
Special Session - Intermittent TinyML: Powering Sustainable
Deep Intelligence Without Batteries

Hashan Roshantha Mendis

Academia Sinica, Taiwan

rosh.mendis@citi.sinica.edu.tw

Kasım Sinan Yıldırım

University of Trento, Italy

kasimsinan.yildirim@unitn.it

Marco Zimmerling

TU Darmstadt, Germany

marco.zimmerling@tu-darmstadt.de

Luca Mottola

Politecnico di Milano, Italy

RI.SE and Uppsala University, Sweden

luca.mottola@polimi.it

Pi-Cheng Hsiu

Academia Sinica, Taiwan

National Taiwan University, Taiwan

pchsiu@citi.sinica.edu.tw

Abstract

Tiny battery-free devices running deep neural networks (DNNs)

embody intermittent TinyML, a paradigm at the intersection of

intermittent computing and deep learning, bringing sustainable

intelligence to the extreme edge. This paper, as an overview of a spe-

cial session at Embedded Systems Week (ESWEEK) 2025, presents

four tales from diverse research backgrounds, sharing experiences

in addressing unique challenges of efficient and reliable DNN in-

ference despite the intermittent nature of ambient power. The first

explores enhancing inference engines for efficient progress accumu-

lation in hardware-accelerated intermittent inference and designing

networks tailored for such execution. The second investigates com-

putationally light, adaptive algorithms for faster, energy-efficient

inference, and emerging computing-in-memory architectures for

power failure resiliency. The third addresses battery-free network-

ing, focusing on timely neighbor discovery and maintaining syn-

chronization despite spatio-temporal energy dynamics across nodes.

The fourth leverages modern nonvolatile memory fault behavior

and DNN robustness to save energy without significant accuracy

loss, with applicability to intermittent inference on nano-satellites.

Collectively, these early efforts advance intermittent TinyML re-

search and promote future cross-domain collaboration to tackle

open challenges.

Keywords

Intermittent systems, TinyML, runtime and design-time methodolo-

gies, hardware architectures, wireless networking, fault tolerance

1 Introduction

By relying entirely on energy harvesting, battery-free devices en-

able a low-cost, greener future. However, the weak and unstable

nature of ambient energy causes frequent shutdowns to recharge

the capacitor, with the device powering on when sufficient en-

ergy is harvested. Consequently, applications run intermittently

and use nonvolatile memory (NVM) to accumulate progress across

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

EMSOFT ’25, Taipei, Taiwan
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1993-6/2025/09

https://doi.org/10.1145/3742874.3757084

power cycles, as volatile data is lost upon power failure. Never-

theless, intermittent deep learning is essential for intelligent edge

applications reshaping industries and society, motivating a multi-

pillar research approach to improve overall system efficiency. These

efforts are presented through four tales of intermittent TinyML,

spanning runtime engines for intermittent inference and design-

time tools for intermittent-friendly DNNs, lightweight algorithms

and emerging hardware for fast and energy-efficient inference, co-

ordinated communication in battery-free networks, and embracing

faults for reliable intermittent inference in extreme environments.

The advancements extend beyond embedded systems to sensor net-

working, operating systems, and computer architecture, offering

perspectives that enrich broader embedded software interests.

Our exploration begins in Section 2, where we discover how

simply adapting conventional intermittent execution methods for

resource-demanding, complex applications like DNN inference

leads to critical performance inefficiencies that may offset the ben-

efits of accumulative execution. This motivated us to progressively

develop runtime optimizations for hardware-accelerated intermit-

tent inference engines that minimize progress accumulation over-

head, while accounting for the dynamic nature of both the power

supply and the neural network. While these engines execute the

deployed models efficiently, their effectiveness is tightly coupled

with the DNN architecture. However, frameworks commonly used

to design DNNs for tiny devices often yield architectures inherently

unsuitable for intermittent systems, leading to energy-wasteful,

slow deployments that could even fail to complete inference. There-

fore, we developed several design-time tools, adapting neural archi-

tecture search and neural network pruning to derive architectures

optimized for intermittent execution.

Complementing prior efforts, Section 3 examines how the inter-

mittent execution of DNNs on ultra-low-power microcontrollers

remains highly inefficient, rooted in the computational demands of

DNN inference and the architectural limitations of conventional

Von Neumann processors. Firstly, traditional DNNs rely heavily

on multiply-and-accumulate (MAC) operations, all of which are

executed nonselectively during inference, leading to significant

energy consumption. Moreover, Von Neumann-based cores are in-

herently inefficient, as they waste most of their energy on control

operations and suffer from the data transfer bottleneck between

the processor and the memory units. These inefficiencies have

motivated us to explore alternative inference algorithms that can

activate only the most relevant components of the network for each

input, significantly enhancing energy efficiency while maintaining

https://doi.org/10.1145/3742874.3757084

EMSOFT ’25, September 28-October 3, 2025, Taipei, Taiwan H.R. Mendis, K. S. Yıldırım, M. Zimmerling, L. Mottola, and P.-C. Hsiu

accuracy. In parallel, to address the architectural constraints of Von

Neumann cores, we leverage the emerging computing-in-memory

(CIM) paradigm, which enables computation directly within mem-

ory, removing frequent data transfer between the processor and

memory and providing inherent resilience to power failures.

Although inference on individual battery-free devices is well

studied, Section 4 shifts focus to the underexplored challenge of

communication across multiple devices, essential for distributed in-

telligence.We first noticed that the ability to systematically evaluate

battery-free networks and measure community progress was sorely

missing. Therefore, we developed tools to accurately capture and

reproduce real-world energy environments facilitating repeatable

lab-based evaluation, making them publicly and remotely accessible

for broad use. Due to the spatio-temporal variability in harvested

energy, nodes operate asynchronously, making it challenging for

networked nodes to discover each other quickly and efficiently,

and to ensure reliable bidirectional communication. To address this,

we design networking protocols to align device wake-ups through

adaptive random delays for fast neighbor discovery and maintain

synchronization by learning charging-time patterns and adapting

device wake-up times accordingly.

Largely unexplored knobs exist that may drastically improve the

inference performance of DNNs on resource-constrained intermit-

tent devices. Emerging NVM technology is a key example. Spin-

Transfer Torque Magnetic Random-Access Memory (STT-MRAM),

for instance, offers the ability to save energy in exchange of accept-

ing that write errors of stochastic nature possibly occur. Taking ad-

vantage of these knobs without introducing unnecessary overhead

is challenging. We report in Section 5 on the design of compile-time

techniques that build upon the features of STT-MRAM to markedly

improve the energy efficiency of DNN inference by imposing a hard

bound on the potential accuracy losses. Embracing the faults of STT-

MRAM prompted us to look in the direction of novel deployment

scenarios. We eventually realize that much of the same techniques

may be applied to running intermittent inference workloads on

nano-satellites, provided that the fault patterns are comparable. To

verify this hypothesis experimentally, by deploying a CubeSat in

Low-Earth Orbit (LEO) equipped with different NVM chips. Early

results, also discussed in Section 5, indicate that fault patterns are

indeed comparable, providing a foundation for deploying efficient

intermittent DNN inference in space operations.

2 Intermittent Deep Inference:

Rethinking Engines and Models

The overarching goal of advancing intelligent battery-free systems

is to enable increasingly complex deep learning models to run

efficiently on tiny devices powered by extremely weak ambient

energy. Our research efforts over the past few years have evolved

toward this goal through advances in runtime inference engines

and design-time tools. We also highlight carbon footprint reduction

as a central unresolved concern in TinyML sustainability.

2.1 Intermittent-aware Runtime Inference

Engines

DNN inference is executed at runtime by an inference engine, a
software-based middleware processing each layer, as shown in Fig-

ure 1. Even with DNN optimization [57] and hardware acceleration

NVM VM

Application

Hardware

Middleware

Inference configuration

da
ta

 re
us

e

progress preservation

progress recovery

NVM VM

process layer

fetch / write data

ambient
energy

Battery-less
System

Dynamic power supply

Static / Dynamic neural network

Accelerator
CPU

Intermittent-aware
Runtime Inference Engines

Min. intermittent inference latency

Maintain model accuracy

Pruning criterion Pruning strategy

Neural architecture search

Neural network pruning

IMOAccuracy
Cost model: latency, energy

Constraints: energy, latency, HW

Intermittent-friendly
Design-time Tools

Intermittent inference engine

Figure 1: Overview of runtime inference engines and design-

time tools for intermittent deep inference.

[40, 53], completing a single inference under intermittent power

may still require multiple power cycles. Therefore, intermittent in-
ference engines additionally perform progress preservation during

inference and progress recovery upon power resumption to accu-

mulate progress across power cycles [27, 30]. Progress preservation

involves frequently backing up a progress indicator together with

intermediate computation outputs (e.g., activations) from VM to

NVM. Progress recovery uses the preserved indicator to correctly

identify the interrupted computation, refetch the lost data back

into VM from NVM, and resume execution without starting from

scratch. Progress preservation and recovery introduce significant

memory traffic and latency, with even simple DNNs often requiring

several seconds to minutes for completion [13, 27]. Intermittent

inference approaches differ in the type and granularity of data they

preserve, impacting the progress preservation overhead, and the

amount of progress re-executed during recovery.

To understand how such overheads impact inference perfor-

mance, we applied general intermittent execution approaches, such

as checkpoint-based and task-based ones, to DNN inference. Check-

point-based execution backs up volatile data to NVM, and resumes

from the last successful checkpoint. We found that the highmemory

usage of DNN inference leads to large checkpoints with significant

runtime overhead. By contrast, task-based execution decomposes

applications into multiple tasks that can each complete within the

available energy in a power cycle, with progress preserved after

each task completion and execution resumed from the interrupted

task. As DNN inference contains loop-heavy computations, each

loop iteration is typically treated as a task [27]. Loop indices are

preserved as progress indicators, and the entire interrupted task

is re-executed during recovery. Since only full accelerator opera-

tions can be invoked, tasks cannot be finer than an operation and

usually group multiple operations to reduce preservation overhead.

This causes task-based inference to inherently demonstrate high re-

execution overhead. Therefore, the high overhead of these general

approaches demands more energy, which presents a key challenge,

Intermittent TinyML: Powering Sustainable Deep Intelligence Without Batteries EMSOFT ’25, September 28-October 3, 2025, Taipei, Taiwan

as it raises the risk of non-termination (i.e., repeated re-execution)

when energy is scarce.

2.1.1 Hardware Accelerated Inference. To overcome the high run-

time overhead of general approaches, we proposed inference foot-
printing [54] specifically for hardware accelerated intermittent in-

ference. Inference footprinting preserves each intermediate compu-

tation output, (e.g., as fine-grained as a partial sum) along with a

progress indicator during inference, and uses the latest indicator to

identify and resume the interrupted computation upon power re-

sumption. This fine-grained progress preservation enables parallel

inference computation and progress preservation, which reduces

the overhead of progress preservation. Moreover, it relaxes the ac-

celerator operation’s atomicity constraint, requiring re-execution of

only the interrupted sub-operation instead of the entire operation,

greatly reducing the overhead of progress recovery. With reduced

runtime overhead, footprinting-based inference is less prone to

non-termination under weak power. Realized as HAWAII [54], an

intermittent inference engine, footprinting-based inference substan-

tially improves inference throughput over both checkpoint-based

and task-based inference, and is especially effective for heavily

accelerated DNNs executed under small energy budgets.

Later on, we found that separately preserving progress indicators

and output features introduces additional data transfer overhead,

potentially offsetting the accumulated progress. To alleviate this

issue, we proposed model augmentation [32], allowing indicator

preservation to be piggybacked onto output feature preservation.

By appending additional network components with assigned values

at specific positions in the deployed model, progress information

is intrinsically integrated into inference, trading extra computa-

tions for reduced data transfer overhead, without affecting accuracy.

Implemented as the JAPARI inference engine [32], this approach

achieved notable latency reductions over HAWAII, particularly for

highly accelerated networks under limited energy budgets. We

advanced this idea with stateful neural networks [60], which em-

beds progress indicators into specific network components, allow-

ing a DNN to indicate progress itself. A stateful DNN can contain

progress information in its output features without their corruption.

Progress indicators are intrinsically preserved with output features,

completely eliminating the additional data transfers needed for in-

dicator preservation. Realizing this approach, the Stateful inference

engine [60] significantly speeds up inference over JAPARI, notably

for modern convolutional networks under weak power.

2.1.2 Dynamically Reconfigurable Inference. Inference engines typ-
ically use a fixed inference configuration with parameters such as

tile size and loop order to maximize data reuse, thereby reducing

costly NVM accesses [33]. However, when using a fixed configura-

tion under intermittent power, we found that this strategy became

inefficient, as retaining more data in VM increases the amount that

must be refetched during progress recovery. This issue is intensified

as recovery overhead now dominates, driven by our prior efforts to

minimize preservation overhead. Thus, minimizing intermittent in-

ference latency requires balancing data reuse during inference and

data refetch during recovery. Nevertheless, we observed that the

balance point fluctuates depending on the dynamicity of the power

supply driven by ambient energy, posing a major challenge as a

fixed configuration becomes significantly inefficient. Accordingly,

we emphasized the necessity of runtime reconfiguration [56], to

maintain low latency under a varying power supply. This concept

was realized as the DynBal middleware [56], which indirectly eval-

uates the performance of configurations considering input power,

and dynamically reconfigures the underlying inference engine in a

lightweight manner, balancing data reuse and refetch costs under

fluctuating power conditions. DynBal demonstrated that even a

simple implementation of runtime reconfiguration can significantly

speed up inference, especially under high intermittency.

Orthogonally, we found that networks with dynamic behavior
introduced additional challenges when executed on our intermit-

tent inference engines (Section 2.1.1). Fundamentally, existing in-

termittent inference approaches assume deterministic execution,

where predefined computation order is required for correct recov-

ery, and therefore they directly support static networks. By contrast,

dynamic networks exhibit inherently non-deterministic execution,
adapting their structure to the input to improve accuracy and per-

formance trade-offs, thereby reordering execution via computation

skipping [29, 51]. We observed that existing approaches failed to

capture non-deterministic progress information in dynamic net-

works, which vary across inferences. This poses a key challenge, as

it leads to incorrect recovery, corrupting output features and degrad-

ing accuracy. Therefore, we recently proposed non-deterministic
progress accumulation [55], a methodology for capturing the inter-

rupted computation and its non-deterministic information, with

minimal preservation overhead. Low-overhead progress indicators

are identified based on network structure and indicator update

frequency, and their collective update patterns are leveraged to

minimize the data volume and number of transfers for progress

preservation. Our NodPAmiddleware [55] enhances HAWAII by im-

plementing this methodology, ensuring correct and fast inference,

primarily for highly dynamic networks.

2.2 Intermittent-friendly Design-time Tools

While inference engines execute a given pre-trained DNN model

with a fixed architecture, designing DNNs for resource-constrained

systems commonly uses two complementary approaches: neural ar-
chitecture search (NAS) [31, 36] and neural network pruning [57, 59],
as shown in Figure 1. As the network architecture design space is

vast, NAS is often used to automatically design a high-accuracy

DNN for the target dataset. In a typical NAS framework, the ar-

chitecture search space defines the candidate set of architectures,

and the search strategy is the algorithm that optimizes a specific

objective (e.g., accuracy). Hardware-aware NAS extends this pro-

cess by jointly exploring the network architecture and inference

configuration design spaces, incorporating hardware metrics (e.g.,

latency) into the optimization objective, and enforcing resource

constraints (e.g., VM and NVM capacity) to ensure the derived DNN

is both deployable and efficient on the target system. In contrast,

network pruning compresses a given model, by removing relatively

unimportant weight parameters, trading accuracy for lower storage

requirements. Pruning approaches differ in their pruning criterion

which estimates the importance of weights and their pruning strat-

egy which removes relatively less importance weights to achieve

the optimization objective while maintaining model accuracy.

2.2.1 Intermittent-aware Neural Architecture Search. Deploying
NAS solutions under intermittent power revealed that conventional

NAS frameworks, being unaware of intermittency, are unsuitable

EMSOFT ’25, September 28-October 3, 2025, Taipei, Taiwan H.R. Mendis, K. S. Yıldırım, M. Zimmerling, L. Mottola, and P.-C. Hsiu

for intermittent systems. We observed that NAS tends to find solu-

tions that maximize data reuse for lower latency [31], making them

energy-expensive, and since NAS ignores configuration spaces re-

lated to intermittent execution, the harvested energy may be under-

utilized. Thus, a fundamental challenge is that, the derived DNNs

may become inefficient by violating the intermittent inference la-

tency requirement and, more seriously, they may even become

unsafe by experiencing non-termination. In light of this, we pre-

sented iNAS [41], the first intermittent-aware NAS framework that

incorporates intermittent execution behavior into NAS. It follows a

general principle that finding high-accuracy DNNs for intermittent

systems requires balancing data reuse and progress preservation

and recovery overheads, without exceeding the harvested energy

in each power cycle. Unlike hardware-aware NAS solutions, iNAS’s

solutions avoided non-termination, met latency requirements with

comparable accuracy, and achieved greater latency reductions for

complex architectures under small energy budgets.

Although safe and timely, we noticed that iNAS solutions still

imposed high intermittency management overhead inherent to the

network architecture, wasting harvested energy on progress preser-

vation and recovery instead of inference, which degraded latency.

We further observed that directly minimizing intermittency man-

agement overhead in NAS compromises accuracy, a challenging

issue because it risks overlooking high-accuracy architectures in

favor of ones with low overhead and also low accuracy. This moti-

vated us to examine how architectural characteristics influenced the

accuracy-overhead interplay. Our study [42] showed architectural

parameters differ in their sensitivity to overhead because their com-

putation to combined preservation and recovery cost ratios vary

with their distinct computation and data access behaviors. To design

DNNswith better overhead–accuracy trade-offs, we derived general

guidelines that exploit overhead sensitivity and integrated them

into TiNAS [42], a modernized intermittent-aware NAS framework,

refining its search space and strategy. These guidelines enabled

TiNAS to efficiently identify low-overhead, high-accuracy DNNs,

especially for larger datasets with broader search spaces.

2.2.2 Intermittent-aware Neural Network Pruning. Similar to NAS,

conventional network pruning frameworks are also unaware of

intermittent execution, assuming deployment under continuous

power [59]. We observed that the hardware usage of a DNN opti-

mized for continuous power differs significantly from a DNN opti-

mized for intermittent power. In continuous inference, computed

outputs are kept in VM to maximize data reuse, so NVM reads and

accelerator computations dominate inference latency. In contrast,

intermittent inference frequently preserved accelerator outputs

and progress indicators, making NVM writes dominant. Existing

pruning approaches improve continuous inference latency by re-

ducing the number of NVM reads and computations. Therefore, the

main challenge is that, a model pruned for continuously-powered

systems may perform suboptimally on intermittent systems. We

addressed this with iPrune [35], a simple yet effective intermittent-
aware pruning framework that reduces intermittent inference la-

tency while maintaining accuracy. Its core idea is to remove weights

that contribute more to intermittent inference latency but have low

sensitivity to accuracy. This provided higher compression compared

to energy-aware pruning with similar accuracy, while consistently

speeding up intermittent inference under various power profiles.

2.3 Powering a Low-Carbon Future

We summarize the key insights of this section as follows:

• Hardware-accelerated intermittent inference enables fine-

grained progress preservation in parallel with accelerator

computation, reducing the risk of non-termination.

• Runtime inference reconfiguration balances data reuse and

refetch for low latency under dynamic power, while captur-

ing non-determinism correctly recovers dynamic networks.

• While incorporating intermittent execution behavior into

NAS can find safe models, directly minimizing intermittency

management overhead may compromise accuracy.

• Efficient intermittent inference requires tailored compres-

sion, as pre-optimized compact models may become subop-

timal when executed intermittently.

Nevertheless, TinyML’s carbon footprint[46] poses ongoing sus-

tainability challenges. Its operational emissions arise from inference

energy consumption scaled by the power source’s carbon intensity,

while embodied emissions stem from the amortized carbon impact

of hardware manufacturing, transportation, and disposal over the

device’s lifetime inferences. Although runtime optimizations (Sec-

tion 2.1) can reduce energy use, they may not lower operational

emissions if inference occurs during periods of high carbon inten-

sity. Likewise, maximizing data reuse reduces latency but increases

NVM wear by writing larger blocks, shortening device lifetime

and limiting embodied carbon amortization. Inference engines can

mitigate these issues by scheduling tasks based on priority and

carbon intensity variation over time and location, while balancing

data reuse and NVM writes to maintain low latency and device

longevity. Moreover, at design time, tools (Section 2.2) may overlook

the model-device synergy that shapes the overall carbon footprint.

For instance, power supply units and sensors contribute signifi-

cantly to embodied emissions [46]. Although increasing the size of

these components improves performance, supports longer deploy-

ments, and allows more accurate, complex DNNs, it also leads to

higher embodied emissions. Therefore, the interplay between the

DNN model, device specifications, and carbon emissions should be

considered early in system design by exploring combined design

spaces that holistically optimize for performance and sustainability.

3 Fast Inference on Emerging Hardware

In this section, we emphasize that the inefficiency of intermittent in-

ference arises mainly from two factors: (1) the significant computa-

tional overhead associated with traditional DNNmodels, and (2) the

inherent architectural limitations of conventional Von Neumann-

based ultra-low-power microcontrollers. We present our recent

efforts targeting alternative inference algorithms and hardware

architectures to improve the efficiency of intermittent inference.

3.1 Algorithmic and Architectural Inefficiencies

DNN models are computationally heavy for battery-free sensors.

Even a simple DNN layer has thousands of MAC operations. During

deep inference, all DNN layers are executed non-selectively and

sequentially, introducing a significant computational burden. Fur-

thermore, to ensure resilience against power failures across power

cycles, input and output activations of each layer should be stored in

NVM. This backup process generates significant memory traffic and

latency, resulting in slow and energy-inefficient inference [62]. As

Intermittent TinyML: Powering Sustainable Deep Intelligence Without Batteries EMSOFT ’25, September 28-October 3, 2025, Taipei, Taiwan

a result, DNN inference can take several seconds to minutes, even

for simple models [20]. Furthermore, DNNs are latency-agnostic

and cannot adapt to the instability and unpredictability of ambient

energy sources, which often result in high latency in battery-free

systems. Therefore, we need a different inference approach that

is computationally fast, offers minimal state retention and backup

overheads, is responsive to energy harvesting dynamics, and is com-

pact to fit within the limited memory budgets of these platforms.

Besides, ultra-low-power microcontrollers are still inefficient.

Battery-free devices are typically built around simple ultra-low-

power programmable cores [10, 25]. These Von Neumann and

Harvard cores are not optimized for energy efficiency since they

waste a significant amount of energy for control and datapath

operations [28], spending only 5–10% of available energy on use-

ful computations [26]. Furthermore, memory-intensive inference

workloads exacerbate the computational inefficiency due to fre-

quent data movement between memory and compute units, cre-

ating data transfer bottlenecks [7, 13]. Besides, these cores lack

power-failure resilience and lose computational state during power

outages [48, 64]. State backup and recovery operations create a sig-

nificant data transfer bottleneck between the processor and NVM.

Another important aspect is the parallel execution of inference

workloads. Most battery-free computing platforms are single-core

and do not offer parallelism, which is critical for the efficient exe-

cution of DNNs [5]. In short, we need new power failure-resilient

architectures that remove the mentioned inefficiencies, offer par-

allelism, and respond to the changes in the environmental power

availability, using the power and energy most optimally for the

efficient intermittent execution of battery-free inference.

3.2 Fast Inference for Battery-free Sensors

Figure 2: Fast-Inf Inference Algorithm. o is the output, x is

the input, w is the weight vector, and b is the bias of the node.

To address the computational challenges, we introduced Fast-

Inf [15], a new lightweight inference algorithm that enables ultra-

fast inference on battery-free devices. Fast-Inf utilizes a binary

tree-based neural network architecture, offering logarithmic time

complexity with minimal backup and runtime memory require-

ments. This architecture exploits conditional computation [12], ac-

tivating only the most relevant network components for each input,

thereby significantly enhancing energy efficiency while maintain-

ing accuracy. At the core of Fast-Inf is the Fast Feedforward (FFF)

network [12], a binary tree-based architecture (Figure 2) where each

internal node represents a single neuron and each leaf corresponds

to a small feedforward subnetwork. Inference is a tree traversal, as

depicted in Figure 2, where each neuron computes an intermediate

output o via a dot product, which choses the left or right branch.

This procedure is reiterated until a leaf is reached, whose outputs

provide the network outputs.

Fast-Inf exploits conditional execution since only a part of the

tree is considered during inference, which enables logarithmic in-

ference time, achieving ultra-fast, energy-efficient performance

under tight resource constraints. During inference, the information

that needs to be checkpointed by the intermediate nodes is just the

decision variable oi , which is only a single bit. Besides, we just need

to check the last decision variable to proceed with the decided leaf

node. So the recovery is also very lightweight.

Fast-Inf is best suited for tasks solvable by fully connected net-

works (FCNs), as its architecture effectively decomposes FCNs into

a tree structure. Consequently, it achieves performance comparable

to FCNs in applications where instantaneous sensor readings are

mapped to discrete classes, e.g., human activity recognition. For

tasks with strong spatiotemporal structure, Fast-Inf remains effec-

tive for small-scale inputs, e.g., keyword spotting. Overall, Fast-Inf

significantly reduces memory usage (up to 6× fewer parameters

and 4420× smaller runtime buffers), achieves up to 700× faster infer-

ence with lower energy consumption, and introduces a lightweight

inference engine (6× smaller code and 1000× lower overhead).

3.3 Intermittent Inference in Nonvolatile

Memory

We addressed hardware-level inefficiencies by utilizing the emerg-

ing CIM paradigm [44], which improves both energy efficiency and

inference throughput. As mentioned, backing up computational

states to NVM frequently incurs substantial time and energy over-

head due to increased memory traffic, especially for memory-bound

workloads [50]. The CIM paradigm offers a promising solution by

enabling computation directly within memory, removing the need

for explicit backup operations and providing inherent resilience to

power failures.

Computational Random Access Memory (CRAM) is an emerging

spintronics-based memory array that can perform logic operations

directly in memory cells and store the output [63]. This contrasts

with traditional Von Neumann architectures, which transfer data

frommemory to processor registers for processing, then storing the

results back in registers before transferring them again to memory.

CRAM with NVM elements is ideal for intermittent CIM since it is

power-failure resilient, ensuring that each in-memory operation is

failure-atomic [47, 48]. This eliminates the need for explicit backups

and costly data movement, enabling efficient, failure-atomic com-

putation of memory-bound workloads under intermittent power,

with high parallelism and minimal overhead.

We introduced PiMCo [6], a flexible MCU-based system where

the CRAM serves both as an NVM and a CIM accelerator for inter-

mittent inference. As shown in Figure 3, our specialized memory

controller bridges the microcontroller with CRAM. It is responsible

for receiving high-level instructions from the microcontroller and

triggering necessary operations in situ on CRAM. CRAM supports

only primitive logic instructions, such as AND, OR, and XOR. We

introduced macroinstructions that are a sequence of these primi-

tives. Macroinstructions consist of arithmetic and logical operations,

such as multiplication, addition, logical and, movement, and loop

operations that help to implement more complex operations. Devel-

opers can use high-level C interfaces to map inference workloads

EMSOFT ’25, September 28-October 3, 2025, Taipei, Taiwan H.R. Mendis, K. S. Yıldırım, M. Zimmerling, L. Mottola, and P.-C. Hsiu

Microcontroller

M
em

or
y

C

on
tro

lle
r

Data and
Instructions

CRAM

Computational

Random Access
Nonvolatile

Memory

Failure-Atomic
Logic Primitives

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

... ...

COMPUTE IN
MEMORY

Inference

Results

Neural Network
Parameters

Figure 3: CRAM and PimCo memory controller enables effi-

cient and programmable intermittent CIM.

to CRAM. Our memory controller converts the received high-level

MCU instructions and maps them to a sequence of macroinstruc-

tions, which define the sequence of primitive operations on CRAM.

By executing inference workloads on CRAM, programmers can

benefit from a high degree of parallelism and acceleration. We uti-

lized column-level parallelism, allowing the same CRAM primitive

logical operation to be applied to multiple columns in CRAM si-

multaneously. For example, in convolutional neural networks, the

same kernel is used on different sections of the input image to

generate a convolved output feature matrix. As a result, PiMCo

executes these repeated operations, which consist of independent

multiply-and-accumulate operations, in parallel.

CRAM primitive operations are inherently idempotent and can

safely be restarted upon power recovery. Furthermore, our mem-

ory controller is power failure resilient by design since it has an

embedded NVM to back up the progress of the execution of the

macroinstructions on CRAM. Therefore, PiMCo ensures failure-

atomic acceleration of inference workloads on CRAM. Besides, the

MCU can employ several checkpointing strategies to ensure the

correct intermittent execution of other parts of the application.

Adapting to energy harvesting dynamics is critical for intermit-

tent systems: activating more parallelism on CRAM can increase

throughput when ambient power is sufficient, but doing so under

low power may cause frequent failures, reduced throughput, or

even computational failures. Without dynamic adaptation, CIM

systems miss the opportunity to optimize performance based on

available energy. We implemented a runtime library that selects the

best parallelism configuration based on ambient energy availability.

Overall, PiMCo improves the performance of the state-of-the-art

commercial low energy accelerator (LEA) [53] for battery-free sys-

tems by up to 8× and energy efficiency by up to 150×.

3.4 Towards In-Sensor Battery-free Inference

Our recent works have shown that eliminating algorithmic and

architectural inefficiencies leads to significant energy savings and

improvements in throughput and latency. This requires:

• Inference algorithms that can be executed adaptively by

activating only a part of the model.

• Power failure resilient architectures that minimize the data

traffic between the processor and NVM during inference.

Looking forward, the in-sensor computing paradigm can maxi-

mize energy and power efficiency in battery-free inference systems.

Bringing inference computations closer to the sensor—where data is

generated—drastically reduces data movement overhead, achieving

orders-of-magnitude energy efficiency gains compared to conven-

tional architectures. Embedding CRAM in battery-free sensors [47]

and running computationally efficient inference algorithms like

Fast-Inf directly on CRAM will bring unprecedented efficiency,

which is crucial for energy harvesting systems.

Fast-Inf showed the potential of adaptive and conditional in-

ference computation, yet significant scope for further exploration

remains. Mixture-of-experts, early exit mechanisms, and concepts

from dynamic networks [29] can be blended to optimally activate

only the most relevant subnetworks based on input characteris-

tics and available energy. Lightweight controllers can be designed

to direct inference decisions, determining which subnetworks to

activate and which expert paths to select.

4 Efficient and Reliable Battery-free Networks

Previous sections enabled reliable and efficient DNN inference on

standalone battery-free devices, but these devices need to com-

municate their results, to realize distributed learning applications.

Therefore, the next big goal is scaling to many devices operating

maintenance-free for decades [4], which requires new methods and

tools for efficient and reliable battery-free wireless networking.

4.1 The Battery-free Networking Challenge

Networking is crucial for time synchronization, sensor calibra-

tion, federated learning, and distributed sensing and control. Al-

though wireless communication between battery-free devices and

continuously-powered base stations have been successful [9], en-

abling direct communication between battery-free devices remains

important. Since long-range transmissions require more power,

large energy storage is needed for atomic wireless transmission,

which is unsustainable. Therefore, a mesh network with short hop

relays is fundamentally more efficient and sustainable, as well as

inherently more reliable and scalable [34].

For real-world IoT applications, wireless networking must satisfy

four core requirements: reliability with 99.999% multi-hop message

delivery, predictability of end-to-end reliability and latency at de-

sign time and runtime, adaptability to environmental changes and

varying application demands, and efficiency within strict memory,

energy, bandwidth, and compute limits. These goals are already

challenging in battery-powered networks with unreliable links and

changing topologies, while battery-free networks face the added

challenge of spatio-temporal energy dynamics. The harvested energy
depends on time and location. For instance, bridge sensors harvest

varying vibrational energy, based on when and where a car crosses.

As battery-free devices operate intermittently for brief intervals

due to fluctuating harvested energy, spatial variability across a net-

work causes asynchronous behavior, where some devices are active

while others are recharging. The same holds for wireless power

transfer in future 6G ambient IoT, where received power depends

on environment and mobility. This makes communication challeng-

ing, as the sender and receiver must be powered simultaneously,

and the difficulty grows with the network size.

Existing low-power wireless protocols for battery-based devices

primarily focuses on saving energy by synchronizing radio-on times

[1], which is inapplicable to battery-free systems because they can-

not become active anytime. Unlike radios, backscatter transceivers

communicate by reflecting radio signals (e.g., TV and Wi-Fi), with

prior research focusing on improving range and throughput by

using cables or batteries and avoiding intermittency through abun-

dant ambient energy [37, 39].

Intermittent TinyML: Powering Sustainable Deep Intelligence Without Batteries EMSOFT ’25, September 28-October 3, 2025, Taipei, Taiwan

2.5

3.0

3.5

C
ap

ac
it

or
vo

lt
ag

e
[V

]

Device active Initial encounter

0.00 0.25 0.50 0.75 1.00 1.25 1.50

Time [s]

2.5

3.0

3.5

C
ap

ac
it

or
vo

lt
ag

e
[V

]

Device active Connection
interval

Devices are connectedDevices are connected

Figure 4: Using Bonito, battery-free devices learn and exchange statistical models of their charging times with the goal of

maintaining a connection across consecutive encounters for efficient bi-directional unicast communication. (Taken from [24].)

4.2 Methods and Tools to Bootstrap Battery-free

Networks

To close this research gap, we began in 2018 by asking: Can we
exploit the spatio-temporal characteristics of real-world energy envi-
ronments to enable efficient and reliable battery-free networks? To
answer this question, we developed a suite of tools and methods.

This includes the Shepherd [21] and Shepherd Nova [22] tools for

capturing energy environment characteristics, and the Find [23] and

Bonito [24] methods for enabling energy-aware synchronization

and communication. These methods were efficiently implemented

on real hardware using Riotee [25], our open-source, commercially

available, battery-free, hardware-software platform.

4.2.1 Capturing and Reproducing Energy Environments. An impor-

tant challenge is to conduct realistic and repeatable battery-free

networking experiments in the lab, while also being able to bench-

mark community progress [4]. Shepherd [21] is a portable testbed

with distributed nodes synchronized via GPS or Ethernet using PTP.

In recording mode, Shepherd nodes capture harvesting voltage and

current at high resolution (3 µA, 50 µV, 100 kHz) with tight node

synchronization (about 1 µs), enabling detailed analysis of spatial

and temporal energy dynamics. The traces have revealed some

interesting properties, such as similar harvesting current patterns

across networked devices. In replay mode, nodes emulate energy

traces for battery-free devices under tightly synchronized condi-

tions, allowing realistic and repeatable lab testing. Advancing these

ideas, Shepherd Nova [22], offers a free, public, remotely accessible

testbed for energy-harvesting experiments on shared infrastructure,

enabling community progress to be objectively measured. Com-

pared to Shepherd, Shepherd Nova supports diverse input formats

(e.g., IV surfaces) and emulates the full harvesting circuitry and

energy storage, allowing tests of different capacitors and convert-

ers with high precision and accuracy, closely mirroring real-world

setups. These testbeds allowed the design and evaluation of the

following battery free networking solutions.

4.2.2 Observing and Adapting to the Energy Environment. A key

challenge in battery-free networks is enabling devices to discover

each other and maintain synchronization. Devices wake up asyn-

chronously due to varying energy availability, leading to hundreds

of missed encounters before the devices become active at the same

time by chance. Find [23] aims to quickly generate a first encounter,

enabling timely neighbor discovery and clock synchronization

through bidirectional message exchange. Interleaved wake-up pat-

terns are broken via randomized delays drawn from a geometric

distribution, which each node adapts at runtime based on variations

in local charging times. Bonito [24] helps to maintain synchroniza-

tion after an initial encounter by having devices agree on a new

connection interval at each meeting (as shown in Figure 4), ensur-

ing future encounters with a user-defined probability. The core idea

is that each device learns and updates a statistical model of its charg-

ing times, and shares the parameters during encounters to compute

the next wake-up time, enabling reliable message exchange across

consecutive wake-ups. As charging times often follow well-known

distributions (e.g., gaussian or exponential), lightweight statistical

methods were used to learn the distribution parameters.

4.3 Learning for Reliable and Timely

Communication

The main takeaways of this section is as follows:

• Understanding spatio-temporal energy availability is crucial

to developing practical methods for battery-free networks.

• Precise and accurate energy harvesting traces are key for re-

alistic and repeatable battery-free networking experiments.

• Randomized waiting breaks the interleaved wake-up pat-

terns of battery-free network nodes, minimizing neighbor

discovery latency.

• Learning the charging pattern and adapting the wake-up

times allows for efficient communication between neighbors.

With perfect knowledge of the underlying charging-time dis-

tribution, our solutions (Section 4.2.2) can compute the minimum

feasible connection interval. Therefore, a promising future direc-

tion is to utilize a DNN model that can learn complex, multimodal

charging-time patterns at runtime, leading to increased reliability

and reduced delays. Moreover, for further enhanced prediction,

nodes can exchange key parameters or summaries of their learned

charging-time models to exploit statistical dependence in the joint

distribution. However, the challenge is to fit these richer models

within the tight memory and energy budgets of battery-free nodes

and to support any increased communication. A possible solution

is to train these models offline, using traces obtained from our

testbeds, with further on-device fine-tuning at runtime.

5 Embracing Errors in TinyML:

From Earth to Space

The inherent robustness of DNNs to noisy or incorrect data is vastly

overlooked, especially when running intermittently. Literature [2]

does exist that studies hardware faults in DNN execution using

mainstream hardware architectures. The key takeaway is that the

outcome of DNN processing is highly robust to data errors. This

EMSOFT ’25, September 28-October 3, 2025, Taipei, Taiwan H.R. Mendis, K. S. Yıldırım, M. Zimmerling, L. Mottola, and P.-C. Hsiu

DNN model
DNN energy

profile

P
R

E
PA

R
E

QL0 QL0 QL0QL0QL0 QL0QL0QL0

P
E

R
S

IS
T

TU
N

E

Continue?
No

Yes Best configuration

QL2 QL1 QL3Capacitor array

Optimization loop

C
O

N
FI

G
U

R
E

P
R

O
FI

LE

Number of capacitorsTarget MCU STT-MRAM chip

#

Figure 5: Overview of INTERCEPT.

capability is exploited in systems that process data in a slightly

inexact way, reducing resource consumption at the cost of accu-

racy losses [8]. The key question is how this may possibly play

together with intermittent executions on resource-constrained de-

vices. Combine this with the increasing availability of low-power

NVM technology other than FRAM, which is equally snubbed.

Our research work of the last few years exploits these observa-

tions as a stepping stone to save resources or enable unexplored

deployment scenarios. We discuss our journey through new mem-

ory technologies and their trade-offs, as well as our recent efforts

at deploying intermittent TinyML workloads in outer space.

5.1 We Are Not Married with FRAM

FRAM eventually replaced Flash memories in intermittent systems

because of lower energy figures, more flexible operation, and the

availability of MCUs with built-in FRAM. Compared with Flash,

however, it is generally limited in size, forcing programmers to

shape the application logic around memory limitations [38].

Emerging nonvolatile memory technologies include STT-MRAM

and ReRAM. Both provide larger storage space compared to FRAM

and comparable energy consumption. Their construction process,

however, prevents straight integration into MCUs, requiring off-

chip interactions usually through SPI or I2C. STT-MRAM exposes

a unique knob: one can tune the current used for write operations

to save energy, but accepting that write errors may occur with

increasing probability as current settings reduce [17]. This behavior

is due to stochastic switching: depending on the current setting, a

memory cell may fail to commute. These errors are stochastic in

nature, thus they appear randomly in written data.

5.2 Saving Resources Thanks to Errors

Using STT-MRAM, it turns out can save resources when running

intermittent DNN workloads without requiring changes to ex-

isting models. This intuition is made concrete with INTERCEPT

(INTERmittent inferenCE – Persist & Tune) [11]: a compile-time

toolchain that provides support for intermittent inference.

INTERCEPT functioning is based on multiple stages, as shown

in Figure 5. Given the DNN model, we first Profile its energy

consumption using existing tools [3] or based on real hardware

executions. This information is input to a Prepare stage that creates

an initial configuration including placement of state persistence

operations and corresponding STT-MRAM write current settings.

Using a multi-capacitor architecture [14, 61], based on the output

of Prepare, a Configure stage determines the capacitor array that

ensures eventual completion of the inference process.

Next, the Persist algorithm processes the initial configuration

to determine an efficient placement of state persistence operations.

The output of Persist is fed as input to a further optimization step,

called Tune, that configures the STT-MRAM chip at each state per-

sistence operation, determining the most efficient current setting.

We embrace, rather than avoid, the write errors possibly occur-

ring by carefully controlling the current setting to reduce energy

consumption, subject to a hard constraint on accuracy losses.

The output of Tune may potentially change the energy patterns

along the inference process. For example, state persistence opera-

tions that are energy-hungry before applying Tune may become

energy-savvy, compared to other state persistence operations that

may grow to be dominating. Because of this, we feed the output of

Tune back to Persist to re-evaluate the number and positioning

of state persistence operations. This effectively closes an optimiza-

tion loop that continues until we obtain a (possibly local) optimal

configuration or for a predetermined number of repetitions.

We evaluate INTERCEPT across three different platforms and six

diverse neural networks, compared with the original unmodified

DNN. We demonstrate that INTERCEPT provides from a maximum

of 64.4% to a minimum of 21% energy gain, corresponding to a maxi-

mum (minimum) 2.98x (1.36x) throughput speedup, in exchange for

a maximum 1% accuracy loss. The 1% bound is arguably immaterial

for most applications and is usually “lost in noise” [45]. Additional

details and performance insights are nonetheless available [11].

5.3 Breaking It Into Space

The ability to locally exercise ML models is an asset when commu-

nication to the back-end is plainly impossible or extreme bandwidth

constraints exist. This is precisely the scenario emerging with the

recent rise of COTS hardware deployments in space and particularly

in low-earth orbit (LEO). These designs offer cheaper operation

and more flexible planning and mission management compared

to monolithic designs. On the other hand, space devices such as

CubeSats are extremely resource-constrained and subject to er-

ratic energy provisioning patterns [58], picturing a scenario akin

to those outlined earlier. Crucially, communication to the Earth is

sporadic, unreliable, and bandwidth-constrained. This trend poses

the question as to whether it is possible to run intermittent TinyML

workloads in space.

Albeit the use of COTS hardware reduces costs, it also exposes

the device to the woes of outer space, including radiations that may

cause hardware faults normally not happening on the Earth. Recent

literature demonstrates that regular fault-tolerance mechanisms

may not necessarily operate efficiently in this environment [58].

The key question is whether deploying NVM as support for state

persistence operation in space operations is viable at all.

We answer this question experimentally, by building an experi-

mental CubeSat we deploy at 732 km from the Earth. We launch

the satellite on November, 4th 2024 using the Polar Satellite Launch

Intermittent TinyML: Powering Sustainable Deep Intelligence Without Batteries EMSOFT ’25, September 28-October 3, 2025, Taipei, Taiwan

Vehicle of the Indian space research organization. It was expected

to ensure roughly three months of operation. The initial estimates

were far exceeded as the satellite remained operational until the

end of February, 2025. The space vehicle, shown in Figure 6, is built

based on the 1Unit CubeSat platform of EnduroSat [19]. The UHF

Transceiver II module from EnduroSat provides downlink com-

munications to the Earth, by relying on the SatNOGS [49] global

network of satellite ground-stations.

OBC+PDM
(master)

NVM array
(slave 0)

(slave 1)

(slave 2)

(slave 3)

Tartan
Artibeus Bus

pow
er_on

da
ta

Figure 6: Experimental CubeSat platform.

The hardware aboard the satellite uses a layered master-slave

design. The device at the bottom serves as the satellite’s master

On-board Computer (OBC). Its design is centered on a space-rated

version of IBM’s 6x86 CPU. Despite being an almost 30-year old

design, its space-rated version is still deployed on space vehicles

as space software written for it withstood extensive testing using

formal methods and throughout multiple space missions [43, 52].

A radiation-strength aluminum shield separates each of the layers.

Besides logging of primary mission-related parameters and gen-

eral bookkeeping, the software aboard the OBC controls a cus-

tom Power Distribution Module (PDM) integrated within the OBC

board. The PDM uses the energy coming from four CTJ30 CESI

Solar cells [18] to power the OBC. The OBC instructs the PDM to

provide power to one or more of the four slave devices onboard.

The OBC determines what device to power among the four slaves

depending on their individual energy figures and the amount of ex-

perimental data output up to a given point, in an attempt to ensure

fairness of energy allocations. The slave devices relay data to the

OBC through a simplified version of the Tartan Artibeus bus [16].

One of the slave devices is a custom board equipped with a

TI MSP430 MCU and three NVM chips connected through SPI: a

Fujitsu FRAM MB85RS64V chip, a Fujitsu ReRAM MB85AS8MT

chip, and an Everspin MRAM MR10Q010 chip. Each time the board

is powered on, the MCU executes a predefined set of operations

that deterministically produces a known bit sequence, which is

eventually dumped on each of the NVM chips. The content of each

memory dump is communicated to the OBC and later offloaded to

Earth. Comparing the dumps from the CubeSat with the known bit

sequences allowed us to spot faults in the NVM operation.

We are in the process of analyzing the data. Table 1 shows a

sneak peek on the results. The table, together with additional data

processing, allow us to draw a few early, yet crucial observations:

• There are no evident fault patterns: bit flips appear to be

randomly distributed as "salt and pepper" [11].

• The FRAM chip is the least robust and the one showing

highest variability in dependability performance.

• The MRAM chip is by far the most robust and also the one

showing the least variability in dependability performance.

• The ReRAM chip stays somehow halfway between these

extremes in absolute robustness and variability.

These observations should be weighted against other factors, in-

cluding the storage space offered by a given chip and the energy

Memory Size Mean flips Std dev Mean (%)

FRAM 65536 96.05 232.08 0.15%

MRAM 1048576 1.52 2.64 0,00014%

ReRAM 8388608 95.27 51.13 0,0011%

Table 1: Bit flips per memory type.

figures. We can therefore draw one key preliminary conclusion:

the "salt and pepper" pattern is no different compared to the errors

occurring in STT-MRAM chips due to current scaling, therefore,

techniques embracing these fault patterns, including INTERCEPT,

would perform equally well, at least in principle, in outer space even

though faults are not caused by current scaling.

6 Concluding Remarks

This paper presents key technologies that address fundamental bar-

riers to advancing intermittent systems for intelligent deep learning.

As intermittent TinyML becomes increasingly ubiquitous, we envi-

sion a future with stretched application goals, featuring large-scale

networks of interconnected battery-free devices operating reliably

even in extreme environments, such as space or in-body implants,

where battery replacement is infeasible. Our efforts have enabled

sustainable sense-and-report type of workloads across many appli-

cation domains, such as wildlife tracking and smart farming, where

energy autonomy and successful task completion are paramount.

However, a considerable gap remains before intermittent TinyML

can achieve widespread adoption to realize its stretched application

goals. To bridge this gap, the research agenda must extend beyond

embedded software to a broader roadmap that spans hardware, net-

working, AI research, and their intersections. In particular, moving

beyond off-the-shelf hardware toward emerging architectures is

essential to boost performance for time-critical inference. Likewise,

scalable custom networking protocols are crucial for instant recon-

nections and robust communication as battery-free networks scale

and environments change rapidly. Future work also requires devel-

oping green AI models with inherently low carbon footprints to

sustain billions of battery-free deployments. We therefore advocate

powering a sustainable future for intelligence through intermittent

TinyML, calling for contributions from diverse research fields and

inviting the broader community to build upon our publicly available

tools and methodologies.

Acknowledgement

This work was supported in part by the National Science and Tech-

nology Council, Taiwan, under Grant NSTC 113-2628-E-001-004-

MY3, and by Academia Sinica under Grant AS-IA-113-M04-ASSA.

It was also partially supported by the Swedish Science Foundation

(SSF) and by the National Recovery and Resilience Plan (NRRP),

Mission 4 Component 2 Investment 1.3 - Call for tender No. 1561

of 11.10.2022 of Ministero dell’Università e della Ricerca (MUR);

funded by the European Union - NextGenerationEU.

References

[1] K. S. Adu-Manu, N. Adam, C. Tapparello, H. Ayatollahi, et al. 2018. Energy-

Harvesting Wireless Sensor Networks (EH-WSNs): A Review. ACM TOSN 14, 2,

Article 10 (April 2018), 50 pages.

[2] M. H. Ahmadilivani, M. Taheri, J. Raik, M. Daneshtalab, et al. 2024. A Systematic

Literature Review on Hardware Reliability Assessment Methods for Deep Neural

Networks. ACM CSUR 56, 6 (2024), 1–39.

[3] S. Ahmed, A. Bakar, N. A. Bhatti, M. H. Alizai, et al. 2019. The betrayal of constant

power×time: Finding the missing joules of transiently-powered computers. In

Proc. of ACM SIGPLAN/SIGBED LCTES. 97–109.

EMSOFT ’25, September 28-October 3, 2025, Taipei, Taiwan H.R. Mendis, K. S. Yıldırım, M. Zimmerling, L. Mottola, and P.-C. Hsiu

[4] S. Ahmed, B. Islam, K. S. Yildirim, M. Zimmerling, et al. 2024. The Internet of

Batteryless Things. CACM 67, 3 (Feb. 2024), 64–73.

[5] K. Akhunov and K. S. Yildirim. 2022. Adamica: Adaptive Multicore Intermittent

Computing. Proc. of the ACM IMWUT 6, 3 (2022), 1–30.

[6] K. Akhunov and K. S. Yıldırım. 2023. CRAM-Based Acceleration for Intermittent

Computing of Parallelizable Tasks. IEEE TETC 12, 1 (2023), 48–59.

[7] K. Akhunov, E. Yildiz, and K. S. Yildirim. 2023. Enabling Efficient Intermittent

Computing on Brand New Microcontrollers via Tracking Programmable Voltage

Thresholds. In Proc. of ENSsys. 16–22.
[8] G. Armeniakos, G. Zervakis, D. Soudris, and J. Henkel. 2022. Hardware Approxi-

mate Techniques for Deep Neural Network Accelerators: A Survey. ACM CSUR
55, 4 (2022), 1–36.

[9] S. Babatunde, A. Alsubhi, J. Hester, and J. Sorber. 2024. Greentooth: Robust and

Energy Efficient Wireless Networking for Batteryless Devices. ACM TOSN 20, 3,

Article 66 (April 2024), 31 pages.

[10] A. Bakar, R. Goel, J. De Winkel, J. Huang, et al. 2022. Protean: An Energy-

Efficient and Heterogeneous Platform for Adaptive and Hardware-Accelerated

Battery-Free Computing. In Proc. of ACM SenSys. 207–221.
[11] R. Barjami, A. Miele, and L. Mottola. 2024. Intermittent inference: Trading a 1%

Accuracy Loss for a 1.9x Throughput Speedup. In Proc. of ACM SenSys. 647–660.
[12] P. Belcak and R. Wattenhofer. 2023. Fast Feedforward Networks. arXiv preprint

arXiv:2308.14711 (2023).
[13] L. Caronti, K. Akhunov, M. Nardello, K. S. Yıldırım, et al. 2023. Fine-grained

Hardware Acceleration for Efficient Batteryless Intermittent Inference on the

Edge. ACM TECS 22, 5, Article 82 (Sept. 2023), 19 pages.
[14] A. Colin, E. Ruppel, and B. Lucia. 2018. A Reconfigurable Energy Storage Archi-

tecture for Energy-harvesting Devices. In Proc. of ACM ASPLOS. 767–781.
[15] Leonardo Lucio Custode, Pietro Farina, Eren Yildiz, Renan Beran Kilic, et al. 2024.

Fast-Inf: Ultra-Fast Embedded Intelligence on the Batteryless Edge. In Proc. of
ACM SenSys. 239–252.

[16] B. Denby et al. 2022. Tartan Artibeus: A Batteryless, Computational Satellite

Research Platform. In Small Sat. Conf.
[17] T. Devolder, J. Hayakawa, K. Ito, H. Takahashi, et al. 2008. Single-Shot Time-

Resolved Measurements of Nanosecond-Scale Spin-Transfer Induced Switching:

Stochastic Versus Deterministic Aspects. PRL 100 (2008), 057206. Issue 5.

[18] EnduroSat. 2025. 2 CESI Solar Cells CTJ30. https://satsearch.co/products/

endurosat-1u-cubesat-solar-panel.

[19] EnduroSat. 2025. EnduroSat 1U CubeSat Platform. https://www.endurosat.com.

[20] Pietro Farina, Subrata Biswas, Eren Yıldız, Khakim Akhunov, et al. 2024. Memory-

efficient Energy-adaptive Inference of Pre-Trained Models on Batteryless Embed-

ded Systems. In Proc. of EWSN. 1–12.
[21] K. Geissdoerfer, M. Chwalisz, and M. Zimmerling. 2019. Shepherd: A Portable

Testbed for the Batteryless IoT. In Proc. of ACM SenSys. 83–95.
[22] K. Geissdoerfer, I. Splitt, M. Sokolowski, C. Herrmann, et al. 2025. Shepherd Nova:

A Public Testbed for Rigorous Experiments Under Repeatable Energy-Harvesting

Conditions. In Proc. of MobiSys. 1–13.
[23] K. Geissdoerfer and M. Zimmerling. 2021. Bootstrapping Battery-free Wireless

Networks: Efficient Neighbor Discovery and Synchronization in the Face of

Intermittency. In Proc. of USENIX NSDI. 439–455.
[24] K. Geissdoerfer and M. Zimmerling. 2022. Learning to Communicate Effectively

Between Battery-free Devices. In Proc. of USENIX NSDI. 419–435.
[25] K. Geissdoerfer and M. Zimmerling. 2024. Riotee: An Open-source Hardware

and Software Platform for the Battery-free Internet of Things. In Proc. of ACM
SenSys. 198–210.

[26] G. Gobieski, S. Ghosh, M. Heule, T. Mowry, et al. 2022. RipTide: A Programmable,

Energy-Minimal Dataflow Compiler and Architecture. In Proc. of IEEE/ACM
MICRO. 546–564.

[27] G. Gobieski, B. Lucia, and N. Beckmann. 2019. Intelligence Beyond the Edge:

Inference on Intermittent Embedded Systems. In Proc. of ACM ASPLOS. 199–213.
[28] G. Gobieski, A. Nagi, N. Serafin, M. M. Isgenc, et al. 2019. MANIC: A Vector-

Dataflow Architecture for Ultra-Low-Power Embedded Systems. In Proc. of
IEEE/ACM MICRO. 670–684.

[29] Y. Han, G. Huang, S. Song, L. Yang, et al. 2021. Dynamic Neural Networks: A

Survey. IEEE PAMI 44, 11 (2021), 7436–7456.
[30] S. Islam, J. Deng, S. Zhou, C. Pan, et al. 2022. Enabling Fast Deep Learning on

Tiny Energy-harvesting IoT Devices. In Proc. of IEEE/ACM DATE. 921–926.
[31] Weiwen Jiang, Xinyi Zhang, Edwin H-M Sha, Lei Yang, et al. 2019. Accuracy

vs. Efficiency: Achieving Both through FPGA-Implementation Aware Neural

Architecture Search. In Proc. of IEEE/ACM DAC. 1–6.
[32] C.-K. Kang, H. R. Mendis, C.-H. Lin, M.-S. Chen, et al. 2022. More is Less: Model

Augmentation for Intermittent Deep Inference. ACM TECS 21, 5, Article 49 (Oct.
2022), 26 pages.

[33] H. Kwon, P. Chatarasi, M. Pellauer, A. Parashar, et al. 2019. Understanding Reuse,

Performance, and Hardware Cost of DNN Dataflow: A Data-Centric Approach.

In Proc. of IEEE/ACM MICRO. 754–768.
[34] J. N. Laneman, D. N. C. Tse, and G. W. Wornell. 2004. Cooperative Diversity in

Wireless Networks: Efficient Protocols and Outage Behavior. IEEE Trans. Inf.
Theory. 50, 12 (2004), 3062–3080. doi:10.1109/TIT.2004.838089

[35] C.-C Lin, C.-Y. Liu, C.-H. Yen, T.-W. Kuo, et al. 2023. Intermittent-Aware Neural

Network Pruning. In Proc. of IEEE/ACM DAC. 1–7.
[36] Ji Lin, Wei-Ming Chen, John Cohn, Chuang Gan, et al. 2020. MCUNet: Tiny Deep

Learning on IoT Devices. In Proc. of NeurIPS. 11711–11722.
[37] V. Liu, A. Parks, V. Talla, S. Gollakota, et al. 2013. Ambient Backscatter: Wireless

Communication out of Thin Air. In Proc. of the ACM SIGCOMM.

[38] A. Maioli and L. Mottola. 2021. Alfred: Virtual Memory for Intermittent Comput-

ing. In Proc. of ACM SenSys. 261–273.
[39] A. Y. Majid, M. Jansen, G. O. Delgado, K. S. Yildirim, et al. 2019. Multi-hop

Backscatter Tag-to-Tag Networks. In Proc. of IEEE INFOCOM. 721 – 729.

[40] Maxim Integrated. 2021. MAX78000 Ultra-low-power MCU with Arm Cortex-

M4 and a CNN Accelerator. https://datasheets.maximintegrated.com/en/ds/

MAX78000.pdf.

[41] H. R. Mendis, C.-K. Kang, and P.-C. Hsiu. 2021. Intermittent-Aware Neural

Architecture Search. ACM TECS 20, 5s (Sept. 2021), 64:1–27.
[42] H. R. Mendis, C.-H. Yen, C.-K. Kang, and P.-C. Hsiu. 2025. Intermittent-Friendly

Neural Architecture Search: Demystifying Accuracy and Overhead Trade-offs.

IEEE TCAD (March 2025), 1–14.

[43] L. Mottola et al. 2010. Anquiro: Enabling efficient static verification of sensor

network software. In Proc. of ICSE SESENA.
[44] O. Mutlu, S. Ghose, J. Gómez-Luna, and R. Ausavarungnirun. 2022. A Modern

Primer on Processing in Memory. In Emerging computing: from devices to systems:
looking beyond Moore and Von Neumann. Springer, 171–243.

[45] H. Noh, T. You, J. Mun, and B. Han. 2017. Regularizing Deep Neural Networks

by Noise: Its Interpretation and Optimization. In Proc. of NIPS. 5115–5124.
[46] Shvetank Prakash, Matthew Stewart, Colby Banbury, Mark Mazumder, et al.

2023. Is TinyML Sustainable? Assessing the Environmental Impacts of Machine

Learning on Microcontrollers. arXiv preprint arXiv:2301.11899 (2023).
[47] S. Resch, S. K. Khatamifard, Z. I. Chowdhury, M. Zabihi, et al. 2020. MOUSE:

Inference In Non-volatile Memory for Energy Harvesting Applications. In Proc.
of IEEE/ACM MICRO. 400–414.

[48] S. Resch, S. K. Khatamifard, Z. I. Chowdhury, M. Zabihi, et al. 2022. Energy-

efficient and Reliable Inference in Nonvolatile Memory under Extreme Operating

Conditions. ACM TECS 21, 5, Article 57 (Dec. 2022), 36 pages.
[49] SatNOGS. 2025. Open Source Global Network of Satellite Ground-stations. https:

//www.satnogs.org.

[50] W. Song, S. Kaxiras, L. Mottola, T. Voigt, et al. 2023. Silent Stores in the Battery-

less Internet of Things: A Good Idea?. In Proc. of EWSN. 40–45.
[51] M. Sponner, B. Waschneck, and A. Kumar. 2024. Adapting Neural Networks at

Runtime: Current Trends in At-Runtime Optimizations for Deep Learning. ACM
CSUR 56, 10 (2024), 248:1–40.

[52] P. Stakem. 2004. Migration of an Image Classification Algorithm to an Onboard

Computer for Downlink Data Reduction. J. Aero. Comp. Info. Comm (2004).

[53] Texas Instruments. 2016. MSP430™ Microcontrollers - Low-Energy Accelerator.

https://www.ti.com/lit/an/slaa720/slaa720.pdf.

[54] C.-K. Kang, H. R. Mendis, C.-H. Lin, M.-S. Chen, et al. 2020. Everything Leaves

Footprints: Hardware Accelerated Intermittent Deep Inference. IEEE TCAD 39,

11 (Nov. 2020), 3479–3491.

[55] C.-H. Yen, H. R. Mendis, T.-W. Kuo, and P.-C. Hsiu. 2025. Catch Non-determinism

If You Can: Intermittent Inference of Dynamic Neural Networks. ACM TECS
(2025), 1–20.

[56] C.-H. Yen, H. R. Mendis, T.-W. Kuo, and P.-C. Hsiu. 2023. Keep in Balance:

Runtime-reconfigurable Intermittent Deep Inference. ACM TECS 22, 5s, Article
124 (Sept. 2023), 25 pages.

[57] T. Wang, K. Wang, H. Cai, J. Lin, et al. 2020. APQ: Joint Search for Network

Architecture, Pruning and Quantization Policy. In Proc. of IEEE/CVF CVPR. 2078–
2087.

[58] A. E. Yaacoub, T. Voigt, P. Ruemmer, and L. Mottola. 2025. Fault Tolerance in Space

with Heterogeneous Hardware: Experiences from a 68-day CubeSat Deployment

in LEO. In Proc. of EWSN.
[59] T.-J. Yang, Y.-H. Chen, and V. Sze. 2017. Designing Energy-Efficient Convolutional

Neural Networks Using Energy-Aware Pruning. In Proc of IEEE/CVF CVPR. 6071–
6079.

[60] C.-H. Yen, H. R. Mendis, T.-W. Kuo, and P.-C. Hsiu. 2022. Stateful Neural Networks

for Intermittent Systems. IEEE TCAD 41, 11 (Nov. 2022), 4229–4240.

[61] K. S. Yıldırım, A. Y. Majid, D. Patoukas, K. Schaper, et al. 2018. Ink: Reactive

kernel for tiny batteryless sensors. In Proc. of ACM SenSys. 41–53.
[62] E. Yıldız, L. Chen, and K. S. Yıldırım. 2022. Immortal Threads: Multithreaded

Event-driven Intermittent Computing on Ultra-Low-Power Microcontrollers. In

Proc. of USENIX OSDI. 339–355.
[63] M. Zabihi, Z. I. Chowdhury, Z. Zhao, U. R. Karpuzcu, et al. 2018. In-Memory

Processing on the Spintronic CRAM: From Hardware Design to Application

Mapping. IEEE TC 68, 8 (2018), 1159–1173.

[64] J. Zeng, J. Jeong, and C. Jung. 2023. Persistent Processor Architecture. In Proc. of
IEEE/ACM MICRO. 1075–1091.

https://satsearch.co/products/endurosat-1u-cubesat-solar-panel
https://satsearch.co/products/endurosat-1u-cubesat-solar-panel
https://www.endurosat.com
https://doi.org/10.1109/TIT.2004.838089
https://datasheets.maximintegrated.com/en/ds/MAX78000.pdf
https://datasheets.maximintegrated.com/en/ds/MAX78000.pdf
https://www.satnogs.org
https://www.satnogs.org
https://www.ti.com/lit/an/slaa720/slaa720.pdf

	Abstract
	1 Introduction
	2 Intermittent Deep Inference:Rethinking Engines and Models
	2.1 Intermittent-aware Runtime Inference Engines
	2.2 Intermittent-friendly Design-time Tools
	2.3 Powering a Low-Carbon Future

	3 Fast Inference on Emerging Hardware
	3.1 Algorithmic and Architectural Inefficiencies
	3.2 Fast Inference for Battery-free Sensors
	3.3 Intermittent Inference in Nonvolatile Memory
	3.4 Towards In-Sensor Battery-free Inference

	4 Efficient and Reliable Battery-free Networks
	4.1 The Battery-free Networking Challenge
	4.2 Methods and Tools to Bootstrap Battery-free Networks
	4.3 Learning for Reliable and Timely Communication

	5 Embracing Errors in TinyML: From Earth to Space
	5.1 We Are Not Married with FRAM
	5.2 Saving Resources Thanks to Errors
	5.3 Breaking It Into Space

	6 Concluding Remarks
	References

