
Detecting Energy Attacks
in the Battery-less Internet of Things

Luca Mottola†+∗ and Thiemo Voigt†+
†RI.SE Sweden, +Uppsala University (Sweden), ∗Politecnico di Milano (Italy)

Abstract. We present a technique to detect energy attacks in the battery-
less Internet of Things (IoT). Battery-less IoT devices rely on ambient
energy harvesting and are employed in a multitude of applications, in-
cluding safety-critical ones such as biomedical implants. Due to scarce
energy intakes and limited energy buffers, their executions become inter-
mittent, alternating periods of active operation with periods of recharging
energy buffers. Evidence exists that demonstrates how exerting limited
control on ambient energy one can create situations of livelock, denial of
service, and priority inversion, without physical device access. We call
these situations energy attacks. Using concepts of approximate intermit-
tent computing and machine learning, we design a technique that can
detect energy attacks with 92%+ accuracy, that is, up to 37% better
than the baselines, and with up to one fifth of their energy overhead.
By design, our technique does not cause any additional energy failure
compared to the regular intermittent processing.

1 Introduction

Ambient energy harvesting allows Internet of Things (IoT) devices to elimi-
nate their dependency on traditional batteries [12]. This enables previously
unattainable deployments, including safety-critical settings such as biomedical
implants [1, 18, 23, 33]. Harvested energy is generally highly variable in time, yet
energy buffers, such as capacitors, are generally limited. System shutdowns due
to energy depletion are unavoidable and computing becomes intermittent [5].
Computing intermittently. Fig. 1 shows an example execution. The ambient
charges the IoT device’s onboard capacitor until voltage Von is reached that
causes the device to power on. The device senses, computes, and communicates
as long as the capacitor charge remains above a threshold Voff . The device then
switches off, waiting for the capacitor to reach Von again. This pattern may occur
on tiny time scales; for example, computing simple error correction codes on a
battery-less IoT device may require as many as 16 energy cycles [11].

Due to resource constraints, applications run with no operating system sup-
port [5]. When the device powers off at Voff , the system state would normally
be lost. Intermittently-computing IoT systems use checkpointing [4, 8, 11, 54, 61]
or task-based programming [44, 62] to create persistent state on non-volatile
memory (NVM). These systems operate as the device approaches Voff , allowing
them to retain the application state across energy failures. Operations on NVM,
however, are extremely energy hungry [46].

2 L. Mottola et al.

Fig. 1. Example intermittent execution.

Energy attacks. Evidence exists that shows how exerting limited control on
ambient energy may steer intermittent executions in unintended ways [49]. We
call these situations energy attacks. The simplest scenario consists, for example,
in physically blocking a solar panel that powers the device, leading to a denial
of service. Such an attack, however, would be straightforward to detect, as the
system would suddenly and completely stop working.

Curically, much more subtle situations exist, where attackers may potentially
do much more harm than with a complete denial of service situation that is im-
mediately recognized and redressed. Energy attacks are indeed reported that
that create situations of livelock, priority inversion, and denial of service [49].
Unlike the simple scenario above, these attacks create situations that are decep-
tively similar to legitimate executions.

Following a definition of the system and attack model in Sec. 3, in Sec. 4
we tackle the problem of detecting energy attacks. Intuitively, this means un-
derstanding when ambient energy provisioning does not follow the “natural”
patterns. The problem appears as a case of anomaly detection [17]. Three pecu-
liar requirements exist: detecting energy attacks i) accurately and ii) with low
latency, while doing so iii) right on the IoT devices, as opposed to an external
system, to spare the energy overhead of radio operations necessary to offload
data to a third party. Our technique uses concepts of approximate intermittent
computing [9, 59] and machine learning to ensure that, by design, the attack de-
tection process does not cause additional energy failures compared to the regular
intermittent processing, imposing minimal overhead.

Sec. 5 reports on the accuracy and overhead of our detection technique, based
on 500K+ data points obtained using real-world energy traces, compared with
two baselines. The results indicate that our technique is 92%+ accurate, which is
up to 37% better than the baselines, and imposes an overhead that is up to one
fifth of the baselines. Further, the detection performance is largely independent
of the energy patterns and robust to previously unseen attacks.

Following detection of an energy attack, the system should apply counter-
measures. In Sec. 6, we explore the multiple dimensions of the problem, articulate
the related trade-offs, and inspire the design of defense techniques.

2 Background and Related Work

Our work is an example of the many ongoing efforts at running inference pro-
cesses of machine learning models on resource-constrained devices [6]. We specif-

Detecting Energy Attacks in the Battery-less Internet of Things 3

ically tailor an existing machine learning technique for detecting energy attacks
on a batter-less IoT device running intermittently. In the following, we provide
background information and survey related works in closely related areas.
Power attacks in data centers. Energy attacks resemble similarities with
power attacks in data centers. Malicious workloads may generate power spikes
on multiple servers at the same time, which causes branch circuit breakers to
trip, leading to power outages [29, 40]. Detection techniques include machine
learning applied to performance logs [19] and modeling user behaviors that may
indicate the infrastructure is under-performing [40].

Common with our problem is that energy is part of the attack vector. How-
ever, the technology is extremely different, for example, in terms of workloads
and hardware platforms. Moreover, in contrast to the attack model we describe
in Sec. 3, attackers do not directly manipulate the energy provisioning channel
and need access to the target data center or must be informed of its layout. In
contrast, the attacks described by Mottola et al. that we consider [49], do not
require physical access to the target device.
Security in battery-powered IoT. IoT devices are difficult to secure due to
resource constraints, which complicates the use of mainstream security mecha-
nisms and protocols [57]. Battery-powered IoT devices enable peculiar attacks,
for example, in an attempt to drain batteries [36, 51, 48]. Low-power radios make
IoT devices vulnerable to denial of service attacks, for example, due to inten-
tional jamming [35]. Multi-hop networks require specialized network stacks that
open to new kinds of attacks, in particular at the routing layer, motivating new
security mechanisms ranging from hardware-based solutions [52] to methods for
attack detection and mitigation that rely on machine learning [21, 56].

These approaches, unfortunately, fall short of expectations for battery-less
IoT devices, where energy constraints are way more severe. Intermittent execu-
tions add a new dimension to the problem that requires specialized solutions.
Security in intermittent computing. The prevailing intermittent computing
architecture includes a mixed-volatile MCU with built-in NVM and one or mul-
tiple capacitors to tame fluctuations of energy intake [20]. This configuration is
seen in available platforms [31, 34] and deployments [1, 18, 23, 33].

The few existing security solutions in intermittent computing focus on se-
curing persistent state. As an example, Krishnan et al. [37] demonstrate that
persistent state is vulnerable to sniffing, spoofing, or replay attacks. In other
works, Asad et al. [7] experimentally evaluate the use of different encryption
algorithms and ARM TrustZone protection. Krishnan et al. [38] build on this
and propose a configurable checkpoint security setting that leverages application
properties to reduce overhead. Ghodsi et al. [28] use lightweight algorithms [13]
for securing checkpoints. Valea et al. [60] propose a SECure Context Saving hard-
ware module inside the MCU. In contrast, Grisafi et al. [30] present a hypervisor
to manage and protect checkpoints.

Unlike these works, we study how to detect new types of attacks realized by
exerting control on ambient energy provisioning.

4 L. Mottola et al.

i-th
device Vn,i(t), In,i(t)

energy
harvesterambient

Va,i(t)

Ci(t)

Fig. 2. System and attack model.

3 Energy Attacks

We describe first the system and attack model we adopt; next, we show evidence
of example vulnerabilities.
System and attack model. Fig. 2 illustrates the system and attack model.
Energy coming from the ambient a and arriving at the energy harvester of node
i is modeled as a continuous signal of voltage Va,i(t). This describes the energy
content made available by the ambient to node i at time t. For simplicity, our
description here considers a single energy source. The corresponding analysis,
however, applies no matter the number of energy sources, as long as the attack
model is applicable to each of them. Relying on multiple energy sources may be,
nonetheless, a way to defend against energy attacks, as we discuss in Sec. 6.

The energy harvester of node i takes Va,i(t) as input and transforms it into
an energy signal of voltage Vn,i(t) and current In,i(t). The latter is a function of
Vn,i(t) and of the equivalent resistance offered by the charging circuitry at node i.
The energy signal described by Vn,i(t) and In,i(t) charges the local energy buffer,
eventually discharged while sensing, computing, or communicating. We model
the charge available in the energy buffer of node i as Ci(t).

The attacker has no physical access to the devices and no knowledge of the
relation between Va,i(t) and Vn,i(t) or In,i(t). She can sniff and inspect packets, as
well as intervene along the path from the energy source to the energy harvester
attached to the device, including directly controlling the energy source. This
means the attacker can alter the value of Va,i(t) taken as input at node i. We
model this as a function ai(Va,i(t)), that is, a transformation a from the voltage
domain to the same domain, specific to node i.

A straightforward example of function a that causes a denial of service at
node i from t′ onwards is ai(Va,i(t)) = 0, t > t′, that is, the harvester at node i
receives no energy after t′. The energy buffer at node i progressively discharges
because of application processing and capacitor leakage, until the device persists
the state before entering the charging phase, as shown in Fig. 1. However, because
ai(Va,i(t)) = 0, t > t′, that is, there is no energy arriving at node i later than t′,
Ci(t) never reaches Von again, and node i never resumes.

The attacker can access to the application’s source code or reverse-engineer
from binaries [58]. Codebases for battery-less IoT systems, including those used
in real deployments [18, 1, 23], are often public, including operating system lay-
ers [5] and hardware drivers [15], while compilers [26] often require the entire
source code to perform full-program optimizations.
Example attacks. Existing literature reports three specific instances of energy
attacks [49]. These create situations of livelock, denial of service, and priority
inversion. For illustration, we show how an existing vulnerability leads to to the

Detecting Energy Attacks in the Battery-less Internet of Things 5

device under attack

Vn,i(t) = 0

harvester

Ci(t)

legitimate
signal

phase
opposing

signal

phase
alignment

Fig. 3. Generating an opposing RF energy signal.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0 5 10 15 20

V
o
lt
a
g
e
 [
V

]

Time [s]

Capacitor voltage Harvester Vn,i

Fig. 4. Livelock situation caused by an energy attack.

former situation, using a TI MSP430FR5969 Launchpad running HarvOS [11],
an existing checkpointing system for intermittent computing, and two Powercast
transmitter-receiver pairs. The same situation can be achieved, for example, by
controlling the incident solar radiation [12].

Existing intermittent systems recommend setting the activation threshold
Von by striking a balance between charging times and energy content when the
system is at Von [4, 11, 20, 31, 54]. The former suggests a lower Von , whereas
the latter pushes for a higher Von. In most existing systems [4, 11, 54], Von is
statically set before deployment and does not necessarily guarantee that the
energy content is sufficient to make progress in the application logic and persist
the state whenever necessary. The ambient is indeed supposed to provide some
energy also during the active times [12].

An attacker may systematically block the energy source at a node i while the
device is computing, that is, he creates a transformation a such that ai(Va,i(t)) =
0, t′ > t > t′′, where t′ and t′′ are the points in time where the system reaches Von

and Voff , respectively. Concretely, while the first Powercast transmitter normally
powers the device, the attacker implements function a by generating an opposing
signal with a second Powercast receiver-transmitter pair, as shown in Fig. 3. This
may be achieved by generating a signal in phase opposition [49] with the regular
one, yielding destructive interference [43, 50]. The attacker thus cancels out the
energy contribution of the legitimate Powercast transmitter.

Fig. 4 shows an example execution once the phase alignment is achieved.
Without any contribution of energy during active times and a Von setting that
does not account for this, the system approaches Voff with insufficient energy
to persist state, that is, no new checkpoint is created. When the system reaches
Von again, HarvOS resorts to the previous checkpoint, that is, the one that does
not include the progress achieved between t′ and t′′. The previous operations are

6 L. Mottola et al.

energy
management

Vn,i(t), In,i(t)energy
harvesterambient

Va,i(t)

Ci(t)

attack
detection

Di(t) ∊ {0,1}

device

Fig. 5. Detection system architecture.

then executed again, and with the attacker replaying the same function a once
more, the system approaches Voff again with insufficient energy to persist the
state. As long as the attacker keeps doing so, the system continues to restart
from the same checkpoint, making no progress in the long run.

Note that in the case of RF energy harvesting, this attack may occur not just
without physical access to the device, but also without being anywhere close to it.
As long as the attacker is in the (wireless) range of both the legitimate Powercast
transmitter and of the device under attack, as shown in Fig. 3, she may detect
both the incoming energy wave and regular network packets.

4 Attack Detection

We study the problem of detecting energy attacks when they are not as simple
as completely and suddenly stopping the system. This means understanding
when ambient energy does not follow the expected patterns, which is a case of
anomaly detection [17]. Most deployments of IoT battery-less devices operate in
areas with little to no opportunities for external instrumentation [1, 18, 23, 33];
for example, to install systems to detect physical intrusion of the attacker using
surveillance cameras. We are, therefore, to meet specific requirements:

R1 be accurate, that is, minimizing false positives and false negatives so a device
can rely on factual information;

R2 operate online with low latency, as countermeasures may be effective only
in the short term;

R3 run locally on the IoT device due to the excessive energy consumption and
additional latency that offloading the process to a third party would incur.

4.1 Design Space

Fig. 5 shows the detection system architecture. The detection process runs peri-
odically, every T . We indicate with Di(t) ∈ {0, 1} a binary indicator that corre-
sponds to whether the attack detection system thinks that an energy attack is
ongoing at time t, with t = kT , k ∈ N.

Regardless of how to detect energy attacks, the inputs to the detection system
at node i may only be voltage Vn,i(t), current In,i(t), and capacitor charge Ci(t).
This is because the device has no information about ambient energy at node i,
indicated as Va,i(t) in Fig. 4, before its transformation into usable energy by

Detecting Energy Attacks in the Battery-less Internet of Things 7

the harvesting mechanism. This means that whenever an attack described as
a function ai(Va,i(t)) occurs, the detection system cannot observe the attack
directly, but it only has access to its effects after the harvesting processing.

Of the requirements above, R1 is common [17]; R2 excludes techniques that
require the anomaly to stabilize in the long term or even to stop occurring
before they can return an indication that it did happen. Most difficult, however,
is R3. It rules out anomaly detection methods that demand large memories [24],
significant processing power [39], or based on sharing information among nodes.
It demands reducing energy consumption. The ideal solution would be one that
does not cause additional energy failures, which may require persisting state and
indirectly cause an overhead that would not be present otherwise.

We base our solution on approximate intermittent computing [9, 59] and de-
velop an approximate support vector machine (ASVM) for detecting energy
attacks. Approximate intermittent computing provides a knob to trade energy
consumption for accuracy. We elect to use support vector machines because of
their accuracy for binary classification [14, 53] and their optimal trade-off be-
tween accuracy of classification and resource consumption [10, 22].

4.2 ASVM for Attack Detection

An ASVM is a support vector machine trained as a regular SVM, but capable
of using a subset of the signal features for inference [59, 9].

We train the ASVM using a total of 52 features by sampling every T the
input signals Vn,i(t), In,i(t), Ci(t) for a given ambient energy source, and com-
binations thereof. Example features include statistical parameters like averages
and standard variations, up to various maximum likelihood estimators. The fea-
tures are computed over different sliding windows over the past wT,w ∈ N time
instants, which we tune based on the energy source. For example, in case of solar
radiation, we use different windows to account for the behavior of the energy
source over the last 24 h and the last 10 min. Training happens on a regular
machine using the SVM library of the ScyPy package.

If we were to run the resulting model as a regular SVM, it may happen that
running the energy attack detection step becomes the cause of an energy failure,
prompting the system to dump the state on NVM to resume the work once
energy is newly available. The energy required for NVM operations is significant
and even if it is not directly required for detecting energy attacks, its overhead
is in fact indirectly caused by that process exceeding the available energy.

To mitigate these occurrences, we profile the energy required for computing
each of the 52 features, including the cost for hardware interaction, and analyt-
ically study the contribution to the overall accuracy each of them provides [3].
Next, we order the 52 features according to the ratio between their contribution
to the resulting accuracy and their energy cost. This means that features that
come first are those with the lowest cost per unit of contributed accuracy.

When the detection system runs, we probe the capacitor for the energy level
and determine the first m features, out of the total 52 features, we can afford
for classification without causing an energy failure. As probing the capacitor is

8 L. Mottola et al.

required anyways, the energy cost for doing so is not considered in the energy cost
profile of any of the features. We then compute the classification incrementally
and return the classification determined using m ≤ 52 features. By placing the
call to the energy attack detection system as last in an application period, we
ensure that the attack detection process only runs with the energy “leftovers”,
without ever causing an energy failure that would not be there already.

5 Evaluation

Our evaluation is entirely based on real-world energy traces and accounts for
500K+ data points. The analysis is three-pronged. In Sec. 5.2, we evaluate the
accuracy and system performance of the ASVM by generating energy attacks in
a synthetic manner, that is, by varying the statistical parameters representing
how an attacker manipulates the energy signal. This is instrumental to assess
the general behavior of our design in a multitude of conditions. In Sec. 5.3, we
concentrate on three specific attacks with existing experimental evidence [49].
Sec. 5.4 measures the performance against attacks whose patterns are never seen
before, testing our design’s ability to tackle previously unseen scenarios.

5.1 Setting

Because of the highly non-deterministic behavior of energy sources, achieving
perfect reproducibility when evaluating energy-harvesting systems is challeng-
ing using real devices [5]. We thus opt for system emulation over hardware-
based experimentation. Still, in the specific case of Sec. 5.3, we manage to run
experiments with a real device and energy harvester.
Setup. We use the custom Siren MSP430 emulator [25]. We extend the tool
with a model of 64 Kbyte of FRAM NVM next to a 2 Kbyte SRAM space,
corresponding to the memory layout of the MSP430-FR5969, often employed in
intermittent computing [44, 54, 61]. We account for the energy consumption per
clock cycle of various operating modes of the MSP430-FR5969, such as regular
computation, non-volatile/volatile memory operations, and I/O.

We simulate a paradigmantic sense-process-transmit IoT application [5] and
use HarvOS [11] for checkpointing. We do not emulate sensors and radio, but
the time and energy overhead for both are synthetically accounted for at the end
of every application round. Note that the application processing is orthogonal
to the energy attack detection and useful only to quantify the relative overhead
of the energy attack detection system. In our case, we insert a call to the energy
attack detection system at the end of every application round, thus generating
the highest relative overhead.
Metrics and traces. We compute three key metrics: i) the percentage of false
negatives (positives) measures the accuracy of the detection process as the frac-
tion of energy attacks that are definitely missed (wrongly detected); ii) the time
to detection is the number of application rounds between attack injection and
when the detection system signals the attack, which measures how rapidly a

Detecting Energy Attacks in the Battery-less Internet of Things 9

given technique realizes that the signal represents an anomaly1; and iii) the rel-
ative energy overhead as the additional energy consumption due to the energy
attack detection system, compared with the application alone.

We feed the emulator with twelve diverse energy traces, offering a mixture
of energy source, harvesting technology, and setting. In the following, the terms
“indoor/outdoor” coupled with “static/mobile” refer to the location and mobility
of the harvester unit, respectively. The M-RF trace is from Mementos [54] and
is recorded using a Powercast transmitter [55]. Four traces are from EPIC [3]
and are recorded using a mono-crystalline solar cell in settings including outdoor
mobile (E-SOM), indoor mobile (E-SIM), outdoor static (E-SOR), and indoor
static (E-SIR). The M-VIB and M-TEG traces are obtained using a ReVibe
modelD kinetic energy harvester and a Thermalforce 254-150-36 thermoelectric
energy harvester [1], respectively. The remaining traces are from the development
of the Bonito protocol [27] and account for scenarios involving solar cells (B-JOG
and B-OFI) and piezoelectric (B-STA, B-CAR, B-WAS) harvesters.

We use a 75/25 split between training and test data for every trace [47].
During each experiment, we inject no attack for 0.5 h of simulated time to let
estimators stabilize. Experiments last between 12 h and 24 h of simulated time.
Baselines. We compare the performance of the ASVM in detecting energy
attacks against an equivalent SVM that uses the same model with the regular
inference step, called Regular SVM, as well as two additional baselines.

One baseline is the k-nearest neighbors algorithm (k-NN) [47], together with
hyperparameter optimization to select k. k-NN is often used for anomaly detec-
tion of time series [17]. As in existing work [17], we obtain the classification by
majority vote across the 52 features. The other baseline is called isolation forest
(Forest) and is known to provide accurate anomaly detection with a linear
time complexity and very limited memory consumption [41].

5.2 Synthetic Attacks

We inject energy attacks by considering the original trace as a signal Vn,i(t)
with mean µ and variance δ and by manipulating the latter two, changing the
mean as µ′ = kµ and/or the variance as δ′ = hδ, with 0 ≤ k, h; k < 1;h < 2;
h, k ∈ Q. Intuitively, h > 1 means increasing the randomness in the signal.
Attack occurrence is drawn from a Poisson distribution with arrival rate λ of
one every 10 minutes; the duration is drawn from a Normal distribution with
mean 3 min. These parameters model existing energy attacks [49], which are
proven to be successful. The application period is one minute.
Results. Fig. 6 shows the results we obtain as a function of the energy trace.
The percentage of false positives, shown in Fig. 6(a), is limited across all designs
and energy traces, never even reaching 1% of the cases. This is reassuring: in the
presence of a mitigation technique, the price to pay for counteracting an energy
attack would rarely be paid unnecessarily.

1 False negatives are excluded from aggregate statistics.

10 L. Mottola et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

M-RF
E-SOM

E-SIM
E-SOR

E-SIR
M-VIB

M-TEG

B-JOG
B-OFI

B-STA
B-CAR

B-WAS

F
a

ls
e

 p
o

s
it
iv

e
s
 [

%
]

Energy trace

ASVM
Regular SVM

k-NN
Forest

(a) False positives [%].

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

M-RF
E-SOM

E-SIM
E-SOR

E-SIR
M-VIB

M-TEG

B-JOG
B-OFI

B-STA
B-CAR

B-WAS

F
a
ls

e
 n

e
g
a
ti
v
e
s
 [
%

]

Energy trace

ASVM
Regular SVM

k-NN
Forest

(b) False negatives [%].

 0
 2
 4
 6
 8

 10
 12
 14

M-RF
E-SOM

E-SIM
E-SOR

E-SIR
M-VIB

M-TEG

B-JOG
B-OFI

B-STA
B-CAR

B-WAS

O
v
e

rh
e

a
d

 [
%

]

Energy trace

ASVM
Regular SVM

k-NN
Forest

(c) Energy overhead [%].

 0
 1
 2
 3
 4
 5
 6
 7
 8

M-RF
E-SOM

E-SIM
E-SOR

E-SIR
M-VIB

M-TEG

B-JOG
B-OFI

B-STA
B-CAR

B-WAS

T
im

e
 t
o
 d

e
te

c
ti
o
n
 [
p
e
ri
o
d
]

Energy trace

ASVM
Regular SVM

k-NN
Forest

(d) Time to detection [periods].

Fig. 6. Performance as a function of energy trace.

Different considerations apply to the results for false negatives, show in
Fig. 6(b). The performance of both SVM-based solutions is markedly better than
the other two baselines for most of the energy traces. The only exceptions are
the E-SOR and B-STA traces, obtained using solar cells in an indoor setting,
where the performance is comparable among all designs. The chances that tem-
porary occlusions of the solar cells occur in this setting, for example, because of
people passing by, is much higher than elsewhere. It is difficult to separate these
legitimate energy variations from short-lived energy attacks.

Crucially, Fig. 6(b) demonstrates that the loss of accuracy, measured in terms
of false negatives, due to using fewer features in ASVM is extremely limited
compared to the Regular SVM. In the worst case, shown by the B-OFI trace,
the ASVM is only 2.4% less accurate than the Regular SVM. In return,
the ASVM imposes between half and one third of the energy overhead of the
Regular SVM, as shown in Fig. 6(c). Two factors concur to this result: i) the
ASVM uses first the features that contribute the most to an accurate result;
and ii) the ASVM is inherently adaptive: if sufficient energy is available, it uses
all available features and the performance is the same as the Regular SVM.
The energy overhead of the other baselines tends to be higher than ASVM, with
Forest generally outperforming k-NN due to the linear time complexity.

Fig. 6(d) shows, on the other hand, that both SVM-based approaches take
slightly longer to detect attackes compared to the other baselines. On average,
ASVM (Regular SVM) takes roughly 12% (8%) additional time. Given the
absolute numbers at hand, however, this additional time rarely corresponds to
more than one application period. Provided the attack is eventually detected,
this means the application spends limited time without being aware of that.

Given the accuracy and energy performance of the ASVM, the additional
time to detect an attack is a fair price to pay, given that the other two baselines
are slightly faster to detect an attack if they do detect one, but often miss the

Detecting Energy Attacks in the Battery-less Internet of Things 11

 0

 5

 10

 15

 20

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

F
a
ls

e
 n

e
g
a
ti
v
e
s
 [
%

]

Parameter K

ASVM
Regular SVM

k-NN
Forest

(a) False negatives with varying k, h = 1.

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

F
a
ls

e
 n

e
g
a
ti
v
e
s
 [
%

]

Parameter H

ASVM
Regular SVM

k-NN
Forest

(b) False negatives with varying h, k = 1.

Fig. 7. Percentage of false negatives as a function of k and h.

detection altogether, as shown earlier in Fig. 6(b). The ASVM is slightly slower,
but significantly more accurate, that is, “better (slightly) late than never”.

Fig. 7 provides a different view on the results, plotting the percentage of false
negatives depending on k and h. We concentrate solely on the false negatives
because the false positives are limited, as discussed before, whereas energy over-
head and time to detection are largely independent of k and h. Fig. 7(a) shows
that both SVM-based designs consistently outperform the baselines regardless
of k and h. The increasing trend is due to attacks with smaller k being easier
to detect: the smaller the k, the more different is the manipulated signal com-
pared to the original one. The corner case is with k = 0, which corresponds to
completely zeroing the energy signal, for example, modeling an occlusion of a
solar cell, which all designs recognize accurately. The more k approaches 1, that
is, the closer is the manipulated signal to the original one, the wider is the gap
between the SVM-based designs and the baselines.

Similar considerations apply to Fig. 7(b), plotting the percentage of false
negatives as a function of h. Again, the more h approaches 1, which means the
more the manipulated signal is similar to the original one, the less accurate is the
detection. The gap between the ASVM and either k-NN or Forest is largest
precisely around h ≈ 1, which is the most difficult setting.

5.3 Concrete Attacks

We verify the performance of the ASVM against the three specific attacks ex-
perimentally reported in the literature [49]. We use the same configuration and
real hardware as in Sec. 3 and examine 22 instances of the attack leading to
a livelock. For attacks leading to denial of service and priority inversion, we
generate 100 instances each using the same setup and traces of Sec. 5.1 as input.

There is no guarantee that the attacks we generate are successful. By mon-
itoring the signal Vn(t) during the experiments, we measure that 16 instances
(out of 22) are successful for the livelock attack, 88 instances (out of 100) are
successful in the case of denial of service attack, and 38 instances (out of 100)
are successful for the priority inversion attack. This models a realistic setting
where one attempts to exploit a vulnerability, but does not always succeed.
Results. Fig. 8 shows the results. The trends of Sec. 5.2 are confirmed. False pos-
itives, not shown for brevity, top to 3% of the cases, and yet the ASVM, despite
the approximate processing, returns no false positives at all. Crucially, Fig. 8(a)

12 L. Mottola et al.

 0
 2
 4
 6
 8

 10
 12
 14
 16

Livelock DoS Priority inversion

F
a

ls
e

 n
e

g
a

ti
v
e

s
 [

%
]

ASVM
Regular SVM

k-NN
Forest

(a) False negatives [%].

 0
 2
 4
 6
 8

 10
 12
 14

Livelock DoS Priority inversion

O
v
e
rh

e
a
d
 [
%

]

ASVM
Regular SVM

k-NN
Forest

(b) Energy overhead [%].

Fig. 8. Performance for three concrete attacks [49].

 0

 5

 10

 15

 20

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

F
a
ls

e
 n

e
g
a
ti
v
e
s
 [
%

]

Parameter K

ASVM
Regular SVM

k-NN
Forest

(a) False negatives with varying k, h = 1.

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

F
a
ls

e
 n

e
g
a
ti
v
e
s
 [
%

]

Parameter H

ASVM
Regular SVM

k-NN
Forest

(b) False negatives with varying h, k = 1.

Fig. 9. Percentage of false negatives as a function of parameter k and h, when using
non-overlapping parameter settings for training data and test data.

shows that the ASVM has the exact same accuracy as the Regular SVM.
We conclude that the additional features processed by the Regular SVM are
not sufficient to sway the classification, and hence the related processing entirely
represents unnecessary overhead. The impact of the unnecessary overhead shows
in Fig. 8(b), where the ASVM outperforms all other designs, with Forest being
the second most efficient technique as seen in Fig. 6(c). The time to detection
for the ASVM, not shown for brevity, is comparable to k-NN and Forest, and
only the Regular SVM performs 17% better in the case of denial of service
and prority inversion, while being roughly as fast for the livelock attack.

5.4 Unknown Attacks

We evaluate what accuracy we may obtain against unknown problem instances.
We repeat the experiments of Sec. 5.2 with a different split between training
data and test data. We use as training set the instances with k ∈ {0.2, 0.6} and
h ∈ {0.6, 1.2, 1.8}. All other parameter setting for either k or h are only used to
generate test data. This has two effects: i) it reduces the size of the training data,
and ii) the designs we test are confronted with unseen patterns of the energy
signal, which might be legitimate or represent attacks.
Results. Fig. 9 shows the results. For the reasons explained earlier, we focus on
the percentage of false negatives as a measure of accuracy. Compared to Fig. 7,
the absolute values are generally larger, likely because of the reduction in the size
of the training data, yet the trends remain largely the same. The observations we
outline earlier, especially on the limited loss of accuracy of the ASVM compared
to the Regular SVM, do remain.

Most importantly, the parameter settings that do not appear in the training
set represent no particular outlier in Fig. 9 for either of the SVM-based designs.

Detecting Energy Attacks in the Battery-less Internet of Things 13

This is not the case for the other baselines, as seen in Fig. 9(a) when k = 0.4
and in Fig. 9(b) when h = 1.5. This provides evidence of the general robustness
of our design also when facing previously unseen problem instances.

6 Inspiring Defense

Designing defense techniques is a manifold problem, whose implications possi-
bly percolate through both software and hardware layers. We discuss next key
dimensions of the design space, hopefully inspiring follow-up work in the area.

Consider a scenario where energy is the major concern, hence the ratio be-
tween energy consumed and useful work is to be minimized. Defense techniques
may be developed in this scenario by applying mixed-criticality concepts [16],
that is, by splitting code functionality or application tasks in critical and non-
critical ones. During an attack, the latter may be suspended, thus shifting the
reduced energy budget towards critical functionality.

Say the amount of collected data is crucial, regardless of how energy is spent.
One may employ concepts of context-oriented programming, which also exist for
low-power embedded systems [2], to dynamically change the application behav-
ior. For instance, the system may temporarily log data locally instead of using
wireless transmissions, should the latter be affected by the energy attack.

One may design techniques that mitigate particular negative effects. These
require an additional step to identify the type of attack. Examples are techniques
that mitigate attacks preventing a device from making progress, that is, akin to
the example attack of Sec. 3. Recognizing this kind of attack may be achieved by
instrumenting the code with intermittence-aware programming constructs [45].
Adapting techniques that dynamically adjust the activation threshold [8] may
provide a way to resolve the livelock.

On the other hand, we argue that generally-applicable defense techniques
may take inspiration from energy management in mobile devices [32]. Mobile
operating systems feature sophisticated techniques to handle situations of en-
ergy scarcity, for example, when the battery is about to run out. These in-
clude tuning a number of hardware knobs, which are normally not available on
resource-constrained embedded platforms, as well as software techniques such as
throttling the execution of a subset of system processes. The latter effectively
represent a generalization of many of the attack-specific techniques we discuss.
These techniques may be adapted to intermittently-computing devices.

The defense techniques outlined above are mainly implemented in software.
A natural option at the hardware level is to rely on multiple energy sources.
Existing hardware platforms [31] and deployed battery-less IoT systems [1, 18,
33] seldom rely on multiple energy sources, yet prototypes exist [42]. Combin-
ing energy-rich sources that may be attack vectors, with energy-poor sources
that are exceedingly difficult to employ as attack vectors, may provide an ef-
fective combination to sustain long-term operation in regular conditions, while
mitigating the effects of energy attacks when they occur.

14 L. Mottola et al.

7 Conclusion

We presented a technique to detect energy attacks that is accurate, timely, and
imposes a limited energy overhead, enabling detection on resource-constrained
IoT devices. Our ASVM design combines machine learning and approximate
intermittent computing concepts. Our evaluation, entirely based on real-world
energy traces, shows that the ASVM detects energy attacks with 92%+ accu-
racy, that is, up to 37% better than the baselines, and with up to one fifth of
their overhead. We concluded with directions to inspire defense techniques.

References

1. Afanasov, M., et al.: Battery-less zero-maintenance embedded sensing at the
mithræum of circus maximus. In: Proceedings of the ACM Conference on Em-
bedded Networked Sensor Systems (SENSYS) (2020)

2. Afanasov, M., Mottola, L., Ghezzi, C.: Context-oriented programming for adaptive
wireless sensor network software. In: IEEE International Conference on Distributed
Computing in Sensor Systems (2014)

3. Ahmed, S., et al.: The betrayal of constant power × time: Finding the missing
joules of transiently-powered computers. In: International Conference on Lan-
guages, Compilers, and Tools for Embedded Systems (LCTES) (2019)

4. Ahmed, S., et al.: Efficient intermittent computing with differential checkpointing.
In: Proceedings of the ACM International Conference on Languages, Compilers,
and Tools for Embedded Systems (LCTES) (2019)

5. Ahmed, S., et al.: The Internet of Batteryless Things. Commun. ACM (2024)
6. Alajlan, N.N., Ibrahim, D.M.: Tinyml: Enabling of inference deep learning models

on ultra-low-power iot edge devices for ai applications. Micromachines (2022)
7. Asad, H.A., et al.: On securing persistent state in intermittent computing. In: Int.

Workshop on Energy Harvesting and Energy-Neutral Sensing Systems (2020)
8. Balsamo, D., et al.: Hibernus++: A self-calibrating and adaptive system for

transiently-powered embedded devices. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (2016)

9. Bambusi, F., et al.: The case for approximate intermittent computing. In: Interna-
tional Conference on Information Processing in Sensor Networks (IPSN) (2022)

10. Banbury, C.R., et al.: Benchmarking TinyML systems: Challenges and direction.
arXiv preprint 2003.04821 (2020)

11. Bhatti, N.A., Mottola, L.: Harvos: Efficient code instrumentation for transiently-
powered embedded sensing. In: International Conference on Information Processing
in Sensor Networks (IPSN) (2017)

12. Bhatti, N.A., et al.: Energy harvesting and wireless transfer in sensor network
applications: Concepts and experiences. ACM Trans. on Sensor Networks (2016)

13. Borghoff, J., et al.: PRINCE–a low-latency block cipher for pervasive computing
applications. In: International Conference on the Theory and Application of Cryp-
tology and Information Security (2012)

14. Boser, B., Guyon, I., Vapnik, V.: A training algorithm for optimal margin classi-
fiers. In: Proceedings of the Workshop on Computational Learning Theory (1992)

15. Branco, A., et al.: Intermittent asynchronous peripheral operations. In: Interna-
tional Conference on Embedded Networked Sensor Systems (SENSYS) (2019)

Detecting Energy Attacks in the Battery-less Internet of Things 15

16. Burns, A., Davis, R.I.: A survey of research into mixed criticality systems. ACM
Computing Surveys (CSUR) 50(6) (2017)

17. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM com-
puting surveys (CSUR) 41(3) (2009)

18. Chen, Q., et al.: Harvest energy from the water: A self-sustained wireless water
quality sensing system. ACM Trans, on Embedded Computing Systems (2017)

19. Chen, S., et al.: Power attack and detection technology in data centers: A survey.
In: International Conference on Communications, Computing, Cybersecurity, and
Informatics (CCCI) (2020)

20. Colin, A., et al.: A reconfigurable energy storage architecture for energy-harvesting
devices. In: International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS) (2018)

21. da Costa, K., et al.: Internet of things: A survey on machine learning-based intru-
sion detection approaches. Computer Networks (2019)

22. David, R., et al.: Tensorflow lite micro: Embedded machine learning for TinyML
systems. Proceedings of Machine Learning and Systems 3 (2021)

23. Denby, B., et al.: Kodan: Addressing the computational bottleneck in space. In:
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS) (2023)

24. Dietterich, T.G.: Ensemble methods in machine learning. In: International Work-
shop on Multiple Classifier Systems. Springer (2000)

25. Furlong, M., et al.: Realistic simulation for tiny batteryless sensors. In: Int. Work-
shop on Energy Harvesting and Energy-Neutral Sensing Systems (ENSSYS) (2016)

26. Gay, D., et al.: The nesC language: A holistic approach to networked embedded
systems. Acm Sigplan Notices (2003)

27. Geissdoerfer, K., Zimmerling, M.: Learning to communicate effectively between
battery-free devices. In: USENIX Symposium on Networked Systems Design and
Implementation (NSDI) (2022)

28. Ghodsi, Z., et al.: Optimal checkpointing for secure intermittently-powered iot
devices. In: International Conference on Computer-Aided Design (ICCAD) (2017)

29. Greenberg, A., Hamilton, J., Maltz, D.A., Patel, P.: The cost of a cloud: research
problems in data center networks (2008)

30. Grisafi, M., Ammar, M., Yildirim, K.S., Crispo, B.: MPI: memory protection for
intermittent computing. IEEE Trans. on Information Forensics and Security (2022)

31. Hester, J., Sorber, J.: Flicker: Rapid prototyping for the batteryless Internet of
Things. In: Int. Conference on Embedded Network Sensor Systems (2017)

32. Hoque, M.A., et al.: Modeling, profiling, and debugging the energy consumption
of mobile devices. ACM Computing Surveys (CSUR) (2015)

33. Ikeda, N., et al.: Soil-monitoring sensor powered by temperature difference between
air and shallow underground soil. International Conference on Interactive, Mobile,
Wearable and Ubiquitous Technologies (IMWUT) (2020)

34. Jackson, N., et al.: Capacity over capacitance for reliable energy harvesting sensors.
In: Int. Conference on Information Processing in Sensor Networks (IPSN) (2019)

35. Kanwar, J., et al.: JamSense: Interference and jamming classification for low-power
wireless networks. In: Wireless and Mobile Networking Conference (WMNC) (2021)

36. Krentz, K.F., et al.: Countering three denial-of-sleep attacks on ContikiMAC. In:
Int. Conference on Embedded Wireless Systems and Networks (EWSN) (2017)

37. Krishnan, A., Schaumont, P.: Exploiting security vulnerabilities in intermittent
computing. In: SPACE International Conference (2018)

38. Krishnan, A.S., Schaumont, P.: Benchmarking and configuring security levels in
intermittent computing. ACM Trans. on Embedded Computing Systems (2022)

16 L. Mottola et al.

39. Langley, P., Iba, W., Thompson, K., et al.: An analysis of bayesian classifiers. In:
International AAAI Confernce on Artificial Intelligence (1992)

40. Li, C., et al.: Power attack defense: Securing battery-backed data centers. ACM
SIGARCH Computer Architecture News (2016)

41. Liu, F.T., et al.: Isolation forest. In: Int. Conference on Data Mining (2008)
42. Liu, H., et al.: Hybrid energy harvesting technology: From materials, structural de-

sign, system integration to applications. Renewable and sustainable energy (2021)
43. Liu, Q., et al.: Safe and secure wireless power transfer networks: Challenges and

opportunities in RF-based systems. IEEE Communications Magazine (2016)
44. Maeng, K., et al.: Alpaca: Intermittent execution without checkpoints. Proceedings

of the ACM Programming Languages (2017)
45. Maioli, A., Mottola, L.: Intermittence anomalies not considered harmful. In: Int.

Workshop on Energy Harvesting and Energy-neutral Sensing Systems (2020)
46. Maioli, A., Mottola, L.: Alfred: Virtual memory for intermittent computing. In:

Int. Conference on Embedded Networked Sensor Systems (SENSYS) (2021)
47. Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of machine learning.

MIT press (2018)
48. Mottola, L., et al.: Enabling scope-based interactions in sensor network macropro-

gramming. In: Int. Conf. on Mobile Ad-hoc Sensor Systems (MASS) (2007)
49. Mottola, L., et al.: Energy attacks in the Battery-less Internet of Things: Directions

for the future. In: European Workshop on Systems Security (2024)
50. Naderi, M.Y., et al.: RF-MAC: a medium access control protocol for re-chargeable

sensor networks powered by wireless energy harvesting. IEEE Transactions on
Wireless Communications (2014)

51. Nguyen, V.L., Lin, P.C., Hwang, R.H.: Energy depletion attacks in low power
wireless networks. IEEE Access 7 (2019)

52. Portilla, J., et al.: Adaptable security in wireless sensor networks by using recon-
figurable ecc hardware coprocessors. International Journal of Distributed Sensor
Networks (2010)

53. Pradhan, A.: Support vector machine-a survey. International Journal of Emerging
Technology and Advanced Engineering 2(8) (2012)

54. Ransford, B., et al.: Mementos: System support for long-running computation on
rfid-scale devices. ACM SIGARCH Computer Architecture News (2011)

55. Sample, A., et al.: Design of an RFID-based battery-free programmable sensing
platform. IEEE transactions on instrumentation and measurement (2008)

56. Tahsien, S.M., et al.: Machine learning based solutions for security of Internet of
Things (IoT): A survey. Journal of Network and Computer Applications (2020)

57. Thakor, V.A., et al.: Lightweight cryptography algorithms for resource-constrained
IoT devices: A review, comparison and research opportunities. IEEE Access (2021)

58. Udupa, S.K., et al.: Deobfuscation: Reverse engineering obfuscated code. In: Work-
ing Conference on Reverse Engineering (WCRE) (2005)

59. Umesh, S., Mittal, S.: A survey of techniques for intermittent computing. Journal
of Systems Architecture 112 (2021)

60. Valea, E., et al.: SI ECCS: SECure context saving for IoT devices. In: Int. Confer-
ence on Design & Technology of Integrated Systems In Nanoscale Era (2018)

61. Van Der Woude, J., Hicks, M.: Intermittent computation without hardware support
or programmer intervention. In: Int. Conference on Operating Systems Design and
Implementation (OSDI) (2016)

62. Yildirim, K.S., et al.: InK: Reactive kernel for tiny batteryless sensors. In: Int.
Conference on Embedded Networked Sensor Systems (SENSYS) (2018)

