑐𝑎𝑝 against𝑉𝑟𝑒 𝑓 _𝑐ℎ𝑎𝑟𝑔𝑒 (𝑉𝑟𝑒 𝑓 _𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 )

and outputs the signal indicating to step up (down) the performance window.

To detect a discharge, the output of the voltage regulator 𝑉𝑟𝑒𝑔 is connected to the non-inverting input of the

operational amplifier and the reduced 𝑉𝑐𝑎𝑝 signal is connected to the inverting input, as shown near the discharge label

of Fig. 8(b). To detect the energy buffer charge, the connections to the operational amplifier are inverted. We discuss

later how to dimension 𝑅1 − 𝑅2 and 𝑅3 − 𝑅4, as well as the need for both reference signals for discharging and charging.

Fig. 10 shows an example execution. The blue curve represents the original𝑉𝑐𝑎𝑝 , whereas the orange one represents 𝑉𝑟𝑒𝑔 .

The signals representing the reference voltage for charging or discharging are𝑉𝑟𝑒 𝑓 _𝑐ℎ𝑎𝑟𝑔𝑒 and𝑉𝑟𝑒 𝑓 _𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 , shown in

green and red, respectively. Initially, the frequency is set to 16𝑀𝐻𝑧,𝑉𝑟𝑒𝑔 is set to 3.3𝑉 ,𝑉𝑐𝑎𝑝 is 3.6𝑉 , and the capacitor is

discharging. When 𝑉𝑐𝑎𝑝 reaches 3.3𝑉 , the 𝑉𝑟𝑒𝑔 signal, corresponding to the orange curve, exceeds the 𝑉𝑟𝑒 𝑓 _𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

signal, corresponding to the red curve, as shown in Fig. 10. The Discharge Detector outputs a logical high, indicated

with the brown line in Fig. 10, triggering an interrupt. Knowing the current performance window and learning that a

downward change is detected, the MCU switches to a configuration running at 12𝑀𝐻𝑧 with 𝑉𝑟𝑒𝑔 set to 2.8𝑉 .

The same operations repeat throughout the discharge phase until the MCU switches to a configuration running at

1𝑀𝐻𝑧 with 𝑉𝑟𝑒𝑔 set to 1.8𝑉 . When 𝑉𝑐𝑎𝑝 approaches 1.8𝑉 , 𝑉𝑟𝑒𝑔 constantly exceeds 𝑉𝑟𝑒 𝑓 _𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 . This time there is

no lower performance window to change to, as the MCU is already at 1𝑀𝐻𝑧 and 𝑉𝑟𝑒𝑔 at 1.8𝑉 . To avoid unexpected

behaviors, the software driver disables the interrupts from the Discharge Detector when it sets the lowest possible

performance window and enables them back whenever scaling upwards again.

The behavior when charging is dual: the Charge Detector triggers an interrupt when 𝑉𝑟𝑒𝑔 intersects 𝑉𝑟𝑒 𝑓 _𝑐ℎ𝑎𝑟𝑔𝑒 .

Different than D
2
VFS, FBTC need not to delay changes to the upper performance window when 𝑉𝑐𝑎𝑝 increases, as the

charge detector avoids bouncing between two adjacent performance windows by design, as detailed next.

Voltage divider configuration. The efficient operation of FBTC rests on one key aspect: the dimensioning of 𝑅1 − 𝑅2
and 𝑅3 − 𝑅4. Multiple reasons concur to this:

(1) Properly setting the values of 𝑅1 − 𝑅2 ensures that 𝑉𝑐𝑎𝑝 never comes too close to 𝑉𝑟𝑒𝑔 , giving the MCU enough

margin to trigger a switch to a lower performance window before 𝑉𝑐𝑎𝑝 < 𝑉𝑟𝑒 𝑓 for the current performance

Manuscript submitted to ACM



Dynamic Voltage and Frequency Scaling for Intermittent Computing 11

window. The 𝑉𝑟𝑒 𝑓 _𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 signal exists precisely for this: if we were to compare directly 𝑉𝑐𝑎𝑝 with 𝑉𝑟𝑒𝑔 , the

time taken by the MCU to switch towards a lower performance widow would become (too) critical.

(2) The reciprocal setting of𝑅1−𝑅2 and𝑅3−𝑅4 allows the system to avoid fluctuations between adjacent performance

windows. For example, when switching to a lower performance window, 𝑉𝑟𝑒𝑔 must not intersect 𝑉𝑟𝑒 𝑓 _𝑐ℎ𝑎𝑟𝑔𝑒 , or

the MCU would trigger an immediate switch back to the upper performance window. Otherwise, FBTC may end

up in a sort of livelock bouncing back and forth between adjacent performance windows.

(3) By accurately tuning the𝑉𝑟𝑒 𝑓 _𝑐ℎ𝑎𝑟𝑔𝑒 signal, that is, the values of 𝑅3−𝑅4, we may ensure sufficient energy margin

in the upper performance window to prevent an immediate downward transition. This addresses the problem we

discuss previously with D
2
VFS possibly bouncing between two adjacent performance windows when switching

from a lower to an upper window.

For a clearer illustration, we now describe the method for quantitatively determining the values for 𝑅1 − 𝑅2, taking
into account the considerations mentioned above. The reasoning to ascertain the values for 𝑅3 − 𝑅4 is entirely dual.

Based on the schematics of Fig. 8(b), the operational amplifiers inputs are:

𝑉𝑟𝑒 𝑓 _𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 =
𝑅2

𝑅1 + 𝑅2 ·𝑉𝑐𝑎𝑝 = 𝛿𝑑 ·𝑉𝑐𝑎𝑝 , (1)

𝑉𝑟𝑒 𝑓 _𝑐ℎ𝑎𝑟𝑔𝑒 =
𝑅4

𝑅3 + 𝑅4 ·𝑉𝑐𝑎𝑝 = 𝛿𝑐 ·𝑉𝑐𝑎𝑝 , (2)

where 𝛿𝑐 (𝛿𝑑 ) indicates the charge (discharge) voltage divider ratio.

Let the performance windows be ordered by ascending operating voltage and let 𝑉𝑟𝑒𝑔 [𝑖] be the voltage regulator
output of the 𝑖-th performance window. The interrupt signaling a change from the 𝑖-th performance window to the

𝑖 + 1-th performance window is triggered whenever 𝑉𝑟𝑒 𝑓 _𝑐ℎ𝑎𝑟𝑔𝑒 > 𝑉𝑟𝑒𝑔 [𝑖]. FBTC may, however, immediately bounce

back to the 𝑖-th performance window if 𝑉𝑟𝑒 𝑓 _𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 < 𝑉𝑟𝑒𝑔 [𝑖 + 1]. In summary, we must avoid

when 𝑉𝑟𝑒 𝑓 _𝑐ℎ𝑎𝑟𝑔𝑒 > 𝑉𝑟𝑒𝑔 [𝑖] → 𝑉𝑟𝑒 𝑓 _𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 < 𝑉𝑟𝑒𝑔 [𝑖 + 1] (3)

that we can rewrite, based on Eq. (1) and Eq. (2), as

when 𝛿𝑐 ·𝑉𝑐𝑎𝑝 > 𝑉𝑟𝑒𝑔 [𝑖] → 𝛿𝑑 ·𝑉𝑐𝑎𝑝 < 𝑉𝑟𝑒𝑔 [𝑖 + 1] (4)

To avoid undesired bouncing behaviors, for any performance window 𝑖 , Eq. (3) must never hold. This means

when 𝛿𝑐 ·𝑉𝑐𝑎𝑝 > 𝑉𝑟𝑒𝑔 [𝑖] → 𝛿𝑑 ·𝑉𝑐𝑎𝑝 ≥ 𝑉𝑟𝑒𝑔 [𝑖 + 1] (5)

Say the operating range of the 𝑖-th performance window is (𝑉𝑚𝑎𝑥 [𝑖], 𝑉𝑚𝑖𝑛 [𝑖]). To satisfy Eq. (5) for any performance

window 𝑖 , we introduce a margin 𝜖𝑐 that represents the minimum voltage sensitivity we wish to obtain for the charge

detector. This means that, for a given performance window 𝑖 , we substitute𝑉𝑐𝑎𝑝 = 𝑉𝑐𝑎𝑝 = 𝑉𝑚𝑖𝑛 [𝑖] + 𝜖𝑐 as long as there

exists a performance window 𝑖 − 1.

To reason quantitatively, consider the four performance windows of the MSP430-G2553 [43] introduced earlier:

1) 1𝑀𝐻𝑧 with 𝑉𝑟𝑒𝑔 = 1.8𝑉 and 𝑉𝑐𝑎𝑝 in (2.2𝑉 , 1.8𝑉 )
2) 8𝑀𝐻𝑧 with 𝑉𝑟𝑒𝑔 = 2.2𝑉 and 𝑉𝑐𝑎𝑝 in (2.8𝑉 , 2.2𝑉 )
3) 12𝑀𝐻𝑧 with 𝑉𝑟𝑒𝑔 = 2.8𝑉 and 𝑉𝑐𝑎𝑝 in (3.3𝑉 , 2.8𝑉 )
4) 16𝑀𝐻𝑧 with 𝑉𝑟𝑒𝑔 = 3.3𝑉 and 𝑉𝑐𝑎𝑝 in (3.6𝑉 , 3.3𝑉 )

and assume 𝜖𝑐 = 50𝑚𝑉 . We return soon to how to determine 𝜖𝑐 .

Consider now performance windows with 𝑖 = 1, 2, 3 and Eq. (5), obtaining the following constraints on 𝛿𝑑 :
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• 𝑉𝑐𝑎𝑝 = 2.20𝑉 + 50𝑚𝑉 = 2.25𝑉 , 𝑉𝑟𝑒𝑔 [1] = 1.8𝑉 , 𝑉𝑟𝑒𝑔 [2] = 2.2𝑉 → 𝛿𝑑 ≥ 2.2𝑉
2.25𝑉

• 𝑉𝑐𝑎𝑝 = 2.80𝑉 + 50𝑚𝑉 = 2.85𝑉 , 𝑉𝑟𝑒𝑔 [2] = 2.2𝑉 , 𝑉𝑟𝑒𝑔 [3] = 2.8𝑉 → 𝛿𝑑 ≥ 2.8𝑉
2.85𝑉

• 𝑉𝑐𝑎𝑝 = 3.30𝑉 + 50𝑚𝑉 = 3.35𝑉 , 𝑉𝑟𝑒𝑔 [3] = 2.8𝑉 , 𝑉𝑟𝑒𝑔 [4] = 3.3𝑉 → 𝛿𝑑 ≥ 3.3𝑉
3.35𝑉

These constraints collectively determine a lower bound for 𝛿𝑑 . To ensure all constraints are satisfied, we pick the highest

value for 𝛿𝑑 , that is, 𝛿𝑑 ≥ 3.3𝑉
3.35𝑉

= 0.9851. because 𝛿𝑑 = 𝑟2
𝑟1+𝑟2 , a possible selection is 𝑅1 = 150𝑘𝜔 and 𝑅2 = 10𝑀𝜔 .

Determining the values for 𝑅3 − 𝑅4 requires dual reasoning, where the resulting constraints identify an upper bound

for 𝛿𝑐 . Therefore, we pick the lowest value for 𝛿𝑐 , that is, 𝛿𝑐 ≥ 1.8𝑉
2.25𝑉

= 0.8. Similarly to the previous case, we consider

a margin 𝜖𝑑 = 50𝑚𝑉 that represents the minimum voltage sensitivity we wish to obtain for the discharge detector.

Because 𝛿𝑐 =
𝑅4

𝑅3+𝑅4 , a possible selection is 𝑅3 = 2𝑀Ω and 𝑅4 = 8𝑀Ω.

Selecting 𝜖c. To prevent an immediate transition back to a lower performance window, we must ensure that the

capacitor stores sufficient energy to sustain the computation in the upper performance window for a reasonable amount

of time. An extra voltage of 𝜖𝑐 in a capacitor corresponds to
1

2
𝐶𝜖𝑐

2
energy. Say the maximum energy consumption per

clock cycle is 𝑒𝑐𝑐 , the number of extra clock cycles 𝑛𝑐𝑙𝑜𝑐𝑘_𝑐𝑦𝑐𝑙𝑒𝑠 that an extra voltage 𝜖𝑐 allows the MCU to execute is

𝑛𝑐𝑙𝑜𝑐𝑘_𝑐𝑦𝑐𝑙𝑒𝑠 =

1

2
𝐶𝜖𝑐

2

𝑒𝑐𝑐
(6)

The software driver of FBTC requires 18 machine-code instructions to change the performance window, that is, 18

clock cycles. To justify switching to an upper performance window, we must satisfy

𝑛𝑐𝑙𝑜𝑐𝑘_𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 𝑝lower ≥ 18 + 𝑛𝑐𝑙𝑜𝑐𝑘_𝑐𝑦𝑐𝑙𝑒𝑠 (7)

where 𝑝𝑙𝑜𝑤𝑒𝑟 represents the energy consumption increase at a lower operating frequency compared to the higher one,

sustained at the same voltage level. For the MSP430-G2553 [43], the average 𝑝𝑙𝑜𝑤𝑒𝑟 between the three switching points,

that is, 1𝑀𝐻𝑧 − 8𝑀𝐻𝑧, 8𝑀𝐻𝑧 − 12𝑀𝐻𝑧, and 12𝑀𝐻𝑧 − 16𝑀𝐻𝑧 is 1.17. This means that switching to a higher frequency

provides, on average, a 17% better energy efficiency; hence 𝑛𝑖𝑛𝑠𝑡𝑟 ≥ 106 clock cycles.

FBTC sets the MCU to operate at the minimum possible voltage for each performance window. To identify the

highest energy consumption per clock cycle of the MCU, we consider the operating frequency with the highest

energy consumption at the corresponding minimum operating voltage, that is, 16𝑀𝐻𝑧 with a 3.3𝑉 voltage supply,

corresponding to 0.85𝑛𝐽 energy consumption per clock cycle, as shown in Fig. 2. By substituting these values in Eq. (6)

and by considering a target capacitor of 100𝜇𝐹 , 𝜖𝑐 must be at least 0.042𝑉 .

4.3 Base Design as Expansion Board

The definition of performance windows is platform-dependent, as they consist of pairs of operating frequencies and

minimum operating voltages specific to the hardware features. Although the specific designs of D
2
VFS and FBTC we

present are specific to the MSP430-G2553 [43], their underlying logic is platform-independent. Only two elements

of D
2
VFS and FBTC are specific to a platform: the voltage and frequency pairs in the DVFS driver and the hardware

components that identify the voltage range associated with performance windows. Developers can set the former in

software. The latter requires circuit designers to carefully dimension a subset of D
2
VFS and FBTC hardware components.

To facilitate this process and allow developers and circuit designers to use D
2
VFS and FBTC with their platform of

choice, we devise and implement a base design of two expansion boards that capture the core logic of D
2
VFS and FBTC,

depicted in Fig. 11 and Fig. 12, respectively. These expansion boards can be attached to a arbitrary evaluation board as

peripheral devices using dedicated PIN headers, and their circuit schematics isolate platform-specific components.
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(a) D
2
VFS expansion board schematics. (b) D

2
VFS expansion board implementation for the

MSP430-G2553.

Fig. 11. D
2
VFS expansion board design.

D
2
VFS expansion board. Fig. 11 shows an overview of the D

2
VFS expansion board, where Fig. 11(a) provides the cor-

responding circuit schematic and Fig. 11(b) depicts its implementation for the MSP430-G2553 [43]. The circuit schematic

of Fig. 11(a) captures the core design of D
2
VFS, where the grey elements represent platform-specific components,

consisting of the four BU49XXG [80] voltage detectors (𝐷1 − 𝐷4) that dictate performance window changes.

Circuit designers must dimension the voltage detector as follows. 𝐷4 must detect the power-on voltage, whereas the

voltage detectors 𝐷1 −𝐷3 must detect the operating voltages of the first three most-efficient performance windows, 𝐷1

targets the operating voltage associated with the performance window with the second lowest operating frequency,

whereas 𝐷3 targets the operating voltage associated with the performance window having the highest operating

frequency. For the MSP430-G2553 [43], we consider 3.6𝑉 as power-on voltage and the performance windows set to

16𝑀𝐻𝑧 at 3.3𝑉 , 12𝑀𝐻𝑧 at 2.7𝑉 , 8𝑀𝐻𝑧 at 2.2𝑉 , and 1𝑀𝐻𝑧 at 1.8𝑉 . Therefore, 𝐷1 detects 2.2𝑉 , 𝐷2 detects 2.7𝑉 , 𝐷3

detects 3.3𝑉 , and 𝐷4 detects 3.6𝑉 .

The D
2
VFS expansion board may be connected to the target device using the dedicated pins: 𝑉𝐶𝐶_𝑂𝑈𝑇 and 𝐺𝑅𝑁

provide regulated voltage and must be used for supplying power to the MCU, whereas 𝐸𝐵𝑈𝐹𝐹𝐸𝑅+ and 𝐸𝐵𝑈𝐹𝐹𝐸𝑅− must

be connected to the corresponding ends of the energy buffer. The other pins allow the D
2
VFS driver to interact with the

D
2
VFS expansion board: the input pins 𝑉𝑆𝐸𝐿1_𝐼𝑁 −𝑉𝑆𝐸𝐿4_𝐼𝑁 control the voltage regulator output, the output pin

𝐼𝑁𝑇_𝐶𝐻𝐴𝑁𝐺𝐸_𝑂𝑈𝑇 fires an interrupt that signals the D
2
VFS driver to change the performance window, the input

pin 𝐶𝐻𝐴𝑁𝐺𝐸_𝐶𝑂𝑁𝐹𝐼𝑅𝑀_𝐼𝑁 signals to the expansion board the change to the performance window, and the output

pins 𝐷1_𝑂𝑈𝑇 − 𝐷4_𝑂𝑈𝑇 signal the current performance window information. Fig. 11(b) shows the D
2
VFS expansion

board implemented for the MSP430-G2553 [43].

The expansion board of Fig. 11 demonstrates a design for platforms with four performance windows. This design can

be adapted to support a different number of performance windows by changing the number of voltage detectors and

their corresponding output pins. To support more than four performance windows, circuit designers must swap the 𝐹𝐹

flip-flop holding the current performance window and the𝑀𝐶 magnitude comparator detecting performance window

changes with corresponding components that support the increased number of information bits. For example, with six

performance windows, 𝐹𝐹 and𝑀𝐶 must support 6 bits.
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Fig. 12. FBTC expansion board design.

FBTC expansion board. Fig. 12 shows the design of the FBTC expansion board, with Fig. 12(a) illustrating the

corresponding circuit schematic and Fig. 12(b) depicting its implementation for the MSP430-G2553 [43] including the

configurable power-on voltage. The circuit schematic of Fig. 12(a) captures the core design of FBTC, where the grey

elements represent platform-specific components, consisting of the two BU49XXG [80] voltage detectors (𝐷1 − 𝐷2)
defining the operating voltage range and the four resistors (𝑅1 − 𝑅4) dimensioning the reference voltages for the

discharge (𝑅1 − 𝑅2) and charge (𝑅3 − 𝑅4) detectors.
Circuit designers must dimension the voltage detectors as follows: 𝐷1 must detect the power-off voltage, whereas

𝐷2 must detect the power-on voltage. We recall that for the MSP430-G2553 [43] we consider an operating range of

3.6𝑉 − 1.8𝑉 . Therefore, 𝐷1 detects 1.8𝑉 and 𝐷2 detects 3.6𝑉 . Instead, the four resistors 𝑅1 − 𝑅4 must comply with the

constraints derived from Eq. (5), using the process described in Sec. 4.2. For the MSP430-G2553 [43] we set 𝑅1 = 150𝑘Ω,

𝑅2 = 10𝑀Ω, 𝑅3 = 2𝑀Ω, and 𝑅4 = 8𝑀Ω.

The FBTC expansion board is connected to the target device using the corresponding pins. The pins𝑉𝐶𝐶_𝑂𝑈𝑇 ,𝐺𝑅𝑁 ,

𝐸𝐵𝑈𝐹𝐹𝐸𝑅+, 𝐸𝐵𝑈𝐹𝐹𝐸𝑅−, 𝑉𝑆𝐸𝐿1_𝐼𝑁 −𝑉𝑆𝐸𝐿4_𝐼𝑁 are set with the same logic as the D
2
VFS expansion board. Instead,

the output pin 𝐼𝑁𝑇_𝐶𝐻𝐴𝑅𝐺𝐸_𝑂𝑈𝑇 (𝐼𝑁𝑇_𝐷𝐼𝑆𝐶𝐻𝐴𝑅𝐺𝐸_𝑂𝑈𝑇 ) fires an interrupt that signals the FBTC driver to step

up (down) the performance window.

5 EVALUATION

We evaluate the performance of D
2
VFS and FBTC under different system settings and energy harvesting scenarios. We

describe next the experiments and system setup, the considered energy scenarios, and the results of the experiments.

Our setup is designed to investigate a broad spectrum of energy conditions, ranging from energy-rich sources that

prevent energy failures to energy-poor sources that result in frequent energy failures, with various intermediate scenarios

in between. Benchmarks comprise a diverse array of embedded programs, each exposing a variety of programming
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structures and workloads. Our evaluation includes more than 500𝑘 data points. Despite the extreme diversity of the

setup and the quantity of experimental data at hand, the results allow us to conclude that:

(1) FBTC and D
2
VFS significantly surpass all static configurations at both extremes—with energy-rich or energy-poor

sources—as their capacity to maximize the number of instructions executed per active cycle results in substantially

reduced energy consumption and completion times;

(2) with setups lying between the two extremes, the performance of FBTC and D
2
VFS is on par with the best-

performing static configuration;

(3) The best performing static configuration differs across setups; for instance, the static 16 𝑀𝐻𝑧 configuration

excels with an energy-rich source but turns into the least effective baseline with an energy-poor one;

(4) FBTC outperforms D
2
VFS in diverse contexts with its energy-efficient design that diminishes external circuitry

overhead, reducing energy use and quiescent current.

Our primary conclusion from the above is that given the variable nature of ambient energy, FBTC either significantly

outperforms or matches static configurations in most scenarios. Real-world deployments often show drastic changes in

energy supply [2, 30, 35, 36, 40, 79, 86], and may even be approximated to either of the two extremes we consider at

different times of the system lifetime. Deploying FBTC enables the system to adapt to prevailing energy conditions,

maximizing the amount of useful work derived from a given energy budget.

5.1 Setting

Accurately measuring the performance of D
2
VFS and FBTC is a challenge per se. Collecting metrics and state from a

system powered with harvested energy is a non-trivial process that may interfere with the intermittent execution of the

system and generally requires significant hardware-software modifications [20]. Further, reproducing ambient energy

sources is indeed extremely difficult, as their behavior is generally erratic [29, 34]. We thus opt for software-based system

emulation, as this not only enables fine-grained control of experiments but most importantly ensures reproducibility by

us and others. The code, documentation, and datasets we use are publicly available [64].

We describe next the experimental setting, the benchmarks we run, the baselines we compare with, and the energy

environment that systems are exposed to.

Platform and emulation.We employ ScEpTIC [67], an extendable emulator for intermittent programs previously

utilized in various studies [65–67] We extend ScEpTIC to emulate the functioning and energy consumption of the

circuitry enabling D
2
VFS or FBTC functionality. We emulate ambient energy sources by replaying voltage traces [3,

34, 75] that are either synthetic or gathered from a real harvester. Throughout program execution, ScEpTIC monitors

the capacitor voltage, taking into account the total device energy consumption and harvested energy. Whenever the

capacitor voltage falls below a threshold, ScEpTIC emulates an energy failure.

We emulate the MSP430-G2553 [43] MCU from the MSP430 family [48], attached to a 8𝐾𝑏𝑦𝑡𝑒 MB85RC64V [56]

non-volatile FRAM chip through 𝐼2𝐶 operating at 1𝑀𝐻𝑧. We incorporate an energy model of the MCU into ScEpTIC,

which considers the various operating modes, and leverages established experimental data [4] to simulate active mode

behavior. Evidence exists that during active mode this MCU experiences fluctuations in power consumption that are

not represented in its datasheet [4]. We instead rely on the latter [43] to model its energy consumption in low-power

mode as well as the energy consumption and latency of peripheral accesses.

We model the latency and energy consumption of the FRAM chip and of the additional components in D
2
VFS and

FBTC using a combination of datasheet information and real measures taken from the fabricated board for FBTC.
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Despite ScEpTIC enables the simulation of energy sources, device energy consumption, and circuitry functionality,

it does not account for real-world phenomena, including capacitor leakage and circuitry non-linearities, which are

inherently difficult to model. To validate the results, we experimentally verify for FBTC that the discharge patterns

observed by relying on datasheet information mirror those of the fabricated board. Further details about these aspects

are available in Sec. 5.2. We also note that the ADC minimum operating voltage is 2.2𝑉 on the MSP430-G2553 we

consider. Should𝑉𝑐𝑎𝑝 be lower than 2.2𝑉 , the ADC may return unreliable values, causing unexpected system behaviors,

including unnecessary state-save operations. To account for this, we consider three possible settings for Mementos:

(i) Default, where every function call performs a state-save operation as soon as 𝑉𝑐𝑎𝑝 is lower than 2.2𝑉 , yet the

execution continues until𝑉𝑐𝑎𝑝 < 1.8𝑉 , (ii) NOADCOFF, where we pretend the ADC can operate in the same voltage range

of the MCU, and (iii) ADCMINV, where we set the MCU to power off at 2.2𝑉 .

We consider two well-established techniques to ensure forward progress: Hibernus [12] and Mementos [75]. Both

save the program state on the FRAM chip, including the register file, special registers, and main memory, whenever𝑉𝑐𝑎𝑝

falls below a specified threshold 𝑉𝑠𝑎𝑣𝑒 . Hibernus relies on system interrupts that fire whenever the 𝑉𝑠𝑎𝑣𝑒 is reached;

Mementos relies on special function calls, statically placed at specific program locations, that probe 𝑉𝑐𝑎𝑝 through the

ADC and accordingly determine whether to save the state. We use ScEpTIC itself to determine an efficient setting

for 𝑉𝑠𝑎𝑣𝑒 , empirically exploring different possible values and eventually settling on the one providing the best energy

efficiency to complete a given workload.

For Hibernus, we consider an external voltage divider of 200𝐾Ω as in the original setup [12] and we use ScEpTIC to

model the execution of state-save operations whenever 𝑉𝑐𝑎𝑝 falls below 𝑉𝑠𝑎𝑣𝑒 . For Mementos, we use the loop-latch

placement strategy [75] to insert function calls in the source code that probe the value of 𝑉𝑐𝑎𝑝 and compare it with

𝑉𝑠𝑎𝑣𝑒 . In line with the behavior of a real deployment, we also assume that Hibernus operations to save the system

state only cover the used portion of main memory, that is, the one delimited by the stack pointer, instead of the whole

memory content [12] including unused segments.

Benchmarks, metrics, and baselines. Battery-less devices usually run a periodic sense-process-transmit loop to

gather data from the environment and relay that to a collection point [2]. Sensing and data transmission employ external

peripherals, such as sensors and radio transceivers; their performance is thus not a function of MCU behavior. Therefore,

we focus on benchmarks that represent processing, which execute entirely on the MCU.

We have chosen a suite of benchmarks that exemplify the diverse processing tasks typical in intermittent computing

environments [11, 12, 21, 38, 50, 62, 65, 75, 85]: (i) the Dijkstra algorithm for computing the shortest path between

two nodes of a graph, (ii) a Fast Fourier Transform (FFT) for signal analysis, and (iii) the RSA for data encryption. We

consider the open-source implementation of each benchmark available in the MiBench2 [32, 37] benchmark suite and

we compile them using Clang [60] version 8.0.1 with default compiler settings.

We prioritize the metrics of completion time—the duration to finish a workload—and energy consumption, which are

directly influenced by the voltage and frequency adjustments in D
2
VFS and FBTC. We compare them against a baseline

that uses static frequency configurations for the MSP430-G2553 [43], including 1𝑀𝐻𝑧, 8𝑀𝐻𝑧, 12𝑀𝐻𝑧, and 16𝑀𝐻𝑧.

When quantifying the duration to complete a workload, we distinguish between execution time for active periods

and recharge time for inactive periods. This allows us to identify (i) whether performance is lost or gained in either or

both of the phases, (ii) how different configurations of voltage and frequency affect the execution time, and (iii) how the

external circuitry of D
2
VFS and FBTC affect the recharge time. This separation also allows us to identify how different
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Fig. 13. Voltage traces of the considered energy sources.

voltage operational ranges affect performance, as different frequencies have different voltage ranges that affect both the

execution and recharge time.

We also track the number of energy failures occurring while completing a workload. We consider this metric as an

indicator showing how energy consumption affects performance. Given the same initial energy budget, a higher energy

consumption leads to shorter energy cycles and thus the system experiences more energy failures. This increases both

the execution and recharge time due to additional restore operations and capacitor recharges.

Energy sources and system settings. The characteristics of the energy source largely determine the system’s

performance. We investigate the system performance with three diverse energy sources.

(1) An energy-rich source, whose trace is shown in Fig. 13(a), which enables long energy cycles and yields a low

energy failure rate. We reproduce this scenario with the voltage trace of a solar energy source, measured from a

solar panel outside our lab while walking [3].

(2) At the opposite extreme, we consider an energy-poor source, whose trace is shown in Fig. 13(b), which only

produces short energy cycles and yields a high energy failure rate. Similar to previous works [49], we reproduce

this scenario with a synthetic 5𝑉 energy source that supplies energy only when the device is powered off.

(3) The energy-moderate source, whose trace is found in Fig. 13(c), represents a middle point between the two

extremes. We reproduce this scenario by considering the voltage trace of an RF energy source, taken from

Mementos [1, 75].

Capacitor size 𝐶 and boot threshold 𝑉𝑏𝑜𝑜𝑡 determine the length of energy cycles and the time required to recharge

after an energy failure. Large capacitors increase the duration of an energy cycle, as they store more energy, yet they

also increase the time to reach 𝑉𝑏𝑜𝑜𝑡 . Similarly, a high 𝑉𝑏𝑜𝑜𝑡 extends the duration of an energy cycle by providing a

larger initial energy budget, but it also increases the recharge time. There also exist lower bounds for 𝐶 and 𝑉𝑏𝑜𝑜𝑡 ,

depending on frequency setting and workload. Their setting determines the energy available in an energy cycle, which

we call 𝑒𝑎𝑐𝑡𝑖𝑣𝑒 , which must be strictly larger than the sum of the energy consumed by state-save and state-restore

operations. Otherwise, a device would not achieve forward progress across energy failures.

To evaluate the performance of D
2
VFS and FBTC under different conditions, we consider multiple combinations of

lower bounds for 𝐶 and 𝑉𝑏𝑜𝑜𝑡 . We use ScEpTIC to determine these settings, running repeated experiments to measure

the performance of the various possible configurations. Fig. 14 shows the lower bound for𝐶 for the systems we consider

and across all benchmarks and system support configurations. The execution of benchmarks at a static frequency

of 16𝑀𝐻𝑧 or 12𝑀𝐻𝑧 requires at least a 80𝜇𝐹 or 20𝜇𝐹 capacitor, respectively. Instead, the static setting at 1𝑀𝐻𝑧 or
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Fig. 14. Minimum capacitance required to execute benchmarks at a given frequency.

8𝑀𝐻𝑧, D2
VFS, and FBTC require no more than a 10𝜇𝐹 capacitor, that is, the minimum decoupling capacitance of the

MSP430-G2553 suggested by TI [47].

Based on these results, we use two capacitor sizes: (i) 80𝜇𝐹 to run experiments for all baselines and settings, and

(ii) 20𝜇𝐹 to run experiments using all baselines except 16𝑀𝐻𝑧. Then, we identify the minimum 𝑉𝑏𝑜𝑜𝑡 for each possible

capacitor size. Fig. 15 shows the 𝑉𝑏𝑜𝑜𝑡 setting across benchmarks and capacitor sizes. In general, the trend is consistent

with the voltage operating range at a given frequency: the 16𝑀𝐻𝑧 configuration has the highest 𝑉𝑏𝑜𝑜𝑡 , whereas the

1𝑀𝐻𝑧 configuration has the lowest. Note that the curves for D
2
VFS and FBTC closely align with that of the 1𝑀𝐻𝑧

configuration, due to their similar voltage operating ranges..

Quiescent current. Our models in ScEpTIC account for the quiescent current 𝐼𝑞𝑢𝑖𝑒𝑠𝑐𝑒𝑛𝑡 due to external circuitry, which

causes the capacitor to discharge even when the MCU is off. This applies to Hibernus [12], D
2
VFS, and FBTC. Note that

we ignore the capacitor leakage current, as it is negligible compared to 𝐼𝑞𝑢𝑖𝑒𝑠𝑐𝑒𝑛𝑡 . Due to 𝐼𝑞𝑢𝑖𝑒𝑠𝑐𝑒𝑛𝑡 and depending on

the other system parameters, the energy source may be unable to make the system eventually reach 𝑉𝑏𝑜𝑜𝑡 , potentially

leading to a scenario where the device never powers on. This is the case of the energy-poor source with 𝐶 = 100𝜇𝐹 and

𝑉𝑏𝑜𝑜𝑡 = 3.6𝑉 . The short energy bursts rarely exceed the capacitor voltage 𝑉𝑐𝑎𝑝 , and contribute no additional charge.

To address this issue, we integrate into ScEpTIC a model of a voltage doubler between the energy harvester and the

capacitor, as used in the WISP platform [69, 77]. Using the voltage doubler, energy bursts exceeding𝑉𝑐𝑎𝑝 are both more

frequent and longer, allowing the capacitor to eventually reach𝑉𝑏𝑜𝑜𝑡 despite the influence of 𝐼𝑞𝑢𝑖𝑒𝑠𝑐𝑒𝑛𝑡 . This addition is

unnecessary for the energy-rich and energy-moderate sources, but mandatory for the energy-poor one when using 20𝜇𝐹

capacitors. Using a voltage doubler may not always be an option, because (i) voltage doublers usually require AC input

currents [26], whereas an energy harvester may output DC current [16], and (ii) similarly to voltage regulators, voltage

doublers never have a 100% efficiency [26] and thus waste energy.

5.2 Energy Model Validation

We model D
2
VFS and FBTC energy consumption using real measures of the MSP430-G2553 [43] MCU and the datasheet

information for the various circuitry components of D
2
VFS and FBTC. To validate the model, we measure the energy

consumption of the FBTC board we fabricated. We use a PeakTech 6225A [72] variable power supply to vary the voltage

of the FBTC board between 3.6𝑉 and the minimum operating voltage for the considered clock frequency, using steps of
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Fig. 15. Minimum𝑉𝑏𝑜𝑜𝑡 required for benchmark execution.
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Fig. 16. Comparison of FBTC datasheet-based model against FBTC measures-based model.

0.01𝑉 . We measure the FBTC board current draw using a UNI-T UT61E multimeter [84]. We repeat the measures for

each operating frequency we consider, namely, 16𝑀𝐻𝑧, 12𝑀𝐻𝑧, 8𝑀𝐻𝑧, and 1𝑀𝐻𝑧.

Fig. 16 compares FBTC datasheet-based model against the fabricated FBTC board. Fig. 16(a) compares the energy

consumption per clock cycle of the datasheet-based FBTC model against our measures. Our model considers an average

efficiency of 90% for the TPS62740 [45] voltage regulator [45]. However, this does not represent the actual behavior

of the voltage regulator. The measures of Fig. 16(a) show that the voltage regulator has a non-linear behavior and its
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Fig. 17. Results with the energy-rich source and Hibernus, C = 80𝜇F, and Vboot = 3.6V.

efficiency depends on the input/output voltages. In particular, between 3.6𝑉 and 3.3𝑉 , that is, the operating voltage

range of the 16𝑀𝐻𝑧 configuration, our model underestimates the energy consumption by up to 50% and, on average, by

38%. This discrepancy decreases down to 34% (23%) in the voltage range associated to 12𝑀𝐻𝑧 (8𝑀𝐻𝑧), that is, between

3.3𝑉 (2.8𝑉 ) and 2.8𝑉 (2.2𝑉 ), with an average underestimation of 28% (13%). Conversely, between 2.2𝑉 and 1.8𝑉 , that is,

the voltage range associated to the 1𝑀𝐻𝑧 configuration, our model overestimates the energy consumption by up to 2%.

To evaluate the impact of these inaccuracies, we compare the workload achieved in a single discharge of a 100𝜇𝐹

capacitor between the fabricated board the FBTC model. The lower energy consumption of the model results in the

execution of 16% more clock cycles. Interestingly, the capacitor discharge time depicted in Fig. 16(b) shows an interesting

behavior. The significant difference in the energy estimation between 3.6𝑉 and 3.3𝑉 barely affects the discharge time.

The overall difference between the discharge times is only 4%, which is mainly caused by the differences in the energy

estimation between 3.3𝑉 and 2.2𝑉 . This is due to the non-linear relation between the capacitor voltage and the capacitor

energy, which makes the MCU sustain lower frequencies for longer periods. Consequently, the discrepancy in the

energy estimation of higher frequencies bears a very limited impact.

For these reasons, despite the energy estimation difference, there is essentially no difference in the performance

trend of the FBTC models against static frequencies and D
2
VFS across our experiments. Therefore, the results we report

next are obtained using the datasheet-based FBTC model, making the results also comparable with those of D
2
VFS and

enabling a per-component analysis of the FBTC energy consumption, which would be unfeasible otherwise.

5.3 Results → Energy-rich Source

Experiments with the energy-rich source experience no energy failures, as sufficient energy is available to complete the

workload in a single energy cycle in any configuration. Thus, we do not report on the number of energy failures and

the recharge times. Similarly, we do not report on the execution time, as it corresponds to the completion time. In these

experiments, the energy source always keeps the capacitor at its maximum voltage, independently of size. We discuss

only the experiments with a 80𝜇𝐹 capacitor, as the 20𝜇𝐹 capacitor produces the same results.

Hibernus. Fig. 17 shows the results with Hibernus. Fig. 17(a) depicts the completion time of each benchmark. D
2
VFS

and FBTC require the same time of the static 16𝑀𝐻𝑧 configuration and are up to 16𝑥 faster than the other baselines.

Under conditions where the harvested energy maintains the capacitor fully charged throughout the experiment, both
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Fig. 18. Results with the energy-rich source and Mementos, C = 80𝜇F, and Vboot = 3.6V.

D
2
VFS and FBTC consistently select the 16𝑀𝐻𝑧 frequency for its optimal speed and energy efficiency. This results in

up to 1.7𝑥 lower energy consumption, as Fig. 17(b) shows.

Despite constantly executing at 16𝑀𝐻𝑧, we note that D2
VFS and FBTC show a 9% lower energy consumption than

the static 16𝑀𝐻𝑧 configuration. Both D
2
VFS and FBTC regulate the supply voltage to the lower bound of the current

performance window, that is, 3.3𝑉 . The static configuration running at 16𝑀𝐻𝑧, instead, does not regulate the supply

voltage and provides energy in the range 3.6𝑉 − 3.3𝑉 as the capacitor discharges, ultimately consuming more energy

despite the energy overhead of (i) the voltage regulator and (ii) the circuitry of D
2
VFS and FBTC.

D
2
VFS and FBTC custom circuitry also bears a negligible impact. Across all benchmarks, Fig. 17(c) shows that it is

responsible for just 0.67% and 0.1% of the overall energy consumption, respectively. FBTC has a 0.57% lower energy

impact than D
2
VFS while achieving the same completion time.

Mementos. As the energy-rich source never yields energy failures, the three ADC configurations for Mementos

produce the same results, as the voltage is always in the correct ADC operating voltage range. We report only the

results of the Default configuration, shown in Fig. 18 with the 80𝜇𝐹 capacitor.

Fig. 18(a) shows the same patterns of the experiments with Hibernus: D
2
VFS and FBTC require the same time of

the static 16𝑀𝐻𝑧 configuration to complete the benchmarks and they are up to 12𝑥 faster than the other baselines.

However, as Fig. 18(b) shows, D
2
VFS and FBTC no longer show the same marked improvement in energy consumption

as with Hibernus. This is due to Mementos’ probe function, which turns the ADC on, waits for a sample of capacitor

voltage, and turns the ADC back off. These operations introduce an overhead consisting of mandatory wait states that

the MCU fills up by executing null operations (NOPs). The number of NOPs is proportional to the MCU operating

frequency, thus higher frequencies are subject to a higher penalty. The cost for these NOPs partially outweighs the

gains due to regulating the input voltage at the lower bound of the performance window.

Despite the penalty of ADC accesses, D
2
VFS and FBTC still consume less energy than the static 1𝑀𝐻𝑧, 12𝑀𝐻𝑧, and

16𝑀𝐻𝑧 configurations across all benchmarks, as Fig. 18(b) shows. This is again mainly due to the voltage regulation.

Instead, FBTC (D
2
VFS) consumes, on average, 3.7% (4.29%) more energy than the static 8𝑀𝐻𝑧 configuration, with a

maximum of 7.6% (8.22%) more in RSA. Here again, the cost of ADC accesses at higher frequencies, that is, 16𝑀𝐻𝑧

compared to 8𝑀𝐻𝑧, represents a cost that makes the static 8𝑀𝐻𝑧 configuration more efficient. However, FBTC and

D
2
VFS are, on average, 67% faster than the static 8𝑀𝐻𝑧 configuration. The decrease in completion time may compensate
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Fig. 19. Results with the energy-moderate source and Hibernus, C = 80𝜇F, and Vboot = 3.6V.

for the small increase in energy consumption, especially considering that the energy source supplies more energy than

the device can buffer anyways. Therefore, an increase in energy consumption does not cause any energy failure.

D
2
VFS and FBTC custom circuitry bear negligible impact as in the case of Hibernus, that is, 0.64% and 0.1% of the

total energy consumption, respectively. FBTC again has a 0.55% lower energy consumption than D
2
VFS, with the same

completion time.

5.4 Results → Energy-moderate Source

We discuss next the results for the experiments with the energy-moderate source, obtained using the voltage traces of

an RF energy harvesting system [1, 75]. We set 𝑉𝑏𝑜𝑜𝑡 = 3.6𝑉 in these experiments.

Hibernus with C = 80𝜇F. Fig. 19 shows the results. The completion times shown in Fig. 19(a) indicate two different

trends. With the implementation of the Dijkstra algorithm, D
2
VFS and FBTC outperform all baselines, whereas with

the implementation of FFT and RSA they are on par with the baselines. The two trends deserve separate discussions.

When executing the Dijkstra algorithm, both D
2
VFS and FBTC surpass the highest-performing static benchmark—the

8𝑀𝐻𝑧 configuration. They offer a 42% and 41% improvement in completion time, as shown in Fig. 19(a), and consume

8% and 11% less energy, as Fig. 19(d) demonstrates, respectively. Moreover, D
2
VFS and FBTC are up to two orders of

magnitude faster than the baselines and consume up to 3𝑥 less energy than the static frequency configurations.

The enhanced performance can be attributed to the voltage and frequency scaling capabilities of D
2
VFS and FBTC.

Fig. 19(c) shows that scaling the frequency grants D
2
VFS and FBTC a shorter execution time than the static 8𝑀𝐻𝑧

configuration, as they can execute a portion of the code faster. Additionally, by transitioning to the most efficient

performance window based on the current capacitor voltage, they maximize the number of instructions executed in each
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energy cycle. With this, D
2
VFS and FBTC show lower energy consumption than the baselines, as shown in Fig. 19(d),

allowing both to complete the execution in a single energy cycle, as Fig. 19(f) shows. Note that the static 1𝑀𝐻𝑧 and

8𝑀ℎ𝑧 configurations show a similar behavior. However, due to frequency scaling, D
2
VFS and FBTC execute faster.

Unlike the Dijkstra algorithm, the FFT and RSA implementations encompass a significantly larger number of machine

instructions. This prevents D
2
VFS and FBTC from completing their execution in a single energy cycle, despite frequency

and voltage scaling. As a result, they no longer perform better than all static configurations. Compared to the best-

performing baseline, that is, 12𝑀𝐻𝑧, D2
VFS and FBTC are 2.1𝑥 slower, as shown in Fig. 19(a), and consume, on average,

56% and 15% more energy, as shown in Fig. 19(d), respectively.

The efficacy of D
2
VFS and FBTC arises from the nature of the energy source coupled with their limited voltage span

when activating hibernation mode. This mode, unique to Hibernus, transitions the system to a low-power state without

full shutdown, allowing for energy accumulation before a checkpoint is imperative. The initiation of hibernation mode

is contingent on the minimum voltage required for MCU operation, which is in turn determined by the operating

frequency of the MCU.

The higher static frequency configurations, such as 12𝑀𝐻𝑧 and 16𝑀𝐻𝑧, enter hibernation mode at a higher voltage

level than D
2
VFS and FBTC. In contrast, D

2
VFS and FBTC enter hibernation mode with a lower energy reserve. The

energy source supplies short energy bursts that are 5𝑠 apart from each other, as shown in Fig. 13(c), which is insufficient

to let D
2
VFS and FBTC wait in hibernation mode, as the bursts are too far from each other, eventually causing an

energy failure. Instead, the 12𝑀𝐻𝑧 and 16𝑀𝐻𝑧 static configurations have sufficient energy to wait for the next energy

burst and therefore experience no energy failures. Fig. 19(f) provides evidence for this analysis.

Fig. 19(a), Fig. 19(c), and Fig. 19(b) also indicate that the recharge times represent most of the completion time, whereas

the execution times contribute in a limited way. In RSA, the recharge times of the best static frequency configuration,

that is, 12𝑀𝐻𝑧, are 95% of the total completion time, whereas in D
2
VFS and FBTC the recharge times are 97% of the

completion time. The increase in recharge times is another consequence of D
2
VFS and FBTC entering hibernation

mode with lower energy compared to the 12𝑀𝐻𝑧 static configuration. D2
VFS and FBTC show 2.1𝑥 higher recharge

times than the latter configuration, as both must recharge the capacitor to 𝑉𝑏𝑜𝑜𝑡 starting from a lower voltage.

On average, FBTC achieves a 0.01% faster completion time and exhibits a 24% reduction in energy usage compared

to D
2
VFS across all evaluated benchmarks. Fig. 19(e) shows that D

2
VFS external circuitry bears a higher impact on

overall energy consumption than in the case of FBTC. D
2
VFS external circuitry is indeed responsible for up to 44% of

the total energy consumption, whereas this figure is limited to 11% for FBTC.

Hibernus with C = 20𝜇F. The smaller 20𝜇𝐹 capacitor setting allows us to run tests with RF energy harvesting without

using a voltage doubler, as discussed in Sec. 5.1. We do not consider the static 16𝑀𝐻𝑧 configuration here, as it cannot

complete the workload with such a small capacitor size.

Fig. 20 shows the results. Unlike the case with 𝐶 = 80𝜇𝐹 , D2
VFS and FBTC outperform all baselines. The capacitor

size determines this performance, as it causes all systems to enter hibernation mode with little energy. In fact, as

Fig. 20(b) shows, the recharge times of D
2
VFS and FBTC are close to the best-performing baseline and overall account

for up to 99% of the total completion time.

Fig. 20(a) shows that D
2
VFS and FBTC complete the benchmarks 5.4𝑥 times faster than the static 1𝑀𝐻𝑧 configuration,

with a performance similar to the two static 8𝑀𝐻𝑧 and 12𝑀𝐻𝑧 configurations. FBTC also shows the lowest energy

consumption across the board, as shown in Fig. 20(d): it consumes at least 22% less energy than the baselines. Instead,

D
2
VFS higher quiescent current results, on average, in a 22% higher energy consumption than the baselines.
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Fig. 20. Results with the energy-moderate source and Hibernus, C = 20𝜇F, and Vboot = 3.6V.

These results are due to voltage and frequency scaling, as D
2
VFS and FBTC can temporarily set the MCU to run at

16𝑀𝐻𝑧, operating in a more efficient condition than the baselines. Compared to the 80𝜇𝐹 case, this produces a shorter

execution time, as Fig. 20(c) shows. Further, the higher the number of clock cycles in the workload, the faster D
2
VFS

and FBTC complete the benchmarks compared to static configurations. This is the case in the RSA implementation, as

opposed to Dijkstra and FFT implementations.

The smaller capacitor impacts the number of energy failures the system is subject to, shown in Fig. 20(f): all the

baselines now experience an energy failure, whereas with a 80𝜇𝐹 capacitor the static 12𝑀𝐻𝑧 configuration did not. No

system can now complete the Dijkstra implementation in one energy cycle.

The same performance difference of the 80𝜇𝐹 capacitor case remains here between D
2
VFS and FBTC. On average,

FBTC is 0.27% slower than D
2
VFS, while consuming 44% less energy. However, there is now an increase in the overall

energy consumption of D
2
VFS and FBTC components due to higher recharge times. Fig. 20(e) shows that D

2
VFS

circuitry is now responsible for up to 57% of the total energy consumption, whereas FBTC circuitry is responsible only

for up to 15% of it.

Mementos with C = 80𝜇F. We run the experiments considering the three Mementos configurations, namely Default,

NOADCOFF, and ADCMINV, described in Sec. 5.1. The results show no significant change in performance between these

configurations. For these reasons, we report here only the results for ADCMINV, as it represents the most reasonable

choice for a real-world deployment.

Fig. 21 summarizes the results. Fig. 21(a) indicates that the static 16𝑀ℎ𝑧 configuration has the shortest completion

time. Analogous to the Hibernus experiments, the reduced operating range of this configuration enables the MCU

to resume computation sooner after an energy failure, as the capacitor needs less energy to attain the boot voltage
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Fig. 21. Results with the energy-moderate source and Mementos with ADCMINV, C = 80𝜇F, and Vboot = 3.6V.

𝑉𝑏𝑜𝑜𝑡 again. With Mementos, the MCU shuts down without entering a hibernation mode, thus avoiding the capacitor

discharge caused by the quiescent current consumption of Hibernus’s external comparators, since Mementos does not

rely on any such components. The baselines thus recharge back to 𝑉𝑏𝑜𝑜𝑡 faster than D
2
VFS and FBTC, which may be

functioning at a slower, less efficient frequency or are turned off while awaiting the energy buffer to refill to 𝑉𝑏𝑜𝑜𝑡 .

Similarly to the Hibernus experiments, the completion time is mainly affected by the recharge time, as Fig. 21(b) and

Fig. 21(c) jointly demonstrate. When running the the Dijkstra and FFT implementations, D
2
VFS and FBTC execution

times are within the execution time of the 12𝑀𝐻𝑧 static configuration, whereas in the RSA implementation they match

the one of the 16𝑀𝐻𝑧 static configuration. Considering that a deployed system runs the same workload indefinitely, in

the long run D
2
VFS and FBTC may show significantly shorter overall completion times compared to the baselines.

Fig. 21(d) shows that the static 8𝑀𝐻𝑧 configuration results in the most efficient energy performance, which however

does not translate into the shortest completion time, as seen in Fig. 21(a). Among the three benchmarks, D
2
VFS

always shows one of the highest energy consumption, consuming on average 66% more energy than the static 8𝑀𝐻𝑧

configuration. Instead, on average, FBTC consumes 45% less energy than D
2
VFS and 12% more energy than the static

8𝑀𝐻𝑧 configuration, always resulting among the most efficient configurations.

Two factors influence D
2
VFS and FBTC energy performance in this setting. As we point out in the experiments with

the energy-rich source of Sec. 5.3, ADC probing introduces a clock cycle penalty that increases with the MCU operating

frequency. Hence, ADC probing makes D
2
VFS and FBTC pay a higher penalty than the static 8𝑀𝐻𝑧 configuration, as

the former execute a portion of the program at 16𝑀𝐻𝑧 and 12𝑀𝐻𝑧, which incur in a higher penalty than the static

8𝑀𝐻𝑧 configuration. Second, D2
VFS and FBTC have a quiescent current draw that does not impact the baselines.
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Fig. 22. Results with the energy-moderate source and Mementos with ADCMINV, C = 20𝜇F, and Vboot = 3.6V.

Despite the higher energy consumption, when running the Dijkstra and FFT implementations, D
2
VFS and FBTC

experience the same number of energy failures of the baselines, as Fig. 21(f) shows. Instead, with the RSA implementation,

D
2
VFS and FBTC experience only one energy failure, whereas the baselines experience at least twice that. This

demonstrates that, despite the higher energy consumption, D
2
VFS and FBTC can manage energy more efficiently, as

they experience fewer energy failures.

The more efficient voltage and frequency scaling circuitry of FBTC demonstrates, on average, a 45% lower energy

consumption and a 3.6% faster completion time than D
2
VFS. The higher quiescent current draw of D

2
VFS components

is responsible, on average, for the 33% of the overall energy consumption, whereas FBTC components bear only a 9%

impact, as shown in Fig. 21(e). This causes D
2
VFS to consume 4.5𝑥 more energy than FBTC when the MCU is powered

off and recharges its energy buffer, causing the recharge time of D
2
VFS to be 4% higher than FBTC, as seen in Fig. 21(b).

Mementos with C = 20𝜇F. As before with Hiubernus, we run experiments with a 20𝜇𝐹 capacitor, which does not

require a voltage doubler with RF energy harvesting. For the reasons outlined earlier, we discuss only the results for the

ADCMINV configuration.

Fig. 22 summarizes the results with this configuration. We note again a different performance compared to the

experiments with a 80𝜇𝐹 capacitor. Fig. 22(a) shows that there is negligible difference in the completion time between

all configurations but the static 1𝑀𝐻𝑧 one. With the RSA implementation, that is, the benchmark with the highest

number of required clock cycles, FBTC and D
2
VFS are 0.11% and 0.37% faster than the static 12𝑀𝐻𝑧 configuration,

respectively, which is the fastest baseline.

The reason for the different performance is the same as with the Hibernus experiments: the capacitor size no longer

represents a disadvantage for D
2
VFS and FBTC extended voltage range. D

2
VFS and FBTC recharge times are now

Manuscript submitted to ACM



Dynamic Voltage and Frequency Scaling for Intermittent Computing 27

on par with the baselines, as Fig. 22(b) shows. This also demonstrates that the quiescent current of D
2
VFS and FBTC

external circuitry bears a limited impact on the performance while the MCU is off. The recharge times of D
2
VFS and

FBTC are similar to the baselines, which have no additional hardware and hence no quiescent current draw.

Fig. 22(c) indicates that the execution time of D
2
VFS and FBTC is, on average, 3.5𝑥 shorter than the baselines and

at least 16% faster than the best-performing baseline, which is the static 12𝑀𝐻𝑧 configuration in this case. The key

behind this performance is D
2
VFS and FBTC voltage and frequency scaling technique. Despite the inability of the static

16𝑀𝐻𝑧 configuration to complete the workload with the 20𝜇𝐹 capacitor, D
2
VFS and FBTC can set the MCU to operate

at 16𝑀𝐻𝑧 for a portion of each energy cycle, which is the fastest and most efficient operating frequency. This makes

D
2
VFS and FBTC able to extract the most possible performance out of available energy.

Compared to the experiments with a 80𝜇𝐹 capacitor, there is limited difference among the different system configura-

tions in other performance metrics. The same performance difference between D
2
VFS and FBTC with the 80𝜇𝐹 capacitor

is visible here too, as FBTC is only 0.28% slower than D
2
VFS, while demonstrating a 30% lower energy consumption, as

shown in Fig. 22(a) and Fig. 22(d). The higher quiescent current draw of D
2
VFS components is responsible, on average,

for 27% of the overall energy consumption, whereas FBTC components bear only a 8% impact, as shown in Fig. 22(e).

5.5 Results→ Energy-poor Source

We discuss here the results of the experiments with the energy-poor source, which only produces short energy cycles

and yields a high energy failure rate. We reproduce this scenario with a synthetic 5𝑉 energy source that supplies energy

only when the device is powered off. We set 𝑉𝑏𝑜𝑜𝑡 to 3.6𝑉 .

In the following and for both Hibernus and Mementos, we only discuss results with a 80𝜇𝐹 capacitor. The results

with the 80𝜇𝐹 show almost identical trends, leading to the same conclusions.

Hibernus. Fig. 23 depicts the results. D
2
VFS and FBTC demonstrate the best overall performance against all baselines.

As the energy-poor source does not supply energy unless the device is off, the duration of an energy cycle only depends

on the minimum operating voltage of the selected MCU frequency. D
2
VFS and FBTC ensure that the MCU consistently

operates at the maximum possible frequency and minimum possible voltage. This extends the number of clock cycles

executed within a single energy cycle.

Fig. 23(a) depicts the completion time of each benchmark. D
2
VFS and FBTC are, on average, three orders of magnitude

faster than the baselines. Extending the energy cycle by lowering the clock frequency also increases, however, the

time required to execute, as Fig. 23(c) depicts. D
2
VFS and FBTC indeed often show longer execution times than some

of the baselines. For example, when running the FFT and RSA implementations, D
2
VFS and FBTC are respectively

91% and 111% slower than the static 12𝑀𝐻𝑧 configuration, that is, the best-performing baseline with this metric. The

increase in execution time comes in exchange for a higher number of instructions executed within an energy cycle,

which significantly lowers the number of energy cycles required to complete the workload. D
2
VFS and FBTC also take

less time than the baselines in waiting for new incoming energy, abating recharge times up to two orders of magnitude,

as shown in Fig. 23(b).

Most importantly, D
2
VFS and FBTC show a significantly lower energy consumption than all the baselines. Fig. 23(d)

shows that D
2
VFS and FBTC consume, on average, 27𝑥 and 29𝑥 less energy than the static frequency configurations,

respectively. The voltage and frequency scaling techniques allow them to operate in the most efficient conditions.

Further, Fig. 23(f) shows that D
2
VFS and FBTC can complete the Dijkstra algorithm implementation within a single

energy cycle, whereas with the FFT and RSA implementations, D
2
VFS and FBTC experience, on average, 26𝑥 fewer
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Fig. 23. Results with the energy-poor source and Hibernus, C = 80𝜇F, and Vboot = 3.6V.

energy failures than the baselines. This behavior is a consequence of D
2
VFS and FBTC ability to extend the number of

instructions executed within an energy cycle, which also results in a reduction of the number of energy cycles required

to complete a workload.

The lower quiescent current of FBTC results, on average, in a 9% lower energy consumption than D
2
VFS, as shown in

Fig. 23(d). D
2
VFS components are responsible for up to 16% of the total energy consumption, wheras FBTC components

do not exceed 3% of it, as shown in Fig. 23(e). A higher energy consumption also means a lower equivalent resistance

that enables a faster capacitor recharge. Fig. 23(b) shows that the lower resistance of D
2
VFS results, on average, in

a 37% faster recharge time than FBTC. This affects the completion time, as D
2
VFS shows, on average, a 33% shorter

completion time than FBTC, as Fig. 23(a) shows.

Mementos. For reasons similar to Sec. 5.4, Fig. 24 only reports the results with the ADCMINV ADC configuration. The

performance difference between D
2
VFS, FBTC, and the baselines generally shows a trend similar to the Hibernus

experiments. The execution of Mementos’ probe function, however, introduces an additional overhead, because each

ADC access introduces a latency that increases with the MCU frequency. Compared with Fig. 23, here the 1𝑀𝐻𝑧 static

configuration pays the highest penalty due to ADC accesses, as the completion times in Fig. 24(d) demonstrate.

Both D
2
VFS and FBTC outperform the best-performing baselines depending on the metric at hand. They show,

respectively, a 42% and 84% shorter completion times than the static 8𝑀𝐻𝑧 configuration, as Fig. 24(a) demonstrates.

Fig. 24(d) also indicates that, on average, FBTC (D
2
VFS) has a 3.5% (0.81%) lower (higher) energy consumption than the

same baseline. Collectively, the metrics of completion times and energy consumption suggest that FBTC and D
2
VFS

outperform the static 8𝑀𝐻𝑧 configuration by finishing tasks more rapidly while consuming comparable amounts
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Fig. 24. Results with the energy-poor source and Mementos with ADCMINV, C = 80𝜇F, and Vboot = 3.6V.

of energy. Their ability to dynamically scale voltage and frequency enables them to sustain longer energy cycles by

operating in the most efficient settings.

Similarly to the Hibernus experiments with the energy-moderate source, FBTC demonstrates, on average, a 19%

lower energy consumption but 29% longer completion times than D
2
VFS. The lower quiescent current of FBTC, as

evidenced in Fig. 24(e), accounts for no more than 4% of the overall energy consumption. In contrast, the components of

D
2
VFS contribute up to 20% of the energy use.

5.6 Summary and Performance Trends

Our experimental results demonstrate the consistent advantages of D
2
VFS and FBTC over static configurations across

various energy conditions. Table 1 provides a concise overview of the key metrics—completion time and energy

consumption—summarized across different benchmarks and energy scenarios.

A few notable performance trends emerge. Static configurations, particularly those operating at higher frequencies,

excel in energy-rich environments where capacitor charging is frequent, leading to reduced execution times. However,

they fall behind in energy-poor scenarios due to increased energy consumption and frequent state-save operations.

On the other hand, D
2
VFS and FBTC consistently show superior performance across all scenarios. These systems

dynamically adjust voltage and frequency, maximizing the number of instructions executed per energy cycle. In energy-

poor environments, FBTC stands out, offering the most significant energy savings by reducing the overhead of DVFS

circuitry and effectively managing performance windows.

Overall, both techniques demonstrate a clear advantage in balancing energy efficiency and execution speed, especially

in fluctuating or constrained energy environments. FBTC achieves up to 45% lower energy consumption than D
2
VFS in
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Figure ID Experiment Completion Time Energy Consumption Key Insights

Fig. 17 Hibernus with energy-

rich source

D
2
VFS & FBTC up to 16x faster

than baselines

Up to 1.7x lower for D
2
VFS &

FBTC

D
2
VFS and FBTC operate at optimal frequency

(16MHz) with 9% lower energy than the static

16MHz configuration

Fig. 18 Mementos with energy-

rich source

D
2
VFS & FBTC up to 12x faster

than baselines

Slightly higher than 8MHz

static configuration

D
2
VFS & FBTC are penalized by ADC accesses

in energy but still outperform lower static fre-

quencies in speed

Fig. 19 Hibernus with energy-

moderate source (80𝜇F)

D
2
VFS & FBTC outperform

static baselines for Dijkstra

About 8%-11% lower energy

consumption for D
2
VFS &

FBTC in Dijkstra

D
2
VFS and FBTC excel for smaller workloads

like Dijkstra but are slower for larger workloads

like RSA

Fig. 20 Hibernus with energy-

poor source (80𝜇F)

About 5.4x faster than 1MHz

static configuration

FBTC shows 22% lower energy

consumption than baselines

Frequency scaling gives D
2
VFS and FBTC an

advantage; capacitor size impacts failures

Fig. 21 Mementos with energy-

moderate source (20𝜇F)

Static 16MHz configuration is

fastest

FBTC has 45% lower energy con-

sumption than D
2
VFS

FBTC benefits from lower quiescent current;

D
2
VFS incurs higher energy consumption due

to scaling

Fig. 22 Mementos with energy-

moderate source (80𝜇F)

FBTC is 0.28% slower than

D
2
VFS

FBTC is 30% more energy effi-

cient than D
2
VFS

Quiescent current difference leads to signifi-

cantly different energy profiles between D
2
VFS

and FBTC

Fig. 23 Hibernus with energy-

poor source

D
2
VFS & FBTC complete Dijk-

stra by 3 orders of magnitude

faster

D
2
VFS and FBTC consume 27x

and 29x less energy than base-

lines

Frequency scaling allows for maximizing

instructions per energy cycle in energy-

constrained environments

Fig. 24 Mementos with energy-

poor source

D
2
VFS and FBTC outper-

form static configurations for

FFT/RSA

Slightly higher energy con-

sumption than the best-

performing baseline

D
2
VFS and FBTC dynamically scale voltage and

frequency to handle intermittent energy sup-

plies

Table 1. Summary of experimental results.

some cases while maintaining comparable completion times, making these approaches, particularly FBTC, effective in

scenarios where energy efficiency is crucial.

6 CONCLUSION

In this paper, we delved into the unique challenges faced by intermittently computing devices that harness ambient

energy and utilize small capacitors as energy buffers. Traditional methods of setting clock frequency fall short in

addressing the intricate relationship between capacitor voltage, operational frequency’s energy efficiency, and the

associated operational range. Existing techniques, designed for conventional devices, prove to be ill-suited due to the

extreme energy limitations and distinct hardware attributes of energy-harvesting devices.

Through our exploration, we introduced two innovative hardware/software co-designs that recognize these distinct

hardware characteristics. These designs operate effectively within a constrained energy envelope, each offering its

own set of trade-offs and functionalities. Our experimental assessments, grounded in a mix of real-world and synthetic

benchmarks, underscore the potential of these techniques to reshape the landscape of intermittent computing. As

ambient energy-harvesting devices continue to gain traction, the strategies presented in this paper lay a foundation for

their efficient and sustainable operation.
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