Special Session - Intermittent TinyML: Powering Sustainable
Deep Intelligence Without Batteries

Hashan Roshantha Mendis
Academia Sinica, Taiwan
rosh.mendis@citi.sinica.edu.tw

Luca Mottola
Politecnico di Milano, Italy
RI.SE and Uppsala University, Sweden
luca.mottola@polimi.it

Abstract

Tiny battery-free devices running deep neural networks (DNNs)
embody intermittent TinyML, a paradigm at the intersection of
intermittent computing and deep learning, bringing sustainable
intelligence to the extreme edge. This paper, as an overview of a spe-
cial session at Embedded Systems Week (ESWEEK) 2025, presents
four tales from diverse research backgrounds, sharing experiences
in addressing unique challenges of efficient and reliable DNN in-
ference despite the intermittent nature of ambient power. The first
explores enhancing inference engines for efficient progress accumu-
lation in hardware-accelerated intermittent inference and designing
networks tailored for such execution. The second investigates com-
putationally light, adaptive algorithms for faster, energy-efficient
inference, and emerging computing-in-memory architectures for
power failure resiliency. The third addresses battery-free network-
ing, focusing on timely neighbor discovery and maintaining syn-
chronization despite spatio-temporal energy dynamics across nodes.
The fourth leverages modern nonvolatile memory fault behavior
and DNN robustness to save energy without significant accuracy
loss, with applicability to intermittent inference on nano-satellites.
Collectively, these early efforts advance intermittent TinyML re-
search and promote future cross-domain collaboration to tackle
open challenges.

Keywords

Intermittent systems, TinyML, runtime and design-time methodolo-
gies, hardware architectures, wireless networking, fault tolerance

1 Introduction

By relying entirely on energy harvesting, battery-free devices en-
able a low-cost, greener future. However, the weak and unstable
nature of ambient energy causes frequent shutdowns to recharge
the capacitor, with the device powering on when sufficient en-
ergy is harvested. Consequently, applications run intermittently
and use nonvolatile memory (NVM) to accumulate progress across

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

EMSOFT °25, Taipei, Taiwan

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1993-6/2025/09

https://doi.org/10.1145/3742874.3757084

Kasim Sinan Yildirim
University of Trento, Italy
kasimsinan.yildirim@unitn.it

Marco Zimmerling
TU Darmstadt, Germany
marco.zimmerling@tu-darmstadt.de

Pi-Cheng Hsiu
Academia Sinica, Taiwan
National Taiwan University, Taiwan
pchsiu@citi.sinica.edu.tw

power cycles, as volatile data is lost upon power failure. Never-
theless, intermittent deep learning is essential for intelligent edge
applications reshaping industries and society, motivating a multi-
pillar research approach to improve overall system efficiency. These
efforts are presented through four tales of intermittent TinyML,
spanning runtime engines for intermittent inference and design-
time tools for intermittent-friendly DNNs, lightweight algorithms
and emerging hardware for fast and energy-efficient inference, co-
ordinated communication in battery-free networks, and embracing
faults for reliable intermittent inference in extreme environments.
The advancements extend beyond embedded systems to sensor net-
working, operating systems, and computer architecture, offering
perspectives that enrich broader embedded software interests.

Our exploration begins in Section 2, where we discover how
simply adapting conventional intermittent execution methods for
resource-demanding, complex applications like DNN inference
leads to critical performance inefficiencies that may offset the ben-
efits of accumulative execution. This motivated us to progressively
develop runtime optimizations for hardware-accelerated intermit-
tent inference engines that minimize progress accumulation over-
head, while accounting for the dynamic nature of both the power
supply and the neural network. While these engines execute the
deployed models efficiently, their effectiveness is tightly coupled
with the DNN architecture. However, frameworks commonly used
to design DNNs for tiny devices often yield architectures inherently
unsuitable for intermittent systems, leading to energy-wasteful,
slow deployments that could even fail to complete inference. There-
fore, we developed several design-time tools, adapting neural archi-
tecture search and neural network pruning to derive architectures
optimized for intermittent execution.

Complementing prior efforts, Section 3 examines how the inter-
mittent execution of DNNs on ultra-low-power microcontrollers
remains highly inefficient, rooted in the computational demands of
DNN inference and the architectural limitations of conventional
Von Neumann processors. Firstly, traditional DNNs rely heavily
on multiply-and-accumulate (MAC) operations, all of which are
executed nonselectively during inference, leading to significant
energy consumption. Moreover, Von Neumann-based cores are in-
herently inefficient, as they waste most of their energy on control
operations and suffer from the data transfer bottleneck between
the processor and the memory units. These inefficiencies have
motivated us to explore alternative inference algorithms that can
activate only the most relevant components of the network for each
input, significantly enhancing energy efficiency while maintaining

https://doi.org/10.1145/3742874.3757084

EMSOFT 25, September 28-October 3, 2025, Taipei, Taiwan

accuracy. In parallel, to address the architectural constraints of Von
Neumann cores, we leverage the emerging computing-in-memory
(CIM) paradigm, which enables computation directly within mem-
ory, removing frequent data transfer between the processor and
memory and providing inherent resilience to power failures.

Although inference on individual battery-free devices is well
studied, Section 4 shifts focus to the underexplored challenge of
communication across multiple devices, essential for distributed in-
telligence. We first noticed that the ability to systematically evaluate
battery-free networks and measure community progress was sorely
missing. Therefore, we developed tools to accurately capture and
reproduce real-world energy environments facilitating repeatable
lab-based evaluation, making them publicly and remotely accessible
for broad use. Due to the spatio-temporal variability in harvested
energy, nodes operate asynchronously, making it challenging for
networked nodes to discover each other quickly and efficiently,
and to ensure reliable bidirectional communication. To address this,
we design networking protocols to align device wake-ups through
adaptive random delays for fast neighbor discovery and maintain
synchronization by learning charging-time patterns and adapting
device wake-up times accordingly.

Largely unexplored knobs exist that may drastically improve the
inference performance of DNNs on resource-constrained intermit-
tent devices. Emerging NVM technology is a key example. Spin-
Transfer Torque Magnetic Random-Access Memory (STT-MRAM),
for instance, offers the ability to save energy in exchange of accept-
ing that write errors of stochastic nature possibly occur. Taking ad-
vantage of these knobs without introducing unnecessary overhead
is challenging. We report in Section 5 on the design of compile-time
techniques that build upon the features of STT-MRAM to markedly
improve the energy efficiency of DNN inference by imposing a hard
bound on the potential accuracy losses. Embracing the faults of STT-
MRAM prompted us to look in the direction of novel deployment
scenarios. We eventually realize that much of the same techniques
may be applied to running intermittent inference workloads on
nano-satellites, provided that the fault patterns are comparable. To
verify this hypothesis experimentally, by deploying a CubeSat in
Low-Earth Orbit (LEO) equipped with different NVM chips. Early
results, also discussed in Section 5, indicate that fault patterns are
indeed comparable, providing a foundation for deploying efficient
intermittent DNN inference in space operations.

2 Intermittent Deep Inference:
Rethinking Engines and Models

The overarching goal of advancing intelligent battery-free systems
is to enable increasingly complex deep learning models to run
efficiently on tiny devices powered by extremely weak ambient
energy. Our research efforts over the past few years have evolved
toward this goal through advances in runtime inference engines
and design-time tools. We also highlight carbon footprint reduction
as a central unresolved concern in TinyML sustainability.

2.1 Intermittent-aware Runtime Inference
Engines

DNN inference is executed at runtime by an inference engine, a

software-based middleware processing each layer, as shown in Fig-

ure 1. Even with DNN optimization [57] and hardware acceleration

H.R. Mendis, K. S. Yildirrm, M. Zimmerling, L. Mottola, and P.-C. Hsiu

Intermittent-aware <« -
Runtime Inference Engines =

rrrrrrrrrrrrrrrrrr Application - ------ccoooo [()

Intermittent-friendly
Design-time Tools

Static / Dynamic neural network
rrrrrrrrrrrrrrrrrr Middleware - --------—-ccoo |
NVM VM
~— Intermittent inference engine =\

progress preservation
<

[> 0O

progress recovery

1 ACCU"&Cy \\\|\O ‘

®$Cos1 model: latency, energy

Inference configuration \'Ei; Constraints: energy, latency, HW

Q
@ Frocess layer layer @] E Neural architecture search

‘ fetch / write data ol

) et P g

J

—————————————————— Hardware ------------------
CPU
NVM VM
Accelerator
i Pruning criterion ' Pruning strategy
ambient @ Min. intermittent inference latency

= (= =]

energy

I
Dynamic power supply

@ Maintain model accuracy
\

Battery-less
System

Figure 1: Overview of runtime inference engines and design-
time tools for intermittent deep inference.

Neural network pruning

[40, 53], completing a single inference under intermittent power
may still require multiple power cycles. Therefore, intermittent in-
ference engines additionally perform progress preservation during
inference and progress recovery upon power resumption to accu-
mulate progress across power cycles [27, 30]. Progress preservation
involves frequently backing up a progress indicator together with
intermediate computation outputs (e.g., activations) from VM to
NVM. Progress recovery uses the preserved indicator to correctly
identify the interrupted computation, refetch the lost data back
into VM from NVM, and resume execution without starting from
scratch. Progress preservation and recovery introduce significant
memory traffic and latency, with even simple DNNs often requiring
several seconds to minutes for completion [13, 27]. Intermittent
inference approaches differ in the type and granularity of data they
preserve, impacting the progress preservation overhead, and the
amount of progress re-executed during recovery.

To understand how such overheads impact inference perfor-
mance, we applied general intermittent execution approaches, such
as checkpoint-based and task-based ones, to DNN inference. Check-
point-based execution backs up volatile data to NVM, and resumes
from the last successful checkpoint. We found that the high memory
usage of DNN inference leads to large checkpoints with significant
runtime overhead. By contrast, task-based execution decomposes
applications into multiple tasks that can each complete within the
available energy in a power cycle, with progress preserved after
each task completion and execution resumed from the interrupted
task. As DNN inference contains loop-heavy computations, each
loop iteration is typically treated as a task [27]. Loop indices are
preserved as progress indicators, and the entire interrupted task
is re-executed during recovery. Since only full accelerator opera-
tions can be invoked, tasks cannot be finer than an operation and
usually group multiple operations to reduce preservation overhead.
This causes task-based inference to inherently demonstrate high re-
execution overhead. Therefore, the high overhead of these general
approaches demands more energy, which presents a key challenge,

Intermittent TinyML: Powering Sustainable Deep Intelligence Without Batteries

as it raises the risk of non-termination (i.e., repeated re-execution)
when energy is scarce.

2.1.1 Hardware Accelerated Inference. To overcome the high run-
time overhead of general approaches, we proposed inference foot-
printing [54] specifically for hardware accelerated intermittent in-
ference. Inference footprinting preserves each intermediate compu-
tation output, (e.g., as fine-grained as a partial sum) along with a
progress indicator during inference, and uses the latest indicator to
identify and resume the interrupted computation upon power re-
sumption. This fine-grained progress preservation enables parallel
inference computation and progress preservation, which reduces
the overhead of progress preservation. Moreover, it relaxes the ac-
celerator operation’s atomicity constraint, requiring re-execution of
only the interrupted sub-operation instead of the entire operation,
greatly reducing the overhead of progress recovery. With reduced
runtime overhead, footprinting-based inference is less prone to
non-termination under weak power. Realized as HAWAII [54], an
intermittent inference engine, footprinting-based inference substan-
tially improves inference throughput over both checkpoint-based
and task-based inference, and is especially effective for heavily
accelerated DNNs executed under small energy budgets.

Later on, we found that separately preserving progress indicators
and output features introduces additional data transfer overhead,
potentially offsetting the accumulated progress. To alleviate this
issue, we proposed model augmentation [32], allowing indicator
preservation to be piggybacked onto output feature preservation.
By appending additional network components with assigned values
at specific positions in the deployed model, progress information
is intrinsically integrated into inference, trading extra computa-
tions for reduced data transfer overhead, without affecting accuracy.
Implemented as the JAPARI inference engine [32], this approach
achieved notable latency reductions over HAWAII, particularly for
highly accelerated networks under limited energy budgets. We
advanced this idea with stateful neural networks [60], which em-
beds progress indicators into specific network components, allow-
ing a DNN to indicate progress itself. A stateful DNN can contain
progress information in its output features without their corruption.
Progress indicators are intrinsically preserved with output features,
completely eliminating the additional data transfers needed for in-
dicator preservation. Realizing this approach, the Stateful inference
engine [60] significantly speeds up inference over JAPARI, notably
for modern convolutional networks under weak power.

2.1.2 Dynamically Reconfigurable Inference. Inference engines typ-
ically use a fixed inference configuration with parameters such as
tile size and loop order to maximize data reuse, thereby reducing
costly NVM accesses [33]. However, when using a fixed configura-
tion under intermittent power, we found that this strategy became
inefficient, as retaining more data in VM increases the amount that
must be refetched during progress recovery. This issue is intensified
as recovery overhead now dominates, driven by our prior efforts to
minimize preservation overhead. Thus, minimizing intermittent in-
ference latency requires balancing data reuse during inference and
data refetch during recovery. Nevertheless, we observed that the
balance point fluctuates depending on the dynamicity of the power
supply driven by ambient energy, posing a major challenge as a
fixed configuration becomes significantly inefficient. Accordingly,
we emphasized the necessity of runtime reconfiguration [56], to

EMSOFT 25, September 28-October 3, 2025, Taipei, Taiwan

maintain low latency under a varying power supply. This concept
was realized as the DynBal middleware [56], which indirectly eval-
uates the performance of configurations considering input power,
and dynamically reconfigures the underlying inference engine in a
lightweight manner, balancing data reuse and refetch costs under
fluctuating power conditions. DynBal demonstrated that even a
simple implementation of runtime reconfiguration can significantly
speed up inference, especially under high intermittency.

Orthogonally, we found that networks with dynamic behavior
introduced additional challenges when executed on our intermit-
tent inference engines (Section 2.1.1). Fundamentally, existing in-
termittent inference approaches assume deterministic execution,
where predefined computation order is required for correct recov-
ery, and therefore they directly support static networks. By contrast,
dynamic networks exhibit inherently non-deterministic execution,
adapting their structure to the input to improve accuracy and per-
formance trade-offs, thereby reordering execution via computation
skipping [29, 51]. We observed that existing approaches failed to
capture non-deterministic progress information in dynamic net-
works, which vary across inferences. This poses a key challenge, as
it leads to incorrect recovery, corrupting output features and degrad-
ing accuracy. Therefore, we recently proposed non-deterministic
progress accumulation [55], a methodology for capturing the inter-
rupted computation and its non-deterministic information, with
minimal preservation overhead. Low-overhead progress indicators
are identified based on network structure and indicator update
frequency, and their collective update patterns are leveraged to
minimize the data volume and number of transfers for progress
preservation. Our NodPA middleware [55] enhances HAWAII by im-
plementing this methodology, ensuring correct and fast inference,
primarily for highly dynamic networks.

2.2 Intermittent-friendly Design-time Tools

While inference engines execute a given pre-trained DNN model
with a fixed architecture, designing DNNs for resource-constrained
systems commonly uses two complementary approaches: neural ar-
chitecture search (NAS) [31, 36] and neural network pruning [57, 59],
as shown in Figure 1. As the network architecture design space is
vast, NAS is often used to automatically design a high-accuracy
DNN for the target dataset. In a typical NAS framework, the ar-
chitecture search space defines the candidate set of architectures,
and the search strategy is the algorithm that optimizes a specific
objective (e.g., accuracy). Hardware-aware NAS extends this pro-
cess by jointly exploring the network architecture and inference
configuration design spaces, incorporating hardware metrics (e.g.,
latency) into the optimization objective, and enforcing resource
constraints (e.g., VM and NVM capacity) to ensure the derived DNN
is both deployable and efficient on the target system. In contrast,
network pruning compresses a given model, by removing relatively
unimportant weight parameters, trading accuracy for lower storage
requirements. Pruning approaches differ in their pruning criterion
which estimates the importance of weights and their pruning strat-
egy which removes relatively less importance weights to achieve
the optimization objective while maintaining model accuracy.

2.2.1 Intermittent-aware Neural Architecture Search. Deploying
NAS solutions under intermittent power revealed that conventional
NAS frameworks, being unaware of intermittency, are unsuitable

EMSOFT 25, September 28-October 3, 2025, Taipei, Taiwan

for intermittent systems. We observed that NAS tends to find solu-
tions that maximize data reuse for lower latency [31], making them
energy-expensive, and since NAS ignores configuration spaces re-
lated to intermittent execution, the harvested energy may be under-
utilized. Thus, a fundamental challenge is that, the derived DNNs
may become inefficient by violating the intermittent inference la-
tency requirement and, more seriously, they may even become
unsafe by experiencing non-termination. In light of this, we pre-
sented iNAS [41], the first intermittent-aware NAS framework that
incorporates intermittent execution behavior into NAS. It follows a
general principle that finding high-accuracy DNNs for intermittent
systems requires balancing data reuse and progress preservation
and recovery overheads, without exceeding the harvested energy
in each power cycle. Unlike hardware-aware NAS solutions, iNAS’s
solutions avoided non-termination, met latency requirements with
comparable accuracy, and achieved greater latency reductions for
complex architectures under small energy budgets.

Although safe and timely, we noticed that iNAS solutions still
imposed high intermittency management overhead inherent to the
network architecture, wasting harvested energy on progress preser-
vation and recovery instead of inference, which degraded latency.
We further observed that directly minimizing intermittency man-
agement overhead in NAS compromises accuracy, a challenging
issue because it risks overlooking high-accuracy architectures in
favor of ones with low overhead and also low accuracy. This moti-
vated us to examine how architectural characteristics influenced the
accuracy-overhead interplay. Our study [42] showed architectural
parameters differ in their sensitivity to overhead because their com-
putation to combined preservation and recovery cost ratios vary
with their distinct computation and data access behaviors. To design
DNN s with better overhead-accuracy trade-offs, we derived general
guidelines that exploit overhead sensitivity and integrated them
into TiNAS [42], a modernized intermittent-aware NAS framework,
refining its search space and strategy. These guidelines enabled
TiNAS to efficiently identify low-overhead, high-accuracy DNNS,
especially for larger datasets with broader search spaces.

2.2.2 Intermittent-aware Neural Network Pruning. Similar to NAS,
conventional network pruning frameworks are also unaware of
intermittent execution, assuming deployment under continuous
power [59]. We observed that the hardware usage of a DNN opti-
mized for continuous power differs significantly from a DNN opti-
mized for intermittent power. In continuous inference, computed
outputs are kept in VM to maximize data reuse, so NVM reads and
accelerator computations dominate inference latency. In contrast,
intermittent inference frequently preserved accelerator outputs
and progress indicators, making NVM writes dominant. Existing
pruning approaches improve continuous inference latency by re-
ducing the number of NVM reads and computations. Therefore, the
main challenge is that, a model pruned for continuously-powered
systems may perform suboptimally on intermittent systems. We
addressed this with iPrune [35], a simple yet effective intermittent-
aware pruning framework that reduces intermittent inference la-
tency while maintaining accuracy. Its core idea is to remove weights
that contribute more to intermittent inference latency but have low
sensitivity to accuracy. This provided higher compression compared
to energy-aware pruning with similar accuracy, while consistently
speeding up intermittent inference under various power profiles.

H.R. Mendis, K. S. Yildirrm, M. Zimmerling, L. Mottola, and P.-C. Hsiu

2.3 Powering a Low-Carbon Future

We summarize the key insights of this section as follows:

e Hardware-accelerated intermittent inference enables fine-
grained progress preservation in parallel with accelerator
computation, reducing the risk of non-termination.

¢ Runtime inference reconfiguration balances data reuse and
refetch for low latency under dynamic power, while captur-
ing non-determinism correctly recovers dynamic networks.

e While incorporating intermittent execution behavior into
NAS can find safe models, directly minimizing intermittency
management overhead may compromise accuracy.

o Efficient intermittent inference requires tailored compres-
sion, as pre-optimized compact models may become subop-
timal when executed intermittently.

Nevertheless, TinyML’s carbon footprint[46] poses ongoing sus-
tainability challenges. Its operational emissions arise from inference
energy consumption scaled by the power source’s carbon intensity,
while embodied emissions stem from the amortized carbon impact
of hardware manufacturing, transportation, and disposal over the
device’s lifetime inferences. Although runtime optimizations (Sec-
tion 2.1) can reduce energy use, they may not lower operational
emissions if inference occurs during periods of high carbon inten-
sity. Likewise, maximizing data reuse reduces latency but increases
NVM wear by writing larger blocks, shortening device lifetime
and limiting embodied carbon amortization. Inference engines can
mitigate these issues by scheduling tasks based on priority and
carbon intensity variation over time and location, while balancing
data reuse and NVM writes to maintain low latency and device
longevity. Moreover, at design time, tools (Section 2.2) may overlook
the model-device synergy that shapes the overall carbon footprint.
For instance, power supply units and sensors contribute signifi-
cantly to embodied emissions [46]. Although increasing the size of
these components improves performance, supports longer deploy-
ments, and allows more accurate, complex DNNZ, it also leads to
higher embodied emissions. Therefore, the interplay between the
DNN model, device specifications, and carbon emissions should be
considered early in system design by exploring combined design
spaces that holistically optimize for performance and sustainability.

3 Fast Inference on Emerging Hardware

In this section, we emphasize that the inefficiency of intermittent in-
ference arises mainly from two factors: (1) the significant computa-
tional overhead associated with traditional DNN models, and (2) the
inherent architectural limitations of conventional Von Neumann-
based ultra-low-power microcontrollers. We present our recent
efforts targeting alternative inference algorithms and hardware
architectures to improve the efficiency of intermittent inference.

3.1 Algorithmic and Architectural Inefficiencies

DNN models are computationally heavy for battery-free sensors.
Even a simple DNN layer has thousands of MAC operations. During
deep inference, all DNN layers are executed non-selectively and
sequentially, introducing a significant computational burden. Fur-
thermore, to ensure resilience against power failures across power
cycles, input and output activations of each layer should be stored in
NVM. This backup process generates significant memory traffic and
latency, resulting in slow and energy-inefficient inference [62]. As

Intermittent TinyML: Powering Sustainable Deep Intelligence Without Batteries

a result, DNN inference can take several seconds to minutes, even
for simple models [20]. Furthermore, DNNs are latency-agnostic
and cannot adapt to the instability and unpredictability of ambient
energy sources, which often result in high latency in battery-free
systems. Therefore, we need a different inference approach that
is computationally fast, offers minimal state retention and backup
overheads, is responsive to energy harvesting dynamics, and is com-
pact to fit within the limited memory budgets of these platforms.

Besides, ultra-low-power microcontrollers are still inefficient.
Battery-free devices are typically built around simple ultra-low-
power programmable cores [10, 25]. These Von Neumann and
Harvard cores are not optimized for energy efficiency since they
waste a significant amount of energy for control and datapath
operations [28], spending only 5-10% of available energy on use-
ful computations [26]. Furthermore, memory-intensive inference
workloads exacerbate the computational inefficiency due to fre-
quent data movement between memory and compute units, cre-
ating data transfer bottlenecks [7, 13]. Besides, these cores lack
power-failure resilience and lose computational state during power
outages [48, 64]. State backup and recovery operations create a sig-
nificant data transfer bottleneck between the processor and NVM.
Another important aspect is the parallel execution of inference
workloads. Most battery-free computing platforms are single-core
and do not offer parallelism, which is critical for the efficient exe-
cution of DNNs [5]. In short, we need new power failure-resilient
architectures that remove the mentioned inefficiencies, offer par-
allelism, and respond to the changes in the environmental power
availability, using the power and energy most optimally for the
efficient intermittent execution of battery-free inference.

3.2 Fast Inference for Battery-free Sensors

Ultra-Lightweight Task
Single Neuron
N o=wl.x+h
- path =0 < 0?left:right
Feedforward
Layer
N

Figure 2: Fast-Inf Inference Algorithm. o is the output, x is
the input, w is the weight vector, and b is the bias of the node.

To address the computational challenges, we introduced Fast-
Inf [15], a new lightweight inference algorithm that enables ultra-
fast inference on battery-free devices. Fast-Inf utilizes a binary
tree-based neural network architecture, offering logarithmic time
complexity with minimal backup and runtime memory require-
ments. This architecture exploits conditional computation [12], ac-
tivating only the most relevant network components for each input,
thereby significantly enhancing energy efficiency while maintain-
ing accuracy. At the core of Fast-Inf is the Fast Feedforward (FFF)
network [12], a binary tree-based architecture (Figure 2) where each
internal node represents a single neuron and each leaf corresponds
to a small feedforward subnetwork. Inference is a tree traversal, as
depicted in Figure 2, where each neuron computes an intermediate
output o via a dot product, which choses the left or right branch.

EMSOFT 25, September 28-October 3, 2025, Taipei, Taiwan

This procedure is reiterated until a leaf is reached, whose outputs
provide the network outputs.

Fast-Inf exploits conditional execution since only a part of the
tree is considered during inference, which enables logarithmic in-
ference time, achieving ultra-fast, energy-efficient performance
under tight resource constraints. During inference, the information
that needs to be checkpointed by the intermediate nodes is just the
decision variable o;, which is only a single bit. Besides, we just need
to check the last decision variable to proceed with the decided leaf
node. So the recovery is also very lightweight.

Fast-Inf is best suited for tasks solvable by fully connected net-
works (FCNs), as its architecture effectively decomposes FCNs into
a tree structure. Consequently, it achieves performance comparable
to FCNs in applications where instantaneous sensor readings are
mapped to discrete classes, e.g., human activity recognition. For
tasks with strong spatiotemporal structure, Fast-Inf remains effec-
tive for small-scale inputs, e.g., keyword spotting. Overall, Fast-Inf
significantly reduces memory usage (up to 6x fewer parameters
and 4420 smaller runtime buffers), achieves up to 700x faster infer-
ence with lower energy consumption, and introduces a lightweight
inference engine (6x smaller code and 1000x lower overhead).

3.3 Intermittent Inference in Nonvolatile
Memory

We addressed hardware-level inefficiencies by utilizing the emerg-
ing CIM paradigm [44], which improves both energy efficiency and
inference throughput. As mentioned, backing up computational
states to NVM frequently incurs substantial time and energy over-
head due to increased memory traffic, especially for memory-bound
workloads [50]. The CIM paradigm offers a promising solution by
enabling computation directly within memory, removing the need
for explicit backup operations and providing inherent resilience to
power failures.

Computational Random Access Memory (CRAM) is an emerging
spintronics-based memory array that can perform logic operations
directly in memory cells and store the output [63]. This contrasts
with traditional Von Neumann architectures, which transfer data
from memory to processor registers for processing, then storing the
results back in registers before transferring them again to memory.
CRAM with NVM elements is ideal for intermittent CIM since it is
power-failure resilient, ensuring that each in-memory operation is
failure-atomic [47, 48]. This eliminates the need for explicit backups
and costly data movement, enabling efficient, failure-atomic com-
putation of memory-bound workloads under intermittent power,
with high parallelism and minimal overhead.

We introduced PiMCo [6], a flexible MCU-based system where
the CRAM serves both as an NVM and a CIM accelerator for inter-
mittent inference. As shown in Figure 3, our specialized memory
controller bridges the microcontroller with CRAM. It is responsible
for receiving high-level instructions from the microcontroller and
triggering necessary operations in situ on CRAM. CRAM supports
only primitive logic instructions, such as AND, OR, and XOR. We
introduced macroinstructions that are a sequence of these primi-
tives. Macroinstructions consist of arithmetic and logical operations,
such as multiplication, addition, logical and, movement, and loop
operations that help to implement more complex operations. Devel-
opers can use high-level C interfaces to map inference workloads

EMSOFT 25, September 28-October 3, 2025, Taipei, Taiwan

Microcontroller

CRAM
Computational
Random Access
Nonvolatile

E;”@u

COMPUTE IN{| Neural Network
MEMORY

Controller

Parameters
Memory Y]

Instructions

Inference
Failure-Atomic v Results

Logic Primitives "

Figure 3: CRAM and PimCo memory controller enables effi-
cient and programmable intermittent CIM.

to CRAM. Our memory controller converts the received high-level
MCU instructions and maps them to a sequence of macroinstruc-
tions, which define the sequence of primitive operations on CRAM.

By executing inference workloads on CRAM, programmers can
benefit from a high degree of parallelism and acceleration. We uti-
lized column-level parallelism, allowing the same CRAM primitive
logical operation to be applied to multiple columns in CRAM si-
multaneously. For example, in convolutional neural networks, the
same kernel is used on different sections of the input image to
generate a convolved output feature matrix. As a result, PIMCo
executes these repeated operations, which consist of independent
multiply-and-accumulate operations, in parallel.

CRAM primitive operations are inherently idempotent and can
safely be restarted upon power recovery. Furthermore, our mem-
ory controller is power failure resilient by design since it has an
embedded NVM to back up the progress of the execution of the
macroinstructions on CRAM. Therefore, PiMCo ensures failure-
atomic acceleration of inference workloads on CRAM. Besides, the
MCU can employ several checkpointing strategies to ensure the
correct intermittent execution of other parts of the application.

Adapting to energy harvesting dynamics is critical for intermit-
tent systems: activating more parallelism on CRAM can increase
throughput when ambient power is sufficient, but doing so under
low power may cause frequent failures, reduced throughput, or
even computational failures. Without dynamic adaptation, CIM
systems miss the opportunity to optimize performance based on
available energy. We implemented a runtime library that selects the
best parallelism configuration based on ambient energy availability.
Overall, PIMCo improves the performance of the state-of-the-art
commercial low energy accelerator (LEA) [53] for battery-free sys-
tems by up to 8% and energy efficiency by up to 150X%.

3.4 Towards In-Sensor Battery-free Inference

Our recent works have shown that eliminating algorithmic and
architectural inefficiencies leads to significant energy savings and
improvements in throughput and latency. This requires:
o Inference algorithms that can be executed adaptively by
activating only a part of the model.
e Power failure resilient architectures that minimize the data
traffic between the processor and NVM during inference.
Looking forward, the in-sensor computing paradigm can maxi-
mize energy and power efficiency in battery-free inference systems.
Bringing inference computations closer to the sensor—where data is
generated—drastically reduces data movement overhead, achieving
orders-of-magnitude energy efficiency gains compared to conven-
tional architectures. Embedding CRAM in battery-free sensors [47]
and running computationally efficient inference algorithms like

H.R. Mendis, K. S. Yildirrm, M. Zimmerling, L. Mottola, and P.-C. Hsiu

Fast-Inf directly on CRAM will bring unprecedented efficiency,
which is crucial for energy harvesting systems.

Fast-Inf showed the potential of adaptive and conditional in-
ference computation, yet significant scope for further exploration
remains. Mixture-of-experts, early exit mechanisms, and concepts
from dynamic networks [29] can be blended to optimally activate
only the most relevant subnetworks based on input characteris-
tics and available energy. Lightweight controllers can be designed
to direct inference decisions, determining which subnetworks to
activate and which expert paths to select.

4 Efficient and Reliable Battery-free Networks

Previous sections enabled reliable and efficient DNN inference on
standalone battery-free devices, but these devices need to com-
municate their results, to realize distributed learning applications.
Therefore, the next big goal is scaling to many devices operating
maintenance-free for decades [4], which requires new methods and
tools for efficient and reliable battery-free wireless networking.

4.1 The Battery-free Networking Challenge

Networking is crucial for time synchronization, sensor calibra-
tion, federated learning, and distributed sensing and control. Al-
though wireless communication between battery-free devices and
continuously-powered base stations have been successful [9], en-
abling direct communication between battery-free devices remains
important. Since long-range transmissions require more power,
large energy storage is needed for atomic wireless transmission,
which is unsustainable. Therefore, a mesh network with short hop
relays is fundamentally more efficient and sustainable, as well as
inherently more reliable and scalable [34].

For real-world IoT applications, wireless networking must satisfy
four core requirements: reliability with 99.999% multi-hop message
delivery, predictability of end-to-end reliability and latency at de-
sign time and runtime, adaptability to environmental changes and
varying application demands, and efficiency within strict memory,
energy, bandwidth, and compute limits. These goals are already
challenging in battery-powered networks with unreliable links and
changing topologies, while battery-free networks face the added
challenge of spatio-temporal energy dynamics. The harvested energy
depends on time and location. For instance, bridge sensors harvest
varying vibrational energy, based on when and where a car crosses.
As battery-free devices operate intermittently for brief intervals
due to fluctuating harvested energy, spatial variability across a net-
work causes asynchronous behavior, where some devices are active
while others are recharging. The same holds for wireless power
transfer in future 6G ambient IoT, where received power depends
on environment and mobility. This makes communication challeng-
ing, as the sender and receiver must be powered simultaneously,
and the difficulty grows with the network size.

Existing low-power wireless protocols for battery-based devices
primarily focuses on saving energy by synchronizing radio-on times
[1], which is inapplicable to battery-free systems because they can-
not become active anytime. Unlike radios, backscatter transceivers
communicate by reflecting radio signals (e.g., TV and Wi-Fi), with
prior research focusing on improving range and throughput by
using cables or batteries and avoiding intermittency through abun-
dant ambient energy [37, 39].

Intermittent TinyML: Powering Sustainable Deep Intelligence Without Batteries

EMSOFT 25, September 28-October 3, 2025, Taipei, Taiwan

Device active Initial encounter

D o w
o ot
1

Capacitor
voltage [V]
ot

/l/'\/\/\/’\//

T]
Devices are connected

e

Device active

o O Lt
1

Capacitor
voltage [V]

Connection
interval

0.00 0.25 0.50

1.00 1.25 1.50

Time [s]

Figure 4: Using Bonito, battery-free devices learn and exchange statistical models of their charging times with the goal of
maintaining a connection across consecutive encounters for efficient bi-directional unicast communication. (Taken from [24].)

4.2 Methods and Tools to Bootstrap Battery-free
Networks

To close this research gap, we began in 2018 by asking: Can we
exploit the spatio-temporal characteristics of real-world energy envi-
ronments to enable efficient and reliable battery-free networks? To
answer this question, we developed a suite of tools and methods.
This includes the Shepherd [21] and Shepherd Nova [22] tools for
capturing energy environment characteristics, and the Find [23] and
Bonito [24] methods for enabling energy-aware synchronization
and communication. These methods were efficiently implemented
on real hardware using Riotee [25], our open-source, commercially
available, battery-free, hardware-software platform.

4.2.1 Capturing and Reproducing Energy Environments. An impor-
tant challenge is to conduct realistic and repeatable battery-free
networking experiments in the lab, while also being able to bench-
mark community progress [4]. Shepherd [21] is a portable testbed
with distributed nodes synchronized via GPS or Ethernet using PTP.
In recording mode, Shepherd nodes capture harvesting voltage and
current at high resolution (3 pA, 50 pV, 100 kHz) with tight node
synchronization (about 1 ps), enabling detailed analysis of spatial
and temporal energy dynamics. The traces have revealed some
interesting properties, such as similar harvesting current patterns
across networked devices. In replay mode, nodes emulate energy
traces for battery-free devices under tightly synchronized condi-
tions, allowing realistic and repeatable lab testing. Advancing these
ideas, Shepherd Nova [22], offers a free, public, remotely accessible
testbed for energy-harvesting experiments on shared infrastructure,
enabling community progress to be objectively measured. Com-
pared to Shepherd, Shepherd Nova supports diverse input formats
(e.g., IV surfaces) and emulates the full harvesting circuitry and
energy storage, allowing tests of different capacitors and convert-
ers with high precision and accuracy, closely mirroring real-world
setups. These testbeds allowed the design and evaluation of the
following battery free networking solutions.

4.2.2 Observing and Adapting to the Energy Environment. A key
challenge in battery-free networks is enabling devices to discover
each other and maintain synchronization. Devices wake up asyn-
chronously due to varying energy availability, leading to hundreds
of missed encounters before the devices become active at the same
time by chance. Find [23] aims to quickly generate a first encounter,
enabling timely neighbor discovery and clock synchronization
through bidirectional message exchange. Interleaved wake-up pat-
terns are broken via randomized delays drawn from a geometric
distribution, which each node adapts at runtime based on variations

in local charging times. Bonito [24] helps to maintain synchroniza-
tion after an initial encounter by having devices agree on a new
connection interval at each meeting (as shown in Figure 4), ensur-
ing future encounters with a user-defined probability. The core idea
is that each device learns and updates a statistical model of its charg-
ing times, and shares the parameters during encounters to compute
the next wake-up time, enabling reliable message exchange across
consecutive wake-ups. As charging times often follow well-known
distributions (e.g., gaussian or exponential), lightweight statistical
methods were used to learn the distribution parameters.

4.3 Learning for Reliable and Timely
Communication
The main takeaways of this section is as follows:
o Understanding spatio-temporal energy availability is crucial
to developing practical methods for battery-free networks.
e Precise and accurate energy harvesting traces are key for re-
alistic and repeatable battery-free networking experiments.
e Randomized waiting breaks the interleaved wake-up pat-
terns of battery-free network nodes, minimizing neighbor
discovery latency.
e Learning the charging pattern and adapting the wake-up
times allows for efficient communication between neighbors.
With perfect knowledge of the underlying charging-time dis-
tribution, our solutions (Section 4.2.2) can compute the minimum
feasible connection interval. Therefore, a promising future direc-
tion is to utilize a DNN model that can learn complex, multimodal
charging-time patterns at runtime, leading to increased reliability
and reduced delays. Moreover, for further enhanced prediction,
nodes can exchange key parameters or summaries of their learned
charging-time models to exploit statistical dependence in the joint
distribution. However, the challenge is to fit these richer models
within the tight memory and energy budgets of battery-free nodes
and to support any increased communication. A possible solution
is to train these models offline, using traces obtained from our
testbeds, with further on-device fine-tuning at runtime.

5 Embracing Errors in TinyML:

From Earth to Space
The inherent robustness of DNNSs to noisy or incorrect data is vastly
overlooked, especially when running intermittently. Literature [2]
does exist that studies hardware faults in DNN execution using
mainstream hardware architectures. The key takeaway is that the
outcome of DNN processing is highly robust to data errors. This

EMSOFT 25, September 28-October 3, 2025, Taipei, Taiwan

Target MCU STT-MRAM chip Number of capacitors

H.R. Mendis, K. S. Yildirrm, M. Zimmerling, L. Mottola, and P.-C. Hsiu

o 3

DNN energy l
DNN model profile

oS,

Capacitor array

!

99
920

CONFIGURE +— :(ﬁ()

PROFILE
PREPARE

y

o

Optimization loop

TuNE

'
Best configuration

Figure 5: Overview of INTERCEPT.

capability is exploited in systems that process data in a slightly
inexact way, reducing resource consumption at the cost of accu-
racy losses [8]. The key question is how this may possibly play
together with intermittent executions on resource-constrained de-
vices. Combine this with the increasing availability of low-power
NVM technology other than FRAM, which is equally snubbed.

Our research work of the last few years exploits these observa-
tions as a stepping stone to save resources or enable unexplored
deployment scenarios. We discuss our journey through new mem-
ory technologies and their trade-offs, as well as our recent efforts
at deploying intermittent TinyML workloads in outer space.

5.1 We Are Not Married with FRAM

FRAM eventually replaced Flash memories in intermittent systems
because of lower energy figures, more flexible operation, and the
availability of MCUs with built-in FRAM. Compared with Flash,
however, it is generally limited in size, forcing programmers to
shape the application logic around memory limitations [38].

Emerging nonvolatile memory technologies include STT-MRAM
and ReRAM. Both provide larger storage space compared to FRAM
and comparable energy consumption. Their construction process,
however, prevents straight integration into MCUs, requiring off-
chip interactions usually through SPI or I2C. STT-MRAM exposes
a unique knob: one can tune the current used for write operations
to save energy, but accepting that write errors may occur with
increasing probability as current settings reduce [17]. This behavior
is due to stochastic switching: depending on the current setting, a
memory cell may fail to commute. These errors are stochastic in
nature, thus they appear randomly in written data.

5.2 Saving Resources Thanks to Errors
Using STT-MRAM, it turns out can save resources when running
intermittent DNN workloads without requiring changes to ex-
isting models. This intuition is made concrete with INTERCEPT
(INTERmittent inferenCE — Persist & Tune) [11]: a compile-time
toolchain that provides support for intermittent inference.

INTERCEPT functioning is based on multiple stages, as shown
in Figure 5. Given the DNN model, we first PROFILE its energy
consumption using existing tools [3] or based on real hardware
executions. This information is input to a PREPARE stage that creates
an initial configuration including placement of state persistence
operations and corresponding STT-MRAM write current settings.
Using a multi-capacitor architecture [14, 61], based on the output
of PREPARE, a CONFIGURE stage determines the capacitor array that
ensures eventual completion of the inference process.

Next, the PERsIST algorithm processes the initial configuration
to determine an efficient placement of state persistence operations.
The output of PERSIST is fed as input to a further optimization step,

called TuNE, that configures the STT-MRAM chip at each state per-
sistence operation, determining the most efficient current setting.
We embrace, rather than avoid, the write errors possibly occur-
ring by carefully controlling the current setting to reduce energy
consumption, subject to a hard constraint on accuracy losses.

The output of TUNE may potentially change the energy patterns
along the inference process. For example, state persistence opera-
tions that are energy-hungry before applying TUNE may become
energy-savvy, compared to other state persistence operations that
may grow to be dominating. Because of this, we feed the output of
TuNE back to PERSIST to re-evaluate the number and positioning
of state persistence operations. This effectively closes an optimiza-
tion loop that continues until we obtain a (possibly local) optimal
configuration or for a predetermined number of repetitions.

We evaluate INTERCEPT across three different platforms and six
diverse neural networks, compared with the original unmodified
DNN. We demonstrate that INTERCEPT provides from a maximum
of 64.4% to a minimum of 21% energy gain, corresponding to a maxi-
mum (minimum) 2.98x (1.36x) throughput speedup, in exchange for
a maximum 1% accuracy loss. The 1% bound is arguably immaterial
for most applications and is usually “lost in noise” [45]. Additional
details and performance insights are nonetheless available [11].

5.3 Breaking It Into Space

The ability to locally exercise ML models is an asset when commu-
nication to the back-end is plainly impossible or extreme bandwidth
constraints exist. This is precisely the scenario emerging with the
recent rise of COTS hardware deployments in space and particularly
in low-earth orbit (LEO). These designs offer cheaper operation
and more flexible planning and mission management compared
to monolithic designs. On the other hand, space devices such as
CubeSats are extremely resource-constrained and subject to er-
ratic energy provisioning patterns [58], picturing a scenario akin
to those outlined earlier. Crucially, communication to the Earth is
sporadic, unreliable, and bandwidth-constrained. This trend poses
the question as to whether it is possible to run intermittent TinyML
workloads in space.

Albeit the use of COTS hardware reduces costs, it also exposes
the device to the woes of outer space, including radiations that may
cause hardware faults normally not happening on the Earth. Recent
literature demonstrates that regular fault-tolerance mechanisms
may not necessarily operate efficiently in this environment [58].
The key question is whether deploying NVM as support for state
persistence operation in space operations is viable at all.

We answer this question experimentally, by building an experi-
mental CubeSat we deploy at 732 km from the Earth. We launch
the satellite on November, 4th 2024 using the Polar Satellite Launch

Intermittent TinyML: Powering Sustainable Deep Intelligence Without Batteries

Vehicle of the Indian space research organization. It was expected
to ensure roughly three months of operation. The initial estimates
were far exceeded as the satellite remained operational until the
end of February, 2025. The space vehicle, shown in Figure 6, is built
based on the 1Unit CubeSat platform of EnduroSat [19]. The UHF
Transceiver II module from EnduroSat provides downlink com-
munications to the Earth, by relying on the SatNOGS [49] global
network of satellite ground-stations.

(slave 3)
(slave 2)
(slave 1)

NVM array
(slave 0)

g OBC+PDM

° (master)
Tartan

Artibeus Bus

Figure 6: Experimental CubeSat platform.

The hardware aboard the satellite uses a layered master-slave
design. The device at the bottom serves as the satellite’s master
On-board Computer (OBC). Its design is centered on a space-rated
version of IBM’s 6x86 CPU. Despite being an almost 30-year old
design, its space-rated version is still deployed on space vehicles
as space software written for it withstood extensive testing using
formal methods and throughout multiple space missions [43, 52].
A radiation-strength aluminum shield separates each of the layers.

Besides logging of primary mission-related parameters and gen-
eral bookkeeping, the software aboard the OBC controls a cus-
tom Power Distribution Module (PDM) integrated within the OBC
board. The PDM uses the energy coming from four CTJ30 CESI
Solar cells [18] to power the OBC. The OBC instructs the PDM to
provide power to one or more of the four slave devices onboard.
The OBC determines what device to power among the four slaves
depending on their individual energy figures and the amount of ex-
perimental data output up to a given point, in an attempt to ensure
fairness of energy allocations. The slave devices relay data to the
OBC through a simplified version of the Tartan Artibeus bus [16].

One of the slave devices is a custom board equipped with a
TI MSP430 MCU and three NVM chips connected through SPI: a
Fujitsu FRAM MB85RS64V chip, a Fujitsu ReRAM MB85AS8MT
chip, and an Everspin MRAM MR10Q010 chip. Each time the board
is powered on, the MCU executes a predefined set of operations
that deterministically produces a known bit sequence, which is
eventually dumped on each of the NVM chips. The content of each
memory dump is communicated to the OBC and later offloaded to
Earth. Comparing the dumps from the CubeSat with the known bit
sequences allowed us to spot faults in the NVM operation.

We are in the process of analyzing the data. Table 1 shows a
sneak peek on the results. The table, together with additional data
processing, allow us to draw a few early, yet crucial observations:

A
uo~1amod

o There are no evident fault patterns: bit flips appear to be
randomly distributed as "salt and pepper" [11].
e The FRAM chip is the least robust and the one showing
highest variability in dependability performance.
e The MRAM chip is by far the most robust and also the one
showing the least variability in dependability performance.
e The ReRAM chip stays somehow halfway between these
extremes in absolute robustness and variability.
These observations should be weighted against other factors, in-
cluding the storage space offered by a given chip and the energy

EMSOFT 25, September 28-October 3, 2025, Taipei, Taiwan

Memory Size Mean flips | Std dev | Mean (%)
FRAM 65536 96.05 232.08 0.15%
MRAM 1048576 1.52 2.64 0,00014%
ReRAM 8388608 95.27 51.13 0,0011%

Table 1: Bit flips per memory type.

figures. We can therefore draw one key preliminary conclusion:
the "salt and pepper" pattern is no different compared to the errors
occurring in STT-MRAM chips due to current scaling, therefore,
techniques embracing these fault patterns, including INTERCEPT,
would perform equally well, at least in principle, in outer space even
though faults are not caused by current scaling.

6 Concluding Remarks

This paper presents key technologies that address fundamental bar-
riers to advancing intermittent systems for intelligent deep learning.
As intermittent TinyML becomes increasingly ubiquitous, we envi-
sion a future with stretched application goals, featuring large-scale
networks of interconnected battery-free devices operating reliably
even in extreme environments, such as space or in-body implants,
where battery replacement is infeasible. Our efforts have enabled
sustainable sense-and-report type of workloads across many appli-
cation domains, such as wildlife tracking and smart farming, where
energy autonomy and successful task completion are paramount.
However, a considerable gap remains before intermittent TinyML
can achieve widespread adoption to realize its stretched application
goals. To bridge this gap, the research agenda must extend beyond
embedded software to a broader roadmap that spans hardware, net-
working, Al research, and their intersections. In particular, moving
beyond off-the-shelf hardware toward emerging architectures is
essential to boost performance for time-critical inference. Likewise,
scalable custom networking protocols are crucial for instant recon-
nections and robust communication as battery-free networks scale
and environments change rapidly. Future work also requires devel-
oping green Al models with inherently low carbon footprints to
sustain billions of battery-free deployments. We therefore advocate
powering a sustainable future for intelligence through intermittent
TinyML, calling for contributions from diverse research fields and
inviting the broader community to build upon our publicly available
tools and methodologies.

Acknowledgement

This work was supported in part by the National Science and Tech-
nology Council, Taiwan, under Grant NSTC 113-2628-E-001-004-
MY3, and by Academia Sinica under Grant AS-IA-113-M04-ASSA.
It was also partially supported by the Swedish Science Foundation
(SSF) and by the National Recovery and Resilience Plan (NRRP),
Mission 4 Component 2 Investment 1.3 - Call for tender No. 1561
of 11.10.2022 of Ministero dell'Universita e della Ricerca (MUR);
funded by the European Union - NextGenerationEU.

References

[1] K. S. Adu-Manu, N. Adam, C. Tapparello, H. Ayatollahi, et al. 2018. Energy-
Harvesting Wireless Sensor Networks (EH-WSNs): A Review. ACM TOSN 14, 2,
Article 10 (April 2018), 50 pages.

[2] M. H. Ahmadilivani, M. Taheri, J. Raik, M. Daneshtalab, et al. 2024. A Systematic
Literature Review on Hardware Reliability Assessment Methods for Deep Neural
Networks. ACM CSUR 56, 6 (2024), 1-39.

[3] S.Ahmed, A. Bakar, N. A. Bhatti, M. H. Alizai, et al. 2019. The betrayal of constant
powerXtime: Finding the missing joules of transiently-powered computers. In
Proc. of ACM SIGPLAN/SIGBED LCTES. 97-109.

EMSOFT 25, September 28-October 3, 2025, Taipei, Taiwan

=

[10]

(11

[12]

[13

[14]

[15

[16]

oo
£,

[24]

[25

[26]

[27]

[28]

[29]
[30]

(31

[32]

[33]

[34

S. Ahmed, B. Islam, K. S. Yildirim, M. Zimmerling, et al. 2024. The Internet of
Batteryless Things. CACM 67, 3 (Feb. 2024), 64-73.

K. Akhunov and K. S. Yildirim. 2022. Adamica: Adaptive Multicore Intermittent
Computing. Proc. of the ACM IMWUT 6, 3 (2022), 1-30.

K. Akhunov and K. S. Yildirim. 2023. CRAM-Based Acceleration for Intermittent
Computing of Parallelizable Tasks. IEEE TETC 12, 1 (2023), 48-59.

K. Akhunov, E. Yildiz, and K. S. Yildirim. 2023. Enabling Efficient Intermittent
Computing on Brand New Microcontrollers via Tracking Programmable Voltage
Thresholds. In Proc. of ENSsys. 16-22.

G. Armeniakos, G. Zervakis, D. Soudris, and J. Henkel. 2022. Hardware Approxi-
mate Techniques for Deep Neural Network Accelerators: A Survey. ACM CSUR
55, 4 (2022), 1-36.

S. Babatunde, A. Alsubhi, J. Hester, and J. Sorber. 2024. Greentooth: Robust and
Energy Efficient Wireless Networking for Batteryless Devices. ACM TOSN 20, 3,
Article 66 (April 2024), 31 pages.

A. Bakar, R. Goel, J. De Winkel, J. Huang, et al. 2022. Protean: An Energy-
Efficient and Heterogeneous Platform for Adaptive and Hardware-Accelerated
Battery-Free Computing. In Proc. of ACM SenSys. 207-221.

R. Barjami, A. Miele, and L. Mottola. 2024. Intermittent inference: Trading a 1%
Accuracy Loss for a 1.9x Throughput Speedup. In Proc. of ACM SenSys. 647-660.
P. Belcak and R. Wattenhofer. 2023. Fast Feedforward Networks. arXiv preprint
arXiv:2308.14711 (2023).

L. Caronti, K. Akhunov, M. Nardello, K. S. Yildirim, et al. 2023. Fine-grained
Hardware Acceleration for Efficient Batteryless Intermittent Inference on the
Edge. ACM TECS 22, 5, Article 82 (Sept. 2023), 19 pages.

A. Colin, E. Ruppel, and B. Lucia. 2018. A Reconfigurable Energy Storage Archi-
tecture for Energy-harvesting Devices. In Proc. of ACM ASPLOS. 767-781.
Leonardo Lucio Custode, Pietro Farina, Eren Yildiz, Renan Beran Kilic, et al. 2024.
Fast-Inf: Ultra-Fast Embedded Intelligence on the Batteryless Edge. In Proc. of
ACM SenSys. 239-252.

B. Denby et al. 2022. Tartan Artibeus: A Batteryless, Computational Satellite
Research Platform. In Small Sat. Conf.

T. Devolder, J. Hayakawa, K. Ito, H. Takahashi, et al. 2008. Single-Shot Time-
Resolved Measurements of Nanosecond-Scale Spin-Transfer Induced Switching:
Stochastic Versus Deterministic Aspects. PRL 100 (2008), 057206. Issue 5.
EnduroSat. 2025. 2 CESI Solar Cells CTJ30. https://satsearch.co/products/
endurosat- 1u-cubesat-solar-panel.

EnduroSat. 2025. EnduroSat 1U CubeSat Platform. https://www.endurosat.com.
Pietro Farina, Subrata Biswas, Eren Yildiz, Khakim Akhunov, et al. 2024. Memory-
efficient Energy-adaptive Inference of Pre-Trained Models on Batteryless Embed-
ded Systems. In Proc. of EWSN. 1-12.

K. Geissdoerfer, M. Chwalisz, and M. Zimmerling. 2019. Shepherd: A Portable
Testbed for the Batteryless IoT. In Proc. of ACM SenSys. 83-95.

K. Geissdoerfer, I. Splitt, M. Sokolowski, C. Herrmann, et al. 2025. Shepherd Nova:
A Public Testbed for Rigorous Experiments Under Repeatable Energy-Harvesting
Conditions. In Proc. of MobiSys. 1-13.

K. Geissdoerfer and M. Zimmerling. 2021. Bootstrapping Battery-free Wireless
Networks: Efficient Neighbor Discovery and Synchronization in the Face of
Intermittency. In Proc. of USENIX NSDI. 439-455.

K. Geissdoerfer and M. Zimmerling. 2022. Learning to Communicate Effectively
Between Battery-free Devices. In Proc. of USENIX NSDI. 419-435.

K. Geissdoerfer and M. Zimmerling. 2024. Riotee: An Open-source Hardware
and Software Platform for the Battery-free Internet of Things. In Proc. of ACM
SenSys. 198-210.

G. Gobieski, S. Ghosh, M. Heule, T. Mowry, et al. 2022. RipTide: A Programmable,
Energy-Minimal Dataflow Compiler and Architecture. In Proc. of IEEE/ACM
MICRO. 546-564.

G. Gobieski, B. Lucia, and N. Beckmann. 2019. Intelligence Beyond the Edge:
Inference on Intermittent Embedded Systems. In Proc. of ACM ASPLOS. 199-213.
G. Gobieski, A. Nagi, N. Serafin, M. M. Isgenc, et al. 2019. MANIC: A Vector-
Dataflow Architecture for Ultra-Low-Power Embedded Systems. In Proc. of
IEEE/ACM MICRO. 670-684.

Y. Han, G. Huang, S. Song, L. Yang, et al. 2021. Dynamic Neural Networks: A
Survey. IEEE PAMI 44, 11 (2021), 7436-7456.

S.Islam, J. Deng, S. Zhou, C. Pan, et al. 2022. Enabling Fast Deep Learning on
Tiny Energy-harvesting IoT Devices. In Proc. of [EEE/ACM DATE. 921-926.
Weiwen Jiang, Xinyi Zhang, Edwin H-M Sha, Lei Yang, et al. 2019. Accuracy
vs. Efficiency: Achieving Both through FPGA-Implementation Aware Neural
Architecture Search. In Proc. of IEEE/ACM DAC. 1-6.

C.-K. Kang, H. R. Mendis, C.-H. Lin, M.-S. Chen, et al. 2022. More is Less: Model
Augmentation for Intermittent Deep Inference. ACM TECS 21, 5, Article 49 (Oct.
2022), 26 pages.

H. Kwon, P. Chatarasi, M. Pellauer, A. Parashar, et al. 2019. Understanding Reuse,
Performance, and Hardware Cost of DNN Dataflow: A Data-Centric Approach.
In Proc. of IEEE/ACM MICRO. 754-768.

J. N. Laneman, D. N. C. Tse, and G. W. Wornell. 2004. Cooperative Diversity in
Wireless Networks: Efficient Protocols and Outage Behavior. IEEE Trans. Inf.
Theory. 50, 12 (2004), 3062-3080. doi:10.1109/TIT.2004.838089

(35]
[36]
(37]
(38]
(39]

[40

[41]

[42]

[43]

[44]

[45]

[46

(47

[48

[49

[50

(51]

[53

[54

[55]

[56]

[58

[59]

[64]

H.R. Mendis, K. S. Yildirrm, M. Zimmerling, L. Mottola, and P.-C. Hsiu

C.-C Lin, C.-Y. Liu, C.-H. Yen, T.-W. Kuo, et al. 2023. Intermittent-Aware Neural
Network Pruning. In Proc. of IEEE/ACM DAC. 1-7.

Ji Lin, Wei-Ming Chen, John Cohn, Chuang Gan, et al. 2020. MCUNet: Tiny Deep
Learning on IoT Devices. In Proc. of NeurIPS. 11711-11722.

V. Liu, A. Parks, V. Talla, S. Gollakota, et al. 2013. Ambient Backscatter: Wireless
Communication out of Thin Air. In Proc. of the ACM SIGCOMM.

A. Maioli and L. Mottola. 2021. Alfred: Virtual Memory for Intermittent Comput-
ing. In Proc. of ACM SenSys. 261-273.

A. Y. Majid, M. Jansen, G. O. Delgado, K. S. Yildirim, et al. 2019. Multi-hop
Backscatter Tag-to-Tag Networks. In Proc. of IEEE INFOCOM. 721 - 729.

Maxim Integrated. 2021. MAX78000 Ultra-low-power MCU with Arm Cortex-
M4 and a CNN Accelerator. https://datasheets.maximintegrated.com/en/ds/
MAX78000.pdf.

H. R. Mendis, C.-K. Kang, and P.-C. Hsiu. 2021. Intermittent-Aware Neural
Architecture Search. ACM TECS 20, 5s (Sept. 2021), 64:1-27.

H. R. Mendis, C.-H. Yen, C.-K. Kang, and P.-C. Hsiu. 2025. Intermittent-Friendly
Neural Architecture Search: Demystifying Accuracy and Overhead Trade-offs.
IEEE TCAD (March 2025), 1-14.

L. Mottola et al. 2010. Anquiro: Enabling efficient static verification of sensor
network software. In Proc. of ICSE SESENA.

O. Mutluy, S. Ghose, J. Gémez-Luna, and R. Ausavarungnirun. 2022. A Modern
Primer on Processing in Memory. In Emerging computing: from devices to systems:
looking beyond Moore and Von Neumann. Springer, 171-243.

H. Noh, T. You, J. Mun, and B. Han. 2017. Regularizing Deep Neural Networks
by Noise: Its Interpretation and Optimization. In Proc. of NIPS. 5115-5124.
Shvetank Prakash, Matthew Stewart, Colby Banbury, Mark Mazumder, et al.
2023. Is TinyML Sustainable? Assessing the Environmental Impacts of Machine
Learning on Microcontrollers. arXiv preprint arXiv:2301.11899 (2023).

S. Resch, S. K. Khatamifard, Z. I. Chowdhury, M. Zabihi, et al. 2020. MOUSE:
Inference In Non-volatile Memory for Energy Harvesting Applications. In Proc.
of IEEE/ACM MICRO. 400-414.

S. Resch, S. K. Khatamifard, Z. I. Chowdhury, M. Zabihi, et al. 2022. Energy-
efficient and Reliable Inference in Nonvolatile Memory under Extreme Operating
Conditions. ACM TECS 21, 5, Article 57 (Dec. 2022), 36 pages.

SatNOGS. 2025. Open Source Global Network of Satellite Ground-stations. https:
//www.satnogs.org.

W. Song, S. Kaxiras, L. Mottola, T. Voigt, et al. 2023. Silent Stores in the Battery-
less Internet of Things: A Good Idea?. In Proc. of EWSN. 40-45.

M. Sponner, B. Waschneck, and A. Kumar. 2024. Adapting Neural Networks at
Runtime: Current Trends in At-Runtime Optimizations for Deep Learning. ACM
CSUR 56, 10 (2024), 248:1-40.

P. Stakem. 2004. Migration of an Image Classification Algorithm to an Onboard
Computer for Downlink Data Reduction. J. Aero. Comp. Info. Comm (2004).
Texas Instruments. 2016. MSP430™ Microcontrollers - Low-Energy Accelerator.
https://www.ti.com/lit/an/slaa720/slaa720.pdf.

C.-K. Kang, H. R. Mendis, C.-H. Lin, M.-S. Chen, et al. 2020. Everything Leaves
Footprints: Hardware Accelerated Intermittent Deep Inference. IEEE TCAD 39,
11 (Nov. 2020), 3479-3491.

C.-H. Yen, H. R. Mendis, T.-W. Kuo, and P.-C. Hsiu. 2025. Catch Non-determinism
If You Can: Intermittent Inference of Dynamic Neural Networks. ACM TECS
(2025), 1-20.

C.-H. Yen, H. R. Mendis, T.-W. Kuo, and P.-C. Hsiu. 2023. Keep in Balance:
Runtime-reconfigurable Intermittent Deep Inference. ACM TECS 22, 5s, Article
124 (Sept. 2023), 25 pages.

T. Wang, K. Wang, H. Cai, J. Lin, et al. 2020. APQ: Joint Search for Network
Architecture, Pruning and Quantization Policy. In Proc. of IEEE/CVF CVPR. 2078
2087.

A.E.Yaacoub, T. Voigt, P. Ruemmer, and L. Mottola. 2025. Fault Tolerance in Space
with Heterogeneous Hardware: Experiences from a 68-day CubeSat Deployment
in LEO. In Proc. of EWSN.

T.-J. Yang, Y.-H. Chen, and V. Sze. 2017. Designing Energy-Efficient Convolutional
Neural Networks Using Energy-Aware Pruning. In Proc of IEEE/CVF CVPR. 6071~
6079.

C.-H. Yen, H. R. Mendis, T.-W. Kuo, and P.-C. Hsiu. 2022. Stateful Neural Networks
for Intermittent Systems. IEEE TCAD 41, 11 (Nov. 2022), 4229-4240.

K. S. Yildirim, A. Y. Majid, D. Patoukas, K. Schaper, et al. 2018. Ink: Reactive
kernel for tiny batteryless sensors. In Proc. of ACM SenSys. 41-53.

E. Yildiz, L. Chen, and K. S. Yildirim. 2022. Immortal Threads: Multithreaded
Event-driven Intermittent Computing on Ultra-Low-Power Microcontrollers. In
Proc. of USENIX OSDI. 339-355.

M. Zabihi, Z. I. Chowdhury, Z. Zhao, U. R. Karpuzcu, et al. 2018. In-Memory
Processing on the Spintronic CRAM: From Hardware Design to Application
Mapping. IEEE TC 68, 8 (2018), 1159-1173.

J. Zeng, J. Jeong, and C. Jung. 2023. Persistent Processor Architecture. In Proc. of
IEEE/ACM MICRO. 1075-1091.

https://satsearch.co/products/endurosat-1u-cubesat-solar-panel
https://satsearch.co/products/endurosat-1u-cubesat-solar-panel
https://www.endurosat.com
https://doi.org/10.1109/TIT.2004.838089
https://datasheets.maximintegrated.com/en/ds/MAX78000.pdf
https://datasheets.maximintegrated.com/en/ds/MAX78000.pdf
https://www.satnogs.org
https://www.satnogs.org
https://www.ti.com/lit/an/slaa720/slaa720.pdf

	Abstract
	1 Introduction
	2 Intermittent Deep Inference:Rethinking Engines and Models
	2.1 Intermittent-aware Runtime Inference Engines
	2.2 Intermittent-friendly Design-time Tools
	2.3 Powering a Low-Carbon Future

	3 Fast Inference on Emerging Hardware
	3.1 Algorithmic and Architectural Inefficiencies
	3.2 Fast Inference for Battery-free Sensors
	3.3 Intermittent Inference in Nonvolatile Memory
	3.4 Towards In-Sensor Battery-free Inference

	4 Efficient and Reliable Battery-free Networks
	4.1 The Battery-free Networking Challenge
	4.2 Methods and Tools to Bootstrap Battery-free Networks
	4.3 Learning for Reliable and Timely Communication

	5 Embracing Errors in TinyML: From Earth to Space
	5.1 We Are Not Married with FRAM
	5.2 Saving Resources Thanks to Errors
	5.3 Breaking It Into Space

	6 Concluding Remarks
	References

