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Abstract

We presentNeuro-centric Networks (Neuro-C), a neural net-
workarchitecturewedesigntoeliminatemultiply-accumulate
operations for efficient inference on ultra-low-power micro-
controllers (MCUs). Although some MCUs include special-
ized hardware for neural acceleration, many ultra-low-power
MCUs do not, requiring neural networks to alignwith limited
compute and memory resources. Rather than compressing
existing models or assuming dedicated hardware, Neuro-C
integrates hardware constraints directly into the architecture,
effectively shaping the network design around the limitations
of the target platform. We shift the computational burden
from connections to neurons and encode connectivity with a
fixed ternary adjacencymatrix, overcoming the bottleneck of
matrix multiplications and large weight storage. This design
enables a specialized inference kernel implementation that
reduces memory usage and latency through pointer-based
traversal and sparse dynamic memory allocation, complex
control flows, and index decoding logic common in sparse or
compressed models. Experimental results show that Neuro-
C achieves accuracy comparable to or better than standard
multilayer perceptrons across multiple datasets, while re-
ducing inference latency and programmemory usage by up
to 90%. Compared to conventional ternary neural networks,
Neuro-C provides improved convergence and accuracy un-
der identical architectural settings, with negligible impact on
inference latency.

CCS Concepts: •Computingmethodologies→Neural

networks; •Computer systems organization→ Embed-

ded software.

Keywords: TinyML, Embedded Systems, Ultra-Low-Power
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1 INTRODUCTION

Ultra-low-power microcontrollers (MCUs) are widely de-
ployed in embedded IoT systems but are characterized by
severely limited memory budgets while lacking hardware
features such as floating-point support [40]. Deploying neu-
ral inference directly onto such MCUs enables intelligent
autonomous systems, such as battery-powered BLE nodes
that detect environmental events locally [30], but requires
operating within tight energy and memory budgets [27].
Problem.Despite advances in quantization and optimized
kernels, deploying conventional TinyML inference, such as
quantized multilayer perceptrons (MLPs) or convolutional
networks (CNNs), remains challenging on ultra-low-power
MCUs [10]. Multiply and accumulate (MACC) operations and
dense weight matrices rapidly exhaust the limited computing
andmemoryresources typicallyavailableon thesedevices.Ex-
isting TinyML frameworks, including ARM’s CMSIS-NN [9]
and TensorFlow Lite Micro (TFLM) [13] that provide runtime
support for TinyML inference, consequently rely heavily on
relatively large memory budgets and hardware acceleration,
for example, hardware Digital Signal Processing (DSP) or
Floating Point Units (FPUs), besides dedicated Neural Pro-
cessing Units (NPUs) [49].

Commonsystem-on-chip implementations forsensornodes,
nonetheless, must prioritize scarce die area to pack radios,
power management, and advanced I/O, severely constraining
memory and compute resources [7] and inherently complicat-
ing the integration of low-powerNPUs. Even optimized fixed-
point kernels [18] quickly exceed available memory, driving
inference latency into hundreds of milliseconds and surpass-
ing tight energy budgets. Techniques like pruning and quanti-
zation reducememory footprint but cannot eliminate theover-
head of thousands of scalar multiplications, nor can they fully
mitigate branch-heavy loops and irregular memory access
patterns common in generic inference implementations [20].
As a result, developers resort to hand-crafted pointer arith-
metic and fixed loops, still incurring the cost of extensive
matrix traversals and inefficient repeated memory loads [4].
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To further complicate matters, existing TinyML frame-
works often demand an underlying system-level support for
scheduling and memory management, often in the form of
RTOS libraries [19], adding to the memory overhead.
Contribution. We take a different stand compared to the
current state of affairs. Extreme resource constraints require
fundamentally different solutions tailored to bare-metal sce-
narios. Rather than adapting a conventional model to fit the
system or relying on specialized hardware,we tailor themodel
architecture to the system from the start by building hardware
constraints directly into the model.
Intuitively, we "mould" the neural network around the

specific features of the MCU.We treat compute and memory
features of the target platformnot as limitations, but as design
parameters, building upon the hardware’s strengths, such as
fast integer addition, low-power sequential access, and ef-
ficient loop execution, while avoiding operations that map
poorly to the target MCU, such as floating-point arithmetic
or large matrix multiplications. As a result, we achieve effi-
cient inference without relying on compression techniques,
pruning, or custom silicon.
Wemake this argument concrete with Neuro-C, a neural

network architecture that eliminates costly general-purpose
MACC operations. We restrict layer connectivity to a ternary
adjacencymatrix, that is, eachneuron either does not connect,
or connects with a fixed ±1 weight, and then assigns a single
learnedweight to the neuron’s output as a scaling factor. This
means that the burden of variability is shifted from individual
connections to the neurons themselves.
Benefits. The structural design of Neuro-C yields a sparse,
pointer-friendly computation pattern: a neuron sums contri-
butions from a select few inputs, then multiplies once by its
scale. By avoiding full matrix multiplications or convolutions,
the model sidesteps the need for specialized MACC support.
The execution time is entirely predictable: for a givennetwork
size, the latency is fixed, with no data-dependent variation.
Memory accesses follow a simple pattern, streaming through
pointer tables and input arrays,which a compiler can prefetch
or optimize aggressively.

This yieldsmuch lower timeandenergydemandsper single
inference: we eliminate the MACC unit toggling and reduce
memory footprint, which lowers program and data memory
access energy. The use of fully connected layers, as opposed
to convolutional layers, is a deliberate choice to simplifymem-
ory access patterns onMCUs.
Performance.We evaluate our design based on empirical
results across multiple implementation options, using an
STM32F072RBMCU(ARMCortex-M0core,16KBRAM,128KB
Flash) [46].Weusea fakequantization trainingstepviaLarq[16],
which produces an adjacency matrix that selects only the
fundamental connections during learning. Once training is
complete, models are quantized and evaluated on a regular

machineover the full dataset todetermineaccuracy.Thequan-
tized weights are then loaded onto the target system, where
we measure inference latency, commonly used also as proxy
for energy consumption on ultra-low-powerMCUs due to the
absence of DVFS functionality [32], and memory footprint.
We specifically test Neuro-C on three datasets against

conventional multi-layer perceptron networks (MLPs) and
ternary neural networks (TNN), focusing on TinyML bench-
mark taskswith increasedcomplexity:MNIST,FashionMNIST
andCIFAR5. ForbothNeuro-CandstandardMLPS, themodel
size growsalmost linearlywith the accuracygain, demonstrat-
ing the necessity of a trade-off between the two. Across the
different settings we test, Neuro-C brings around 90% of gain
both in inference latency andmemory footprint. The smallest
MNIST model, with an accuracy of over 97%, runs in just 5ms
and 3KB of programmemory, compared to 43 ms and 31 KB
of the smallest MLP that reaches the same accuracy. When
pushing for over 99% accuracy, theMLPmodel is no longer de-
ployable as it doesnotfit theavailableprogrammemory,while
the Neuro-C counterpart runs in 40ms and 20KB of program
memory. We observe the same pattern for all other datasets.

Compared to a conventional TNN, our architecture shows
improved robustness andaccuracy.When theper-neuron scal-
ing factor𝑤 𝑗 is removed by the Neuro-C best-performing
configuration, yielding a standard TNN structure, the model
fails to converge on CIFAR5 and suffers accuracy drops of
2.5 and 3.5 percentage points onMNIST and FashionMNIST,
respectively. This demonstrates that𝑤 𝑗 plays a critical role in
stabilizing training. Importantly, the overhead is negligible:
inference latency increases by only 0.5ms over a baseline
of 50ms, and programmemory usage increases by less than
500 B over a total of approximately 20 KB.

The rest of the paper is structured as follows. Sec. 2 reviews
the hardware constraints of ultra-low-power MCUs and mo-
tivates the need for system-aware model design. Sec. 3 intro-
duces theNeuro-C architecture, detailing its per-neuron scal-
ing, ternary connectivity, and static execution model. Sec. 4
describes the runtime implementation and deployment strat-
egyonthe targetplatform.Sec. 5presentsexperimental results
across multiple datasets, comparing Neuro-CwithMLPs and
TNNs. Sec. 6 discusses the limitations of this work, pointing
out future developments and opportunities. Sec. 7 positions
our work within the existing literature, and Sec. 8 ends the
paper with brief concluding remarks.
Neuro-C source code is available at https://github.com/

diletta-romano-rise/Neuro-C.

2 BACKGROUNDANDMOTIVATION

Deploying neural inference on MCUs is a focal point of Tiny-
ML[31].Theappealofdeployingneural inferenceonresource-
constrained edge devices is multifold. First, energy efficiency
across the entire application operation: MCUs operating in
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Class Key features Memory Example

Low 8/16/32-bit core, no FPU, no
DSP/SIMD

<128 KB RAM, <512 KB Flash STMicroelectronics STM32C0/F0/L0 (Cortex-
M0/M0+) [43, 45, 47]

Medium 32-bit core, single-precision FPU,
basic SIMD

128–512 KB RAM,
512 KB–2MB Flash

NXP Kinetis K series (Cortex-M4) [35]

Advanced 32-bit core, double-precision FPU,
vector SIMD, optional cache

>512 KB RAM, >2 MB Flash Renesas RA8D1 (Cortex-M85) [37]

Table 1. Qualitative analysis ofMCU resources

the tens of MHz with milliwatt power usage enable battery-
powered [31] or even energy-harvesting deployments [1, 3,
11]. Second, low-latency responses: running inference locally
avoids the unpredictability of network latency [23], a crucial
factor for sensor-based systems that require immediate re-
actions. Integration and cost are further concerns: many IoT
platformsexist that use aSoCcombininga lightweightCortex-
M core alongside wireless radios, plus tightly integrated sen-
sors [22]. Finally, preserving privacy: by performing basic
machine learning tasks locally on the MCU, the device avoids
transmitting raw sensor data, whichmay contain sensitive in-
formation. Instead, only high-level, task-relevant outputs are
sent, reducing both communication bandwidth and potential
privacy leakage [23].
The challenge lies in the severe architectural and com-

putational constraints of ultra-low-power MCUs: first and
foremost, their limited memory and computing power due
to the frequent lack of sophisticated hardware features. This
makes regular deep learning models difficult to deploy with-
out significant optimizations [31].
Existingplatforms.MCUsvarywidely in their ability to sup-
port neural network inference, due to differences in hardware
features. Table 1 provides a qualitative classification.
Arithmetic support determines which operations can be

performed efficiently or at all: MCUs without a floating-point
unit (FPU) must emulate floating-point operations in soft-
ware, resulting in significant overhead in both latency and
code size. Similarly, the lack of hardware MACC instructions
forces dense layers to rely on explicit loop-based implementa-
tions,whichare slowand instruction-heavy. SIMDextensions,
when present, improve throughput by enabling vectorized
computation.
At one extreme of the spectrum are 8- or 16-bit devices,

or lightweight 32-bit MCUs with no FPU or DSP support, of-
ten providing less than 64KB of RAM. These platforms must
execute all neural computations entirely in software using
basic integer arithmetic, which restricts deployment to shal-
low, heavily quantized models with limited parameter counts.
For example, Cortex-M0 cores require fully software-based
kernels even for small-scale tasks [21].

As memory increases into the hundreds of kilobytes and
cores begin to support 32-bit floating-point arithmetic and ba-
sic SIMD,more complex neural architectures become feasible.
More capableMCUs, based on cores like Cortex-M7 or ARM’s
Helium extensions, offer vector support and larger memory
budgets, blurring the boundary between MCUs and appli-
cation processors. For instance, MCUNet [29] demonstrates
that, through hardware–software co-design, it is possible to
run accurate image classifiers on a Cortex-M7 device with
just 320KB of SRAM. However, MCUNet relies on hardware
configurations at the upper end of the spectrum.
Hardware accelerators. To improve the efficiency of neural
inference, modern MCUs embed forms of hardware accel-
eration. Starting at the Cortex-M4 core, all ARM Cortex-M
cores include DSP extensions, such as MACC instructions
and saturating arithmetic, that accelerate fixed-point oper-
ations directly in the MCU pipeline [8]. These instructions
are heavily used by frameworks like CMSIS-NN to speed up
convolutions and dense layers [9].
In addition to core-level enhancements, some MCUs em-

bed dedicated accelerator blocks alongside the processor. The
MAX78000 [6] MCU, for example, includes a fixed-function
CNN engine that offloads convolution layers to a special-
ized compute unit, reducing inference latency and energy
consumption. More flexible designs, such as Renesas’s DRP-
AI [37], combine a fixedMACC array with a reconfigurable
controller to support a wider range of layer types and prepro-
cessing tasks. These architectures offer substantial efficiency
improvements during inference, but come with increased
system integration and software development complexity, es-
pecially in theneed touseseparate toolchainsorevendifferent
programming languages for machine learning inference as
opposed to the general application logic [6].
Most importantly, the deployment of embedded accelera-

tors is limited in embedded sensing scenariosdue to inefficient
application-wide energy performance [42]. Although accel-
erator blocks greatly improve energy efficiency during infer-
ence, other key application functionality, including I/O neces-
sary for sensing and data transmission, suffer because of high
power consumption of the cores they are attached to.As an ex-
ample, the Cortex-M4 core onboard theMAX78000 consumes
roughly four times the power of a Cortex-M0 core during I/O.
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Existing ultra-low-power MCUs, however, lack the hardware
infrastructure required to integrate andoperate anaccelerator.
They rely on simple bus protocols, often have no cache, and
nomechanisms for dynamicmemory allocation or peripheral-
level scheduling. Supporting even a lightweight accelerator
would require additional logic for memory interfacing, clock
gating, and interrupt handling, components that would ex-
ceed the area and power budget of these platforms [41].
Tools and system support. To support neural networks
on MCUs, ARM provides the CMSIS-NN [9] library, which
offers highly optimized kernels for common operations using
fixed-point arithmetic. CMSIS-NN is tuned to each Cortex-M
flavor: on a Cortex-M4/M7, it exploits the DSP instructions
and SIMD parallelism to accelerate inference, whereas on a
Cortex-M0, it is forced to use plain C implementations, since
no special MAC/SIMD hardware is available. In practice, this
means CMSIS-NN can shrink inference latency and memory
footprint significantly on a Cortex-M4 core, but yields limited
performance on Cortex-M0 devices.

Beyond CMSIS-NN, a number of higher-level toolkits exist
to ease embedded systemAI deployment. TensorFlow Lite for
MCUs [17], STMicroelectronics’ STM32Cube.AI [44], Edge
Impuls [14], and other end-to-end pipelines take a trained
model as input and generate highly-optimized, platform-
specific implementations for a targetMCU.Theyprovide user-
friendly workflows and often integrate with vendor SDKs,
but tend to focus on capable targets, such as ARM Cortex-
M4/M7 cores. As observed by Hernandez-Gonzales et al. [21],
none of the mainstream solutions truly addresses extremely
resource-constrained MCUs.

3 NEURO-C

We present the architecture and training methodology of
Neuro-C. In doing so, we walk the reader through the pro-
cess that takes the system-level constraints as the seed for
the different design decisions, specifically, the need to sup-
port static memory allocation, integer-only execution, and
predictable control flow on ultra-low-power MCUs.

Webeginbyrethinking thestructureofneural computation:
instead of assigning weights to individual connections, we
shift this responsibility to the neurons themselves, allowing
a simplified inference path based on pointer-based accumula-
tion and per-neuron scaling. We then consider how to define
the connectivity pattern, encoded as a ternary adjacency ma-
trix, in a way that maximizes accuracy while minimizing
parameter and access complexity. We compare several strate-
gies and we motivate our choices based on both performance
and implementation efficiency. Finally, we justify the use of
fully connected (FC) layers over convolutional ones, not on
theoretical grounds alone but by analyzing memory layout,
dataflows, and runtime behavior on the target hardware. This
choice strikes a trade-off between structural compactness

and system-level simplicity, one that becomes essential when
deploying on devices with no cache, SIMD, orMACC support.
Taken together, these design decisions form a coherent

strategy for building neural systems that are not just small,
but structurally aligned with ultra-low-power MCUs.

3.1 Structure

We conceive Neuro-C as a redesign of conventional neural
network structures. The core idea is to shift the computational
burden from the connections to the neurons themselves.
Each neuron in a given layer receives input from a sparse

subset of neurons in the previous layer, as defined by an ad-
jacency matrix. Instead of applying independent weights per
connection, inputs are first summed and then scaled by a
neuron-specific weight. This results in the following neuron
activation function

𝑜
(𝑙 )
𝑗

= 𝑓

(
𝑤

(𝑙 )
𝑗

·
∑︁
𝑖

𝑎
(𝑙 )
𝑖 𝑗

·𝑜 (𝑙−1)
𝑖

+𝑏 (𝑙 )
𝑗

)
(1)

where
• 𝑜 (𝑙−1)

𝑖
is the activation from neuron 𝑖 in layer 𝑙−1,

• 𝑎 (𝑙 )
𝑖 𝑗

∈ {−1,0,+1} defines the neuron connectivity,
• 𝑤 (𝑙 )

𝑗
is the weight assigned to neuron 𝑗 ,

• 𝑏 (𝑙 )
𝑗

is the neuron-specific bias term,
• 𝑓 (·) is the activation function applied to the neuron.

Given the above, we can express the entire layer as

𝑜 = 𝑓 (diag(𝑤)𝐴𝑥+𝑏) (2)

where
• 𝑜 is the output vector,
• diag(𝑤) is a diagonal matrix with neuron weights𝑤 ,
• 𝐴 is the adjacency matrix,
• 𝑥 is the input vector,
• 𝑏 is the bias vector.

The key benefit of this approach lies in its ability to re-
distribute computational complexity while preserving the
network’s expressive power. Rather than relying on indi-
vidual connection weights, each neuron aggregates its in-
puts based on a structured connectivity pattern and applies a
neuron-specific scaling factor. This setup allows the network
to approximate complex decision boundaries by leveraging
redundancy and increased network depth. This hypothesis
suggests that,withsufficient redundancy, thesystemcan learn
representations that are functionally equivalent to those of
traditional weighted networks while significantly reducing
computational overhead. We return to this with quantitative
evidence in Sec. 5.

3.2 AdjacencyMatrix

The design of the adjacency matrix plays a central role in
defining the connectivity structure of the network. To retain
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only the most informative connections while maintaining
efficiency, we explored three different strategies.

The first strategy relies on random initialization. In its sim-
plest form, connections are sampled independently with a
fixed probability, resulting in fully unstructured sparsity. Al-
ternatively, we can use a constrained random variant, where
each neuron is assigned a fixed number of input connections,
selected randomlybutuniformlyacross the input space.While
both variants introduce diversity in connectivity, their lack
of structural bias can lead to suboptimal performance due to
poor coverage of relevant input features or inefficient repre-
sentation capacity.
A second approach is based on spatial locality. Here, con-

nections are limited to neurons that are “nearby” in some
predefined topology, typically based on index distance. This
mimics the behavior of convolutional layers by enforcing lo-
cal receptive fields. Such spatial structures are intuitive for
image-based tasks, where local patterns dominate.

The third strategy uses quantization-aware training,where
full-precision weights are maintained as latent variables dur-
ing training. At each forward pass, these latent weights are
quantized into ternary values (e.g., -1, 0, +1), and only the
quantized version is used for inference. This allows themodel
to iteratively refine the connectivity pattern based on training
dynamics, effectively learning which connections to retain.
Compared to fixed strategies, this approach provides a better
balance between flexibility and structure, allowing sparsity to
emerge naturally as a function of learning rather than being
fixed as a design-time decision.

To empirically evaluate these strategies, we perform exper-
iments on a digit classification task using the digits dataset
(8×8 grayscale images) [5]. We use a single hidden-layer ar-
chitecture in all experiments, which run on standard compute
infrastructure without any hardware constraints. For each
strategy, we execute a grid search over various sparsity levels
and hidden layer sizes. In the case of random connectivity, we
include both fully probabilistic and constrained variants. The
total number of parameters is defined as the sum of neurons
and the non-zero entries in the adjacency matrix.
As shown in Figure 1, quantization-based connectivity

yields the best performance for a given parameter count. It
achieveshigheraccuracywith fewerneurons, indicatingmore
efficient use of representational capacity.

Based on these findings, we employ the quantization-based
strategy hereafter. It accurately captures the data features
while determining connectivity and remaining compatible
with our system-level constraints.

3.3 Fully Connected

Structures over Convolutional Layers

On many embedded platforms, CNNs are preferred due to
their parameter sharing and spatial efficiency. However, on
ultra-low-power MCUs such as the Cortex-M0, this rationale
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Figure 1. Test accuracy against the total number of param-
eters for different adjacency matrix strategies on the digits
dataset. The quantization-based connectivity achieves the
highest accuracy given the number of parameters, demonstrat-
ing its superior expressivity under strict sparsity constraints.

does not hold. These devices lack DSP extensions, SIMD sup-
port, and sufficient RAM to support optimized convolution
routines or intermediate buffers. As a result, standard CNN
implementations fall back on software-based im2col trans-
formations, which inflate both memory usage and inference
latency.

In contrast, we can implement FC layerswith direct pointer
traversal and static memory layouts, without reshaping input
tensors or managing memory strides. This simplicity trans-
lates into predictable inference latency and lower memory
overhead.

A standard convolution applies a kernel of size𝑆×𝑆 over an
input of spatial size 𝑁 ×𝑁 with𝐶 input channels, producing
an output of size𝑀×𝑀 , where

𝑀 =𝑁 −𝑆+1 (3)

Since convolutions involve local receptive fields, on light-
weight hardware, the inputmust be transformed into amatrix
using the im2col operation. This transformation converts
the input tensor into a flattened matrix of size

(𝐶 ·𝑆2)×𝑀2 (4)

whereeachrowisaflattenedreceptivefieldof theconvolution,
and each column represents an output spatial location.
We reshape the corresponding kernel of size𝐶×𝑆×𝑆×𝐾 ,

where𝐾 is the number of filters, into a weight matrix of size

𝐾×(𝐶 ·𝑆2) (5)
The convolution operation is then computed as a matrix-
matrix multiplication (GEMM)

(𝐾×(𝐶 ·𝑆2))×((𝐶 ·𝑆2)×𝑀2)=𝐾×𝑀2 (6)

Thus, the number of MACC operations required per convo-
lutional layer is

MACCsCNN=𝐾 ·𝐶 ·𝑆2 ·𝑀2 (7)

Additionally, this requires storing theim2colmatrix,whose
size depends on the output spatial resolution based on 4. This



EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk Romano et al.

intermediate storage introduces significant memory over-
head, particularly when𝐶 or 𝑆 is large. For an FC layer with
𝑁in input neurons and 𝑁out output neurons, each output is
computed as aweighted sumof all input neurons. Thenumber
of MACC operations is

MACCsFC=𝑁out×𝑁in (8)

The ratio of MACC operations between a convolutional and
an FC layer is

MACCsCNN
MACCsFC

=
𝐾 ·𝐶 ·𝑆2 ·𝑀2

𝑁in ·𝑁out
(9)

For many CNN architectures, especially in early layers, the
feature map’s spatial dimensions remain close to the input
size, thus𝑀 ≈𝑁 . If we consider this approximation and the
same input size for the two layers, meaning𝑀2 ≈𝑁 2 =𝑁𝑖𝑛 ,
we can write

MACCsCNN
MACCsFC

=
𝐾 ·𝐶 ·𝑆2 ·𝑁𝑖𝑛

𝑁𝑖𝑛 ·𝑁out
=
𝐾 ·𝐶 ·𝑆2
𝑁out

(10)

Beyond their computational cost, FC layers present notable
advantages in terms of implementation simplicity. They en-
able sequential memory access, as inputs can be processed
directly without requiring complex memory layouts or stride
computations. Unlike convolutional layers, FC layers do not
require padding management and im2col transformations,
which are often needed to convert convolutions into efficient
matrix multiplications. Additionally, the direct and regular
dataflow of FC layers facilitates their implementation on
MCUs, where predictable memory access patterns are crucial
for energy-efficient execution.
To evaluate the efficiency of FC structures against their

convolutional counterpart, we set up an experiment com-
paring the inference latency of these two layer types under
equal MACC conditions, according to Equation Eq. 10. For
the same input size of 16×16=256, we measure the inference
latency when 𝑁𝑜𝑢𝑡 of the FC layer matches𝐾 ·𝑆2 of the CNN
layer, assuming input channels𝐶 =1. This approach allows us
to isolate and observe the effects of implementation choices
independently of MACC count.
Fig. 2 shows the results on a Cortex-M0MCU for two spe-

cific cases. CNN1 (CNN2) matches the number of MACC
operations for FC1 (FC2). The plot shows how FC layers ex-
hibit lower inference latency compared to their convolutional
counterparts, regardless of the dimension. This is due to sim-
pler memory accesses and control flows, which gracefully
map to the feature of the MCU at hand, which lacks SIMD or
convolution acceleration.

Note that FC layers are, in principle, more expressive than
convolutional layers given the same number of MACC opera-
tions. Therefore, any performance gainwe can reap for CNNs
should be considered alongside the potential accuracy and
representational advantages offered byMLPs.
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Figure 2. Inference latency of convolutional and FC layers
on a Cortex-M0MCU. The case of CNN1 (CNN2) matches FC1
(FC2) in the number of MACC operations. FC layers consistently
achieve lower latency due to simpler memory access and control
flow, making them more suitable for ultra-low-power MCUs
without SIMD or convolution acceleration.

Given these empirical results, we opt for a fully connected
structure for Neuro-C. This choice is driven by simpler mem-
ory access patterns, reduced computational overhead in ultra-
low-power MCUs, and its flexibility in representing complex
functions despite the observed efficiency trade-offs.

3.4 Comparison with TNNs

Although the design of Neuro-C shares similarities with con-
ventional TNNs, the way it is obtained follows a fundamen-
tally different reasoning. Standard techniques for building
TNNs are derived frombinary networks: rather than applying
a simple sign function to the weights, ternary quantization
introduces thresholds and optimizes them to minimize the
quantization error, often in a post-training step. When train-
ing from scratch, the same concerns of BNNs apply to TNNs:
convergence is usually facilitated by retaining the floating-
point representation for some layers, and stability strongly
depends on batch normalization. However, batch normal-
ization cannot be folded into ternary weights and must be
retained in inference, which makes these models unsuitable
for ultra-low-power MCUs.

In Neuro-C, by contrast, stability is not enforced through
auxiliary high-precision operations or sophisticated quantiza-
tion procedures, but is embedded directly within the model’s
design. The per-neuron scaling factor acts as a built-in nor-
malizer that enables convergence without relying on batch
statistics or floating-point layers. This simple mechanism
matches the core philosophy of Neuro-C: rather than adapt-
ing an existing architecture to ternary constraints through
complex quantization pipelines, we shape the architecture
around the limitations of Cortex-M0 devices, yielding a struc-
ture that is both efficient and deployable.

We further explore the impact of this scaling factor in Sec-
tion 5.2, where we experimentally remove it and show that
a pure ternary network without𝑤 𝑗 leads to sub-optimal ac-
curacy and, in some cases, lack of convergence.
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4 CASE IN POINT: ARMCORTEX-M0

Shaping theneural networkarchitecture tomatch the features
of ultra-low-power MCUs requires rethinking their design
not only in terms of model compression but also deep down
into their concrete implementation.

As much as existing tools and system support, described in
Sec. 2, apply platform-specific optimizations and techniques,
wepresentnextaplatform-specific implementationof Neuro-
C for the widespread Cortex-M0MCU.We focus on this MCU
as it generally represents an efficient trade-off between com-
pute power and energy consumption [25] and is often used
in SoC designs deployed in sophisticated embedded sens-
ing applications, including energy-harvesting settings [50].
Our implementation choices are geared towards optimizing
inference latency, memory footprint, and implementation
simplicity, where lower latency also translates into reduced
energy consumption [2, 32].

4.1 Embracing PlatformConstraints

Deploying neural network inference onMCUs akin to ARM
Cortex-M0 MCUs requires more than reducing model size.
The architecture imposes structural limits that directly shape
how inference must be implemented.
Challenges. The core lacks a floating-point unit and forces
data processing to rely on fixed-point integer arithmetic. It
provides no hardware support for fused MACC operations,
meaning that every dot product must be implemented using
explicit loops with separate multiplication and addition steps.
This adds compute overhead and thus energy consumption,
especially when scaled across layers.
The memory architecture imposes additional restrictions.

Instructions and data share a single 32-bit AHB-Lite system
bus with no caching or prefetch mechanisms, so every access
to programmemory or SRAMbears a direct performance cost.
Instruction fetches from programmemory are blocking and
may require wait states depending on the state of the instruc-
tion pipeline, particularly at higher clock frequencies. RAM
is severely limited, and yet debugging memory issues is ex-
tremely difficult to limited visibility [51]. Thismakes dynamic
memory allocation extremely costly and pushes developers
to statically allocate all data structures, includingweights and
network topology, and to access those using fixed compute
structures. Intermediate representations that require buffer
reshaping or runtime index computation, such as im2col
for convolutions, quickly become impractical unless they are
aggressively pruned and flattened a priori.
Control flow during inference must also be tightly con-

trolled. The Cortex-M0 has no branch prediction, and ev-
ery branch taken flushes the shallow three-stage pipeline,
introducing a fixed multi-cycle penalty. Conditional state-
ments within the main compute loop, particularly if depend-
ing on input data, introduce variability and increase latency.
Recursion and deeply nested loops are discouraged due to

stack limitations. Inference routinesmust thus be constructed
through static control flow, with fixed loop bounds and no
data-dependent branching. The preferred execution model
is thus a sequence of shallow, possibly unrolled loops over
contiguous memory segments.

Neural inference, as we argue in Sec. 2, does not live alone.
Most often, the application logic combines that with sensing,
energy management, and data transmission [38]. In this set-
ting, interrupt behavior, for example, coming from sensors,
further constrains the design. When an interrupt occurs, the
coreperformsa full context saveonto themainstack,andavail-
able memory must be sufficient to preserve inference state
during preemption. If inference time is not tightly bounded,
the system must be designed to tolerate interrupts or defer
them predictably. Since the Cortex-M0 lacks hardware per-
formance counters such as a cycle counter, fine-grained and
non-intrusive profiling of inference execution is not possible.
This limitation reinforces the need for statically analyzable
and predictable execution paths.
Under these conditions, traditional neural network archi-

tectures must be restructured to match the execution model
of the hardware. The network must be expressed as a fixed
sequence of integer additions, ideally using sparse connec-
tivity and static memory traversal. Dynamic control flows,
runtime memory allocation, and index-based indirection to
access memory locations must be avoided. We keep main-
taining that models must be designed not only for minimal
size but also for tight coupling with the instruction set and
memory read/write patterns of the target device.
Key insight.Based on this discussion, the data structure used
to encode sparse connectivity becomes a first-order concern.
On a processor without indexed addressing or speculative
execution, thememory access pattern and control path during
inference are indeed determined directly by how connectivity
is represented. A format that requires pointer dereferencing,
index decoding, or dynamic traversal introduces conditional
branches, data-dependent loop bounds, and additional mem-
ory loads, all of which are costly on the Cortex-M0.
In contrast, a compact encoding that enables linear itera-

tionusingfixedoffsets canbemappeddirectly to a sequenceof
load-add instructions with no intermediate decoding. This
reduces both control overhead and instruction count, and
ensures that inference time remains predictable across inputs.
As a result, the choice of encoding format is not simply a
matter of storage efficiency, as it fundamentally determines
whether inference can execute within the timing and energy
constraints of the system. In the next section, we evaluate
several design options in this regard and analyze their impact
on both memory usage and inference latency.

4.2 Efficient SparseMatrix Encoding

Sparse connectivity is a natural fit for low-power inference,
as it reduces the number of operations and the amount of data
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Figure 3. Encoding strategies applied to the same sparse matrix. Each format is represented by its pointer and index arrays,
showing index ranges, total number of parameters, and potential compression ratios.

stored. However, encoding sparsity efficiently is non-trivial
on devices without SIMD, FPU, or MACC support. General-
purpose sparse matrix formats like Compressed Sparse Row
(CSR) or Compressed Sparse Column (CSC) are designed for
platforms that reconstruct full matrix rows or columns at run-
time and perform indexed multiplications. These approaches
introduce memory indirection and decoding steps that are
costly onMCUs like the Cortex-M0.
We explore four encoding schemes for the connectivity

matrix in Neuro-C. These encodingsmustminimizememory
footprint while allowing inference to proceed without matrix
reconstruction or complex runtime control flow. Each encod-
ing stores, for every output neuron, the indices of non-zero
input neurons with either positive or negative connections,
separated in two disjoint index sets. Each format defines how
these indices and their positions are stored and traversed.
Figure 3 shows an illustrative comparison of the four en-

coding schemes using a toy sparse matrix, and serves as a
yardstick through the rest of this section. It highlights the
structureof thepointer and indexarrays in each case, showing
how compression is achieved through delta offsets, shared
block-local pointers, or compactedmetadata. These encoding
strategies form the foundation of our inference backend. We
experimentally evaluate their performance in memory usage
and inference latency next.
CSC baseline. The baseline scheme, shown at the top left
in Fig. 3, adopts a standard CSC representation, which stores
two arrays for each polarity: one containing absolute input
indices, and one defining the boundaries of each column via
pointers.Thepointer array indicates the rangeof entries in the
index array associated with each output neuron. This format
is straightforward to implement, supports constant-time se-
quential traversal, and requires no decoding logic at runtime.

However, its scalability is limited by the size of the neu-
ron index space. When either the number of input or output
neurons exceeds the range of 8-bit representations, those are
no longer sufficient to encode pointers and indices, and 16-
bit integers must be used. As a result, the memory required
quickly becomes a limiting factor inMCUswith limited mem-
ory available to store weights and structures.
Delta-based encoding. To reduce memory usage, we im-
plement a delta-based variant, shown at the bottom left of
Fig. 3. Unlike standard CSC, this format does not store abso-
lute indices for all non-zero connections. Instead, each output
neuron stores the position of its first input neuron explicitly,
and all subsequent connections are encoded as relative offsets
from the previous index. Column pointers do not indicate
absolute positions in the index array but store the number of
non-zero entries in each column.

The pseudocode in Fig. 4 shows the traversalmechanism of
this structure, which becomes possible using simple pointer
arithmetic. A pointer is initialized at the first index and subse-
quent addresses are computed by incrementing the pointer by
each stored offset. This eliminates explicit decoding or index
reconstruction. Each column is processed as a sequence of
relative memory accesses, accumulating the values of input
neurons based on the offset list.
The effectiveness of this encoding depends on the distri-

bution of active connections. When deltas are small, indices
can be stored in 8 bits, reducing memory usage and enabling
faster access. However, the format does not guarantee that
all offsets fall within the the 8-bit range. In layers with sparse
or irregular connectivity, 16-bit deltas may still be required
to avoid overflow or truncation.
Mixed formats.We also consider a compromise between
simplicity and compression, shown at the top right of Fig. 3.
As in the delta variant, the column pointer array stores the
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FORWARD_DELTA(layer, INPUT, OUTPUT):

MOV P_PTR, layer.csc_indexes_delta
MOV ROW_PTR, layer.csc_pointers_delta

FOR COL = 0 TO layer.output_size - 1 DO
MOV SUM, 0
MOV DELTA, ROW_PTR[COL + 1] #num of elements in column

IF DELTA > 0 THEN
MOV I_PTR, INPUT + [P_PTR] #first index is absolute
ADD SUM, [I_PTR] #accumulate first input value

WHILE --DELTA > 0 DO
#follow relative offset and accumulate
ADD SUM, [I_PTR = I_PTR + [++P_PTR]]

END

++P_PTR #advance to next column
END
#write scaled sum to output
MOV OUTPUT[COL], SUM * layer.scale[COL]

END

Figure 4.Delta-based traversal for a column: the first index
is absolute, following entries are relative offsets.

number of non-zero elements per output, but the index array
retains absolute indices. This allows direct reading of each
input position while still reducing the overhead associated
with full-range pointers.

Compared to thebaseline, this format requires lessmemory,
and compared to the delta encoding, it avoids sequential de-
pendencies by storing absolute indices, allowing for stateless
and direct traversal.
Block-based encoding. In a further scheme, shown at the
bottom right of Fig. 3, we partition the input space into fixed-
size blocks. Each blockmaintains an independent encoding of
positive and negative connections, including separate pointer
and index arrays. This strategy reduces the addressable range
within each block, enabling further compression and sim-
plifying pointer arithmetic. At runtime, inference proceeds
in multiple passes, one for each block, with separate index
traversal and accumulation.

This layout is particularly effective when the input dimen-
sion is large and sparse connections tend to cluster within
localized regions. Moreover, it is the only encoding that guar-
antees, by construction, that all indices remain within a fixed
range. By limiting the block size to 256 inputs or fewer, we can
store all indices as 8-bit integers without the risk of overflow.

4.3 Performance Trade-offs

We evaluate the four encoding formats on a Cortex-M0MCU.
We write the code in C and compile it with no operating sys-
tem support. We statically allocate all memory structures and
store them on flash memory. Inputs and outputs use 16-bit
integers or 8-bit integers when possible; accumulations and
scaling use 32-bit intermediate buffers to avoid overflow.

We implement a single-layer feedforward kernel with a
fixed input dimension and sparsity ratio. We vary the num-
ber of output neurons in powers of two from 32 to 256. For
each configuration, we measure the average inference time
over 100 runs using TIM2, a 32-bit hardware timer configured
without prescaling and clocked at the system frequency, and
keep track of flash memory use.
Figure 5a shows the inference latency for each of the four

implementation options. The delta-based encoding achieves
the lowest latency across all output sizes. At 𝑁out = 256, for
example, it completes inference in 26 ms, compared to 32 ms
for standard CSC. Mixed and block-based encoding reach 28
ms and 30 ms, respectively.

Figure 5b reports the flash memory occupation. The block-
based encoding exhibits the lowest memory requirement,
consuming 11.6 KB at 𝑁out = 256, compared to 20.1 KB for
standard CSC. Delta and mixed format achieve intermedi-
ate savings, but still possibly require 16-bit storage for some
connections due to large indices or offsets.

These results reflect the trade-offs between encoding com-
plexity, flexibility, and performance. While delta-based tra-
versal minimizes inference latency, only the block-based en-
coding guarantees the systematic use of 8-bit indices, making
it the most memory-efficient option under all configurations.
Based on these findings, we employ the block-based strategy
hereafter.

5 EVALUATION

We report on an experimental evaluation of Neuro-C on a
Cortex M0 core. The evidence we collect indicates that

1. Compared with MLPs models providing comparable
accuracy and within the limits of available program
memory, Neuro-C provides a ≈ 89% speedup in infer-
ence latency, and hence in energy consumption.

2. Neuro-C achieves 99%+ accuracy in inference in cases
where MLP models are not even deployable, as they
exceed the available programmemory.

3. When providing comparable accuracy, Neuro-C re-
duces the programmemory occupation by one order of
magnitude compared to its MLP counterpart, leaving
room for other application functionality.

4. Compared to conventional TNNs configured by remov-
ing the per-neuron scaling factor 𝑤 𝑗 from Neuro-C
architectures, Neuro-C consistently converges and
achieves better accuracy, especially as input complexity
increases, withminimal impact on latency andmemory.

In the following, Sec. 5.1 describes the experimental setting,
performancemetrics, and baselines we comparewith. Sec. 5.2
illustrates the results and key take-aways.
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(a) Inference latency (ms) as a function of output size 𝑁out for
each encoding format. Delta-based encoding is consistently the best
performing implementation choice.
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(b) Flash memory usage (KB) as a function of output size 𝑁out for
each encoding format. The block-based encoding is the most compact
storage layout.

Figure 5. Comparison of latency and memory usage for different encoding schemes.

5.1 Setting

WeuseanSTM32F072RB[46]boardrunningat8MHz,equipped
with 128 KB of programmemory and 16 KB of RAM.We im-
plement all neuralmodels in plainC, using statically allocated
memory and fixed-point integer arithmetic. We compile the
code using arm-none-eabi-gcc with -Os setting. The re-
sulting implementations run on bare metal.
We measure and report three key metrics: classification

accuracy, which wemeasure offline after training and int8
quantization; inference latency, which we measure using the
TIM2 timer on the target device; and programmemory usage,
as indicated by the size of the statically linked binary sec-
tions containing weights and inference code. In the absence
of DVFS functionality [32], as is the case for most low-power
MCUs, inference latency is directly proportional to energy
consumption and indeed, often used as a proxy for the latter
metric in low-power embedded systems [48].

We compare Neuro-C against two baselines: conventional
MLPs and TNNs. The former represents widely used dense
models in TinyML, while the latter shares the same architec-
ture as Neuro-C but without the per-neuron scaling factor.
This allows us to isolate and evaluate the contribution of this
architectural component. Our goal is to show that Neuro-C
achieves improved accuracy, lower inference latency, or both,
depending on the baseline and task.We focus our comparison
on these architectures as they represent the current deploy-
ment reality for Cortex-M0 platforms, where more advanced
methods requiring hardware acceleration features are not
practically deployable.

We train eachmodel using the Larq framework [16], which
supportsquantization-aware trainingwithbinaryand ternary
weights. We employ manual model selection across various
configurations to gain detailed insights into Neuro-C’s archi-
tectural behavior. While automated search methods might be
applied, our controlled manual exploration allows us to track
howperformanceandsparsitypatternsevolveacrossdifferent
network sizes and connectivity levels, providing observabil-
ity into the architecture’s dynamics beyond what automated

methods would reveal. After training, we export the models
to a custom inference engine, whichmirrors the final network
structure and supports the target deployment constraints.

We focus on image classification datasets to ensure fair, un-
biased comparison following establishedTinyMLbenchmark-
ing practices. Unlike temporal and sensor tasks that require
domain-specificpreprocessing, for example, spectrogramgen-
eration for keyword spotting or feature engineering for anom-
aly detection, image datasets provide standardized evaluation
without confounding factors that could bias results toward
specific preprocessing choices [33]. In particular, we evaluate
all models on three stable image classification datasets [28]:
MNIST, Fashion-MNIST, andCIFAR5, the latter being a subset
of CIFAR-10 restricted to the first five classes, as standard
MLPs fail to achieve meaningful accuracy on CIFAR-10 [52].

5.2 Results

Fig. 6a shows the results of this process for MNIST. As ex-
pected, increasing the number of parameters generally leads
to improved accuracy. The vertical red line separates deploy-
able models, that is, configuration that fit within the memory
constraints of our the platform, from non-deployable ones
due to program memory limitations. Note that this evalua-
tion does not consider application functionality other than
the neural models themselves; practical deployments may in-
clude other functionality, such as sensor drivers and network
stacks, that further limit available memory.

For theMLPconfiguration thatmaybepracticallydeployed,
Figure 6b illustrates the inference latency to assess how it
scales with model size. This figure increases linearly with the
number of parameters, consistently with the expectations for
dense models running on constrained hardware.
MLP comparison. First, we seek to establish a robust per-
formance baseline in terms of validation accuracy across a
range of model complexities. We perform an extensive ran-
dom search overmore than 50MLP configurations by varying
the numbers of layers, dropout rates, and whether batch nor-
malization is employed.
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(a) Validation accuracy of different MLP models as a function
of their sizes. Models marked as non-deployable exceed the
Cortex-M0 programmemory. Accuracy increases with the number
of parameters and thus model size.
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(b) Inference latency of deployable MLPmodels on Cortex-M0
as a function of their size. Each data point represents a deployable
model configuration, inference latency increases linearly with the
number of parameters, and thus model size.
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(c) Inference latency of configurations with comparable
accuracy.Neuro-C models exhibit substantially lower inference
latency than corresponding standard MLPs. The MLP at >99%
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(d) Programmemory usage of configurations with comparable
accuracy. Neuro-C models require significantly less program
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Figure 6. Comparison of conventional MLPmodels and the proposed Neuro-C architecture on the MNIST dataset.Neuro-C
reduces inference latency and programmemory consumption when providing comparable accuracy.

To compare the performance of Neuro-C against conven-
tional MLPmodels, we manually select Neuro-Cmodels on
MNIST to represent three scales: small, medium, and large.
As with MLPs, we observe a trade-off between model size
and accuracy. To enable a fair comparison, for each Neuro-C
model, we select the smallest MLP configuration output by
the random search that achieves approximately the same ac-
curacy. For instance, the small Neuro-Cmodel reaches 97%
accuracy; we pair it with the smallest MLP configuration that
exceeds 97%. This strategy allows for a fair comparison of
inference latency and programmemory utilization.
Fig. 6c presents a direct comparison between MLPs and

Neuro-Cmodels at comparable accuracy levels. The differ-
ence is substantial across all configurations. Formodels reach-
ing over 97% accuracy, the standard MLP requires 43 millisec-
onds per inference, while the corresponding Neuro-Cmodel,
achieving 97.1% accuracy, completes inference in just 5 mil-
liseconds, resulting in an 88% reduction in latency. At 98% ac-
curacy level, the MLP model takes 142 milliseconds, whereas
the Neuro-C model reaches 98.3% accuracy in only 16 mil-
liseconds, yieldinga89%speedup. In thehigh-accuracyconfig-
uration, the MLP achieves over 99% accuracy but is no longer
practical due to its program memory footprint, while the
Neuro-C configuration, achieving 99.1% accuracy, remains

deployable and runs in40milliseconds.These results illustrate
that Neuro-C remains efficient even at the upper end of the
accuracy range, where standard MLPs become impractical.
Similar observations apply to the trends in Fig. 6d investi-

gating programmemory usage. At the lower accuracy level,
the MLPmodel requires 30.9 KB of programmemory, while
Neuro-C uses only 3.1 KB, representing a 90% reduction. In
the 98% accuracy case, theMLPmodel uses 88.3 KB compared
to just 7.3 KB for the Neuro-Cmodel, again corresponding to
more than 91% savings. For the highest-accuracy target, the
MLPmodel exceeds 200KB and cannot be deployed on the tar-
get device, while Neuro-C remains within the platform limi-
tations at 20.1KB.Weherebydemonstrate thatNeuro-Cmod-
els consistently match or exceed the accuracy of MLPs while
offering significantly lower inference latency and program
memory usage, confirming how embracing the platform limi-
tations within the model architecture is ultimately beneficial.

For the other two datasets, FashionMNIST andCIFAR5, we
select the best-performing deployable models for both MLP
and Neuro-C. In the case of standard MLPs, this corresponds
to the best model obtained through our random search pro-
cedure that still satisfies deployment constraints, particularly
programmemory. For Neuro-C, wemanually select themost
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accurate configurationswe could find during amanual search
process.
Fig. 7a reports the corresponding classification accuracy.

Neuro-C consistently achieves higher accuracy across all
three datasets. While the absolute differences may appear
small, these are datasets where such margins are arguably
meaningful.Note that thesearenot theoverallbest-performing
MLPs in terms of accuracy, but the best-performing ones that
remain deployable. Higher-accuracy MLPs exist, but they
exceed the programmemory of the target platform.
Despite the fact that for Neuro-C we select the largest

models, that is, those with highest accuracy, the performance
gap in terms of inference latency and memory is substantial.
As shown in Figure 7c, the latency of Neuro-Cmodels is con-
sistently lower. For example, on MNIST, it drops from 140 ms
of the MLP configuration to 43 ms for Neuro-C; on Fashion
MNIST, it drops from around 120ms to 30ms; and on CIFAR5,
it drops from over 100 ms to less than 50 ms. We observe sim-
ilar patterns in programmemory usage, reported in Fig. 7c:
Neuro-C models use approximately 20-35 KB of program
memory, while their MLP counterparts require 80-90 KB.

These results confirm that, even in high-accuracy regimes
where both models are pushed to their deployability limits,
Neuro-C maintains a clear advantage in both inference la-
tency and programmemory footprint.
TNN comparison.We compare Neuro-C with a standard
ternary neural network (TNN) baseline. This comparison dou-
bles as a means to assess the impact of the per-neuron scaling
factor𝑤 𝑗 . We obtain the TNN version by removing the scal-
ing factor from Neuro-C, resulting in a structure where each
connection has a ternary weight 𝑎𝑖 𝑗 ∈ {−1,0,+1}, and no form
of normalization or per-neuron scaling is applied.
Both Neuro-C and the TNN baseline are executed on our

custom optimized inference kernel, ensuring that differences
are due solely to the architectural design. The remaining ar-
chitecture and training protocol are kept identical.
This comparison is motivated by the structural similarity

betweenNeuro-Cwithout per-neuron scaling factor and clas-
sicalTNNs,whichareknown to face convergence issueswhen
trained from scratch in deeper architectures. Our evaluation
aims to assess whether Neuro-C addresses these limitations
through the inclusion of𝑤 𝑗 , and to what extent this impacts
both accuracy and inference efficiency.

To ensure a fair comparison, we evaluate the TNN baseline
using the largest and best-performing Neuro-C architecture
for each dataset. This setup ensures that any performance
differences can be attributed to the absence of the per-neuron
scaling factor, rather than to differences in model capacity.
Fig. 8a reports the resulting classification accuracy across

three datasets. For MNIST and Fashion MNIST, the accu-
racy performance of the Neuro-C configuration without
per-neuron scaling degrades in both cases, with a drop of
2.53 and 3.55 percentage points, respectively. More critically,

this configuration fails to converge entirely on CIFAR5, pro-
viding evidence of the role of𝑤 𝑗 in stabilizing the training
dynamics as the input complexity increases.
We further evaluate whether eliminating the per-neuron

scaling factor leads to any meaningful improvements in la-
tency andmemory.We benchmark the same inference code of
the best-performing Neuro-C configuration, with and with-
out the scaling factor. Fig. 8b shows that removing the per-
neuron scaling factor reduces latency by less than one mil-
lisecond across all datasets. Given baseline inference times
of 40–50 ms, these gains are negligible.

The same holds for memory usage. In Fig. 8c, we show the
difference in programmemory between the two configura-
tions. The observed reductions are 282 B on MNIST, 410 B
on FashionMNIST, and 297 B on CIFAR5, relative to baseline
memory footprints of approximately 20 KB.

This analysisdemonstrates that the inclusionofper-neuron
scaling inNeuro-C is essential for enablingconvergencewith-
out batch normalization and that its removal results in both
inferior accuracy and negligible inference latency savings.
The𝑤 𝑗 term is thus a critical architectural component that en-
sures stability and expressivity while remaining compatible
with the constraints of the target architecture.

6 DISCUSSION

Our results demonstrate that embracinghardware constraints
as first-order design principles enables efficient neural infer-
ence on ultra-low-power MCUs.

We specifically focus on image classification tasks because
they provide standardized benchmarks and fair comparisons
acrossmodels. Still, the co-design principles behindNeuro-C
are not limited to vision. In domains such as keyword spot-
ting or anomaly detection, where inputs often lack spatial
structure, the gains may be even more pronounced.

Another defining feature of Neuro-C is its strong coupling
with the hardware platform. In this paper, performance gains
arise from aligning the model with the specific constraints
of the Cortex-M0. On devices with different architectural fea-
tures, such as cache, DSP, or SIMD units, the same design
philosophywould lead to different architectural choices. This
adaptability is consistent with our vision: the network should
be shaped by the hardware, not vice versa.

Finally, whilewe deliberately relied onmanualmodel selec-
tion togain insights into architectural dynamics,more system-
atic exploration could reveal additional trade-offs. Likewise, a
full ablation of Neuro-C’s design parameters, such as connec-
tivity patterns, sparsity levels, or per-neuron scaling, would
provide a finer-grained understanding of how each choice
contributes to efficiency and accuracy.
Still, Neuro-C shows that even at the lowest end of the

MCU spectrum, efficient inference is possible when models
are built around hardware constraints.
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Figure 7. Performance of of the best deployable models of MLP and Neuro-C onMNIST, Fashion-MNIST, and CIFAR5.Neuro-C
achieves better accuracy, inference latencyandprogrammemory footprint, enabling efficient inference under tight resource constraints.
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Figure 8. Comparison between Neuro-C and the TNN variant in terms of accuracy, inference latency increase, and program
memory overhead across MNIST, FashionMNIST, and CIFAR5.Neuro-C achieves higher accuracy, while the additional latency
and memory overhead remain negligible.

7 RELATEDWORK

In light of the experimental results discussed above,we briefly
survey existing literature closest to our efforts.
Tiny inference on lightweight cores.Albeit rare, existing
works demonstrate neural inference on Cortex-M0-class de-
vices. Nyamukuru et al.[36] deploy a gated recurrent unit on
a Cortex-M0+ using 8-bit quantization andmemory optimiza-
tions, achieving 96% accuracy with 6 ms inference time—only
2% below the full-precision baseline. Khatoon et al.[24] use
a binary neural network for road anomaly detection, improv-
ing inference speed by 25% with just a 2.5% accuracy loss.
A 3-layer CNN with 1.7k parameters achieved 95% MNIST
accuracy on Cortex-M0+MCUs using 18–23 KB of program
memory, with inference times from 8 to 37 ms [34].
Unlike existing work that applies quantization or prun-

ing post-training, we restructure the architecture to align
with MCU constraints. On MNIST, Neuro-C achieves 97%
accuracy, above the 95% reported for quantized CNNs [34],
while delivering faster inference. Normalized for clock speed,
it turns out Neuro-C uses only 6% of the inference time of
Cortex-M0/M0+ baselines.

Binary and ternary neural networks. Binary and ternary
networks such as BinaryNet [12], XNOR-Net [54] and DoRe-
FaNet [53] reduce compute requirements but rely on batch
normalization and retain high-precision layers for stability.
They typically use per-layer scaling and focus on large CNNs,
not fully connected architectures. Tools such as Larq [16]
support efficient inference but assume SIMD/DSP support
and excludeMCUs like Cortex-M0; Larq Engine targets 64-bit
ARM cores only. Prior BNN deployments on Cortex-M cores
exist, but yield high latencies even at high clock settings, such
as 216MHz [39].
Existing ternary networks rely on per-layer scaling and

batch normalization for convergence. With fixed quantized
weights, batch normalization cannot be folded into the model
and must be computed at runtime, adding substantial over-
head that low-end MCUs cannot afford. We introduce per-
neuron scaling to enable stable training without batch nor-
malization, and demonstrate efficient ternary inference on
Cortex-M0-class MCUs without any custom engine or spe-
cialized hardware features.
TinyMLmethods formore capable MCUs.While several
advanced TinyML approaches achieve impressive results on
more capable microcontrollers, they rely on hardware fea-
tures absent in ultra-low-power platforms like Cortex-M0.
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MCUNet [29] demonstrates efficient neural inference through
hardware-software co-design, but its TinyEngine requires
SIMD acceleration and convolution optimizations (kernel fu-
sion, depthwise operations) available only onMACC-enabled
Cortex-M4/M7 platforms. Similarly, FAtRELU [26] exploits
activation sparsity through SIMD vectorization, AVX512 in-
structions, and multicore parallelism that are unavailable on
constrainedMCUs.DeepShift [15] shares our goal of avoiding
multiplication operations but targets GPU-equipped systems,
retains dense weight matrices, and achieves only marginal
memory savings over int8 quantization when deployed on
MCUs.

These features render such methods fundamentally incom-
patible with our target platform, making even scaled-down
variants non-deployable. Our evaluation, therefore, bench-
marks against what is realistically deployable on Cortex-M0
today, and demonstrates up to 90% improvements in latency
and memory usage in this setting.

8 CONCLUSION

We demonstrate that building neural architectures directly
around hardware constraints, rather than adapting existing
models,may improve performance and deployability on ultra-
low-power MCUs. We achieve this by restructuring the archi-
tecture, specifically, by shifting weights from connections to
neurons and using ternary connectivity, which allows accu-
rate models to run in a time-predictable manner within tight
latency and memory budgets, where standard designs are
not deployable. On a Cortex-M0MCU, for example, Neuro-C
reduces inference latency and programmemory usage by up
to 90% compared to conventional MLPswith similar accuracy.
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